000189144 001__ 189144
000189144 005__ 20240610121159.0
000189144 0247_ $$2doi$$a10.1063/1.4916609
000189144 0247_ $$2ISSN$$a0021-8979
000189144 0247_ $$2ISSN$$a0148-6349
000189144 0247_ $$2ISSN$$a1089-7550
000189144 0247_ $$2WOS$$aWOS:000352645100030
000189144 0247_ $$2Handle$$a2128/16796
000189144 037__ $$aFZJ-2015-02344
000189144 041__ $$aEnglish
000189144 082__ $$a530
000189144 1001_ $$0P:(DE-Juel1)159136$$aMigunov, Vadim$$b0$$eCorresponding Author$$ufzj
000189144 245__ $$aModel-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects
000189144 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2015
000189144 3367_ $$2DRIVER$$aarticle
000189144 3367_ $$2DataCite$$aOutput Types/Journal article
000189144 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428557813_2727
000189144 3367_ $$2BibTeX$$aARTICLE
000189144 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189144 3367_ $$00$$2EndNote$$aJournal Article
000189144 520__ $$aThe one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electric field and electrostatic potential around the needle with ∼10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness.
000189144 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000189144 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189144 7001_ $$00000-0001-6959-9849$$aLondon, A.$$b1
000189144 7001_ $$00000-0002-1864-3261$$aFarle, M.$$b2
000189144 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b3$$ufzj
000189144 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.4916609$$gVol. 117, no. 13, p. 134301 -$$n13$$p134301 $$tJournal of applied physics$$v117$$x1089-7550$$y2015
000189144 8564_ $$uhttps://juser.fz-juelich.de/record/189144/files/1.4916609.pdf$$yOpenAccess
000189144 8564_ $$uhttps://juser.fz-juelich.de/record/189144/files/1.4916609.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189144 8767_ $$92015-06-01$$d2015-06-12$$ePublication charges$$jZahlung erfolgt$$zAuthor Charges: 1.625 USD
000189144 909CO $$ooai:juser.fz-juelich.de:189144$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000189144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159136$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000189144 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000189144 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000189144 9141_ $$y2015
000189144 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189144 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189144 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189144 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189144 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189144 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000189144 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000189144 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189144 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189144 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189144 920__ $$lyes
000189144 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000189144 9801_ $$aFullTexts
000189144 980__ $$ajournal
000189144 980__ $$aVDB
000189144 980__ $$aUNRESTRICTED
000189144 980__ $$aI:(DE-Juel1)PGI-5-20110106
000189144 980__ $$aAPC
000189144 981__ $$aI:(DE-Juel1)ER-C-1-20170209