000189144 001__ 189144 000189144 005__ 20240610121159.0 000189144 0247_ $$2doi$$a10.1063/1.4916609 000189144 0247_ $$2ISSN$$a0021-8979 000189144 0247_ $$2ISSN$$a0148-6349 000189144 0247_ $$2ISSN$$a1089-7550 000189144 0247_ $$2WOS$$aWOS:000352645100030 000189144 0247_ $$2Handle$$a2128/16796 000189144 037__ $$aFZJ-2015-02344 000189144 041__ $$aEnglish 000189144 082__ $$a530 000189144 1001_ $$0P:(DE-Juel1)159136$$aMigunov, Vadim$$b0$$eCorresponding Author$$ufzj 000189144 245__ $$aModel-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects 000189144 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2015 000189144 3367_ $$2DRIVER$$aarticle 000189144 3367_ $$2DataCite$$aOutput Types/Journal article 000189144 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428557813_2727 000189144 3367_ $$2BibTeX$$aARTICLE 000189144 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000189144 3367_ $$00$$2EndNote$$aJournal Article 000189144 520__ $$aThe one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electric field and electrostatic potential around the needle with ∼10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness. 000189144 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000189144 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000189144 7001_ $$00000-0001-6959-9849$$aLondon, A.$$b1 000189144 7001_ $$00000-0002-1864-3261$$aFarle, M.$$b2 000189144 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b3$$ufzj 000189144 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.4916609$$gVol. 117, no. 13, p. 134301 -$$n13$$p134301 $$tJournal of applied physics$$v117$$x1089-7550$$y2015 000189144 8564_ $$uhttps://juser.fz-juelich.de/record/189144/files/1.4916609.pdf$$yOpenAccess 000189144 8564_ $$uhttps://juser.fz-juelich.de/record/189144/files/1.4916609.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000189144 8767_ $$92015-06-01$$d2015-06-12$$ePublication charges$$jZahlung erfolgt$$zAuthor Charges: 1.625 USD 000189144 909CO $$ooai:juser.fz-juelich.de:189144$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000189144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159136$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000189144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000189144 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0 000189144 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000189144 9141_ $$y2015 000189144 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000189144 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000189144 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000189144 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000189144 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000189144 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000189144 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000189144 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000189144 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000189144 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000189144 920__ $$lyes 000189144 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0 000189144 9801_ $$aFullTexts 000189144 980__ $$ajournal 000189144 980__ $$aVDB 000189144 980__ $$aUNRESTRICTED 000189144 980__ $$aI:(DE-Juel1)PGI-5-20110106 000189144 980__ $$aAPC 000189144 981__ $$aI:(DE-Juel1)ER-C-1-20170209