000189150 001__ 189150
000189150 005__ 20210129215317.0
000189150 037__ $$aFZJ-2015-02350
000189150 041__ $$aEnglish
000189150 082__ $$a600
000189150 1001_ $$0P:(DE-Juel1)157756$$aSelig, Michael$$b0$$eCorresponding Author
000189150 245__ $$aRubber Friction and Tire Dynamics: A Comparison of Theory with Experimental Data
000189150 260__ $$aAkron, Ohio$$bTire Society$$c2014
000189150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430723027_23233
000189150 3367_ $$2DataCite$$aOutput Types/Journal article
000189150 3367_ $$00$$2EndNote$$aJournal Article
000189150 3367_ $$2BibTeX$$aARTICLE
000189150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189150 3367_ $$2DRIVER$$aarticle
000189150 520__ $$aIn this contribution, a simple rubber friction law is presented. The model can be used for tire and vehicle dynamics calculations [19]. The friction law is tested by comparing numerical results to the full rubber friction theory [6] and to experimental data.A two-dimensional tire model is introduced. The model combines the rubber friction law with a simple mass-spring description of the tire body. The tire model is very flexible and can be applied to different maneuvers. It can be used for calculating l-slip curves, the self-aligning torque, braking and cornering, or combined motion (e.g., braking during cornering). The theory predictions are compared to measured data from indoor tire testing on sandpaper substrate. Simulations of antilock braking systems (ABS) using two different control algorithms are also presented.
000189150 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000189150 7001_ $$0P:(DE-Juel1)130804$$aLorenz, Boris$$b1$$ufzj
000189150 7001_ $$0P:(DE-HGF)0$$aHenrichmöller, Dirk$$b2
000189150 7001_ $$0P:(DE-HGF)0$$aSchmidt, Karsten$$b3
000189150 7001_ $$0P:(DE-HGF)0$$aBall, Andrew$$b4
000189150 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b5$$ufzj
000189150 773__ $$0PERI:(DE-600)2249019-X$$n4$$p216-262$$tTire science and technology$$v42$$x0090-8657$$y2014
000189150 8564_ $$uhttps://juser.fz-juelich.de/record/189150/files/Article.pdf$$yRestricted
000189150 8564_ $$uhttps://juser.fz-juelich.de/record/189150/files/Article.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189150 909CO $$ooai:juser.fz-juelich.de:189150$$pVDB
000189150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130804$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000189150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000189150 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000189150 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000189150 9141_ $$y2014
000189150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189150 920__ $$lyes
000189150 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000189150 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000189150 980__ $$ajournal
000189150 980__ $$aVDB
000189150 980__ $$aI:(DE-Juel1)PGI-1-20110106
000189150 980__ $$aI:(DE-Juel1)IAS-1-20090406
000189150 980__ $$aUNRESTRICTED
000189150 981__ $$aI:(DE-Juel1)IAS-1-20090406