000189098 001__ 189098 000189098 005__ 20240711085620.0 000189098 0247_ $$2doi$$a10.1016/j.surfcoat.2014.06.002 000189098 0247_ $$2ISSN$$a0257-8972 000189098 0247_ $$2ISSN$$a1879-3347 000189098 0247_ $$2WOS$$aWOS:000353735300009 000189098 037__ $$aFZJ-2015-02311 000189098 041__ $$aEnglish 000189098 082__ $$a620 000189098 1001_ $$0P:(DE-Juel1)129633$$aMauer, G.$$b0$$eCorresponding Author 000189098 245__ $$aNovel opportunities for thermal spray by PS-PVD 000189098 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015 000189098 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1429518646_28974 000189098 3367_ $$2DataCite$$aOutput Types/Journal article 000189098 3367_ $$00$$2EndNote$$aJournal Article 000189098 3367_ $$2BibTeX$$aARTICLE 000189098 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000189098 3367_ $$2DRIVER$$aarticle 000189098 520__ $$aPlasma spray-physical vapor deposition (PS-PVD) is a novel coating process based on plasma spraying. In contrast to conventional methods, deposition takes place not only from liquid splats but also from nano-sized clusters and from the vapor phase. This offers new opportunities to obtain advanced microstructures and thus to comply with the growing demands on modern functional coatings. Thin and dense ceramic coatings as well as highly porous columnar structures can be achieved, offering novel opportunities for the application of thermal spray technology.This study describes process conditions, which are relevant for the formation of particular microstructures in the PS-PVD process. Following the structure of the process, the feedstock treatment close to the plasma source, plasma particle interaction in the open jet and the formation of coating microstructures on the substrate are covered. Calculated results on the plasma particle interaction under PS-PVD process conditions were found to be in good agreement with OES results and microstructural observations. They show that the feedstock treatment along the very first trajectory segment between injector and jet expansion plays a key role.Varying the plasma parameters, feedstock treatment can be controlled to a broad extent. Consequently, the manifold nature of the feedstock species arriving on the substrate enables to achieve various coating microstructures. As examples, application specific features of PS-PVD coatings are reported for strain-tolerant thermal barrier coatings as well as for gas-tight oxygen transport membranes with high mixed electronic-ionic conductivity. 000189098 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0 000189098 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1 000189098 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000189098 7001_ $$0P:(DE-Juel1)129618$$aJarligo, M. O.$$b1 000189098 7001_ $$0P:(DE-Juel1)144899$$aRezanka, S.$$b2 000189098 7001_ $$0P:(DE-Juel1)129616$$aHospach, A.$$b3 000189098 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b4$$ufzj 000189098 770__ $$a6RIPT 000189098 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2014.06.002$$gVol. 268, p. 52 - 57$$p52 - 57$$tSurface and coatings technology$$v268$$x0257-8972$$y2015 000189098 8564_ $$uhttps://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.pdf$$yRestricted 000189098 8564_ $$uhttps://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.gif?subformat=icon$$xicon$$yRestricted 000189098 8564_ $$uhttps://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000189098 8564_ $$uhttps://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000189098 8564_ $$uhttps://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000189098 8564_ $$uhttps://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000189098 909CO $$ooai:juser.fz-juelich.de:189098$$pVDB 000189098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000189098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144899$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000189098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000189098 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0 000189098 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0 000189098 9141_ $$y2015 000189098 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000189098 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000189098 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000189098 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000189098 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000189098 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000189098 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000189098 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000189098 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000189098 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000189098 980__ $$ajournal 000189098 980__ $$aVDB 000189098 980__ $$aI:(DE-Juel1)IEK-1-20101013 000189098 980__ $$aUNRESTRICTED 000189098 981__ $$aI:(DE-Juel1)IMD-2-20101013