001     189098
005     20240711085620.0
024 7 _ |a 10.1016/j.surfcoat.2014.06.002
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000353735300009
|2 WOS
037 _ _ |a FZJ-2015-02311
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Mauer, G.
|0 P:(DE-Juel1)129633
|b 0
|e Corresponding Author
245 _ _ |a Novel opportunities for thermal spray by PS-PVD
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1429518646_28974
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Plasma spray-physical vapor deposition (PS-PVD) is a novel coating process based on plasma spraying. In contrast to conventional methods, deposition takes place not only from liquid splats but also from nano-sized clusters and from the vapor phase. This offers new opportunities to obtain advanced microstructures and thus to comply with the growing demands on modern functional coatings. Thin and dense ceramic coatings as well as highly porous columnar structures can be achieved, offering novel opportunities for the application of thermal spray technology.This study describes process conditions, which are relevant for the formation of particular microstructures in the PS-PVD process. Following the structure of the process, the feedstock treatment close to the plasma source, plasma particle interaction in the open jet and the formation of coating microstructures on the substrate are covered. Calculated results on the plasma particle interaction under PS-PVD process conditions were found to be in good agreement with OES results and microstructural observations. They show that the feedstock treatment along the very first trajectory segment between injector and jet expansion plays a key role.Varying the plasma parameters, feedstock treatment can be controlled to a broad extent. Consequently, the manifold nature of the feedstock species arriving on the substrate enables to achieve various coating microstructures. As examples, application specific features of PS-PVD coatings are reported for strain-tolerant thermal barrier coatings as well as for gas-tight oxygen transport membranes with high mixed electronic-ionic conductivity.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|x 0
|f POF III
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Jarligo, M. O.
|0 P:(DE-Juel1)129618
|b 1
700 1 _ |a Rezanka, S.
|0 P:(DE-Juel1)144899
|b 2
700 1 _ |a Hospach, A.
|0 P:(DE-Juel1)129616
|b 3
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 4
|u fzj
770 _ _ |a 6RIPT
773 _ _ |a 10.1016/j.surfcoat.2014.06.002
|g Vol. 268, p. 52 - 57
|0 PERI:(DE-600)1502240-7
|p 52 - 57
|t Surface and coatings technology
|v 268
|y 2015
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189098/files/1-s2.0-S0257897214004940-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:189098
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144899
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129670
913 0 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21