000189156 001__ 189156
000189156 005__ 20240712084508.0
000189156 0247_ $$2Handle$$a2128/8628
000189156 0247_ $$2ISSN$$a1866-1793
000189156 020__ $$a978-3-95806-024-1
000189156 037__ $$aFZJ-2015-02356
000189156 041__ $$aEnglish
000189156 1001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b0$$eCorresponding Author$$ufzj
000189156 245__ $$aNanostructured Si-alloys for silicon solar cells$$f2014-11-20
000189156 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000189156 300__ $$a210 S.
000189156 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1432193143_11927
000189156 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000189156 3367_ $$02$$2EndNote$$aThesis
000189156 3367_ $$2DRIVER$$adoctoralThesis
000189156 3367_ $$2BibTeX$$aPHDTHESIS
000189156 3367_ $$2DataCite$$aOutput Types/Dissertation
000189156 3367_ $$2ORCID$$aDISSERTATION
000189156 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v246
000189156 502__ $$aRWTH Aachen, Diss., 2014$$bDr.$$cRWTH Aachen$$d2014
000189156 520__ $$aIn order to initiate further progress in silicon (Si) photovoltaics, a next-generation of Si solar cell concepts targeting both high performance and low-cost production needs to emerge. The objective of this thesis is to fabricate and characterize Si nanostructures embedded in a Si alloy matrix and implement these novel materials into Si based photovoltaic devices. In particular, silicon quantum dots (Si-QDs) in asilicon carbide (SiC)/Si-rich silicon oxide (SiO$_{x}$) hetero-superlattice (HSL) structure as top cell absorber in all-Si tandem solar cells and nanocomposite microcrystalline silicon oxide ($\mu$c-SiO$_{x}$:H) as contact layers in silicon heterojunction (SHJ) solar cells have been investigated. The main focus of the Si-QD absorber topic lies on the fundamental understanding of the material properties, whereas for the SHJ solar cell topic, developments on device level are the key aspect. Due to the competing nature of charge carrier confinement requiring high band offset and charge carrier transport demanding low band offset between Si-QDs and the embedding material, the choice of different materials for matrix and barrier is indicated. The novel Si-QD absorber approach based on HSL with near-stoichiometric SiC (low band offset) as vertical barrier layer and Si-rich SiO$_{x}$ (high band offset) as lateral matrix layer is motivated by pointing out the technical and theoretical diffculties of Si-QD formation in SiC matrix. After the successful development of laterally uniform, low rate and fully compatible plasma-enhanced chemical vapor depositions of high quality SiC and SiO$_{x}$ single layers, the processes were transfered into an automatic deposition sequence, which allows for the fabrication of SiC/SiO$_{x}$ HSL structures with excellent control over the sublayer composition and thickness. Even though the SiO$_{x}$ was found to fulfill the requirements for a matrix material upon high-temperature annealing (Si precipitation and crystallization, well passivated Si-QDs exhibiting clear signature of quantum confinement, remaining [...]
000189156 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000189156 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000189156 773__ $$y2015
000189156 8564_ $$uhttps://juser.fz-juelich.de/record/189156/files/Energie_Umwelt_246.pdf$$yOpenAccess
000189156 8564_ $$uhttps://juser.fz-juelich.de/record/189156/files/Energie_Umwelt_246.gif?subformat=icon$$xicon$$yOpenAccess
000189156 8564_ $$uhttps://juser.fz-juelich.de/record/189156/files/Energie_Umwelt_246.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000189156 8564_ $$uhttps://juser.fz-juelich.de/record/189156/files/Energie_Umwelt_246.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000189156 8564_ $$uhttps://juser.fz-juelich.de/record/189156/files/Energie_Umwelt_246.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000189156 8564_ $$uhttps://juser.fz-juelich.de/record/189156/files/Energie_Umwelt_246.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189156 8564_ $$uhttps://juser.fz-juelich.de/record/189156/files/Energie_Umwelt_246.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000189156 909CO $$ooai:juser.fz-juelich.de:189156$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000189156 915__ $$0StatID:(DE-HGF)0510$$aOpenAccess
000189156 9141_ $$y2015
000189156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189156 9130_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000189156 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000189156 920__ $$lyes
000189156 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000189156 9801_ $$aFullTexts
000189156 980__ $$aphd
000189156 980__ $$aVDB
000189156 980__ $$aFullTexts
000189156 980__ $$aUNRESTRICTED
000189156 980__ $$abook
000189156 980__ $$aI:(DE-Juel1)IEK-5-20101013
000189156 981__ $$aI:(DE-Juel1)IMD-3-20101013