001     189198
005     20210129215323.0
024 7 _ |a 10.1002/pssa.200925432
|2 doi
024 7 _ |a 0031-8965
|2 ISSN
024 7 _ |a 1521-396X
|2 ISSN
024 7 _ |a 1862-6300
|2 ISSN
024 7 _ |a 1862-6319
|2 ISSN
024 7 _ |a WOS:000282766100031
|2 WOS
037 _ _ |a FZJ-2015-02389
082 _ _ |a 530
100 1 _ |a Remes, Zdenek
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Optical absorption losses in metal layers used in thin film solar cells
260 _ _ |a Weinheim
|c 2010
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1428579164_24254
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We apply optical transmittance and reflectance spectroscopy, photothermal deflection spectroscopy (PDS) and laser calorimetry (LC) to evaluate optical absorption losses at rough interface between thin conductive oxide (TCO) and metal films used as backreflectors and electrical contacts in thin film solar cells. The paper proposes a simple method how to model the dielectric function of rough metal layers used in thin film solar cells. We show that the rough metal layer optically behaves as a semi-infinite layer with modified dielectric function calculated by the Landau–Lifshitz–Looyenga (LLL) model from the dielectric function of a smooth metal, the dielectric function of TCO and just one free parameter that needs to be found by fitting the total optical absorptance. This approach can be used to simplify the modelling of the optical properties of thin film solar cells.
536 _ _ |a 111 - Thin Film Photovoltaics (POF2-111)
|0 G:(DE-HGF)POF2-111
|c POF2-111
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Holovsky, Jakub
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Purkrt, Adam
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Izak, Tibor
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Poruba, Ales
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vanecek, Milan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dagkaldiran, Ümit
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Yates, Heather M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Evans, Philip
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sheel, David W.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1002/pssa.200925432
|g Vol. 207, no. 9, p. 2170 - 2173
|0 PERI:(DE-600)1481091-8
|n 9
|p 2170 - 2173
|t Physica status solidi / A
|v 207
|y 2010
|x 1862-6300
856 4 _ |u https://juser.fz-juelich.de/record/189198/files/2170_ftp.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189198/files/2170_ftp.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:189198
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF2-110
|0 G:(DE-HGF)POF2-111
|2 G:(DE-HGF)POF2-100
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)VDB813
|k IEF-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)VDB813
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21