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Abstract – We study numerically local models for the mechanical contact between two solids
with rough surfaces. When the solids softly touch either through adhesion or by a small normal
load L, contact only forms at isolated patches and fluids can pass through the interface. When the
load surpasses a threshold value, Lc, adjacent patches coalesce at a critical constriction, i.e., near
points where the interfacial separation between the undeformed surfaces forms a saddle point.
This process is continuous without adhesion and the interfacial separation near percolation is
fully defined by scaling factors and the sign of Lc − L. The scaling factors lead to a Reynolds
flow resistance which diverges as (Lc − L)−β with β = 3.45. Contact merging and destruction
near saddle points becomes discontinuous when either short-range adhesion or specific short-range
repulsion are added to the hard-wall repulsion. These results imply that coalescence and break-up
of contact patches can contribute to Coulomb friction and contact aging.

Introduction. – When two nominally rough solids
are pressed against each other, their surfaces tend to touch
microscopically only at isolated points [1,2]. Simple mod-
els assume that real contact between two rough surfaces
can be decomposed into single-asperity, Hertzian-like con-
tacts. However, both experiment [3,4] and large-scale sim-
ulations [5–9] have revealed that the majority fraction of
contiguous contact patches appear to be fractal and to re-
sult from many (formerly) single-asperity contacts. While
the latter are well studied, less is known about the way
in which they merge [10–13], in particular when adhesion
is present. For example, it is unclear if adhesive contact-
patch coalescence and break-up happen discontinuously.
Contact-patch coalescence also plays a role for seals: it
has been argued that their leakage rate is determined to
a significant degree from the topology of the last criti-
cal constriction [14], i.e., the neighborhood of the point,
which, upon increasing load or adhesion, is the first point
to interrupt a percolating non-contact path.

In this work, we study local models for the merging of
contact patches, or, in the context of seals, the contact
mechanics of critical constrictions. The local gap topog-
raphy of a critical constriction is such that the interfacial
separation of the undeformed surfaces is (close to) a sad-
dle point. More precisely, near the percolation point, the
gap is very small. Parallel to a just-blocked fluid channel,

the gap opens, while in the orthogonal, in-plane direction,
the gap is closed, because the interfacial separation of the
undeformed surfaces decreases in that direction. Thus,
studying the contact mechanics of saddle points entails
the analysis of critical constrictions and that of contact
patch merging. Here, we investigate not only the con-
tact mechanics of (near-) critical constrictions, including
a scaling analysis of the gap topography near the percola-
tion point, but also address the pertaining Reynolds flow
with and without adhesion.

To simulate the contact mechanics of an isolated sad-
dle point, we reinvestigate rather simple models [10,11,13]
for the (combined) surface roughness and for the interac-
tions between the surfaces. Yet, in addition to the hard-
wall repulsion commonly assumed infinitely short-ranged
in continuum mechanics, we also study the effects of
finite-range attraction [15] and repulsion [16] between the
surfaces. Our motivation for additional repulsion stems
from recent simulations, in which appropriately designed
cohesive-zone models qualitatively reproduced the surface
interactions mediated by a strongly wetting fluid inducing
an effective negative surface energy of finite range [16].
The length-scale of these additional surface interactions is
nevertheless short enough for interfacial interactions not
to act far away from a contact line, i.e., our Tabor param-
eters [15] are ≫ 1.
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Fig. 2: Relative contact area as a function of load for the
square-lattice substrate and different finite-range interactions.
Red (blue) lines refer to increasing (decreasing) external load
as marked by arrows. Exponential adhesion (solid lines) and
Gaussian repulsion (dashed lines) show the established hystere-
ses at small contact area related to contact formation. Unless
solids interact solely by hard-wall repulsion, additional hystere-
ses appear at relative contact areas near 0.4. They reflect the
contact-patch-coalescence and break-up instabilities.

Results. – A central question addressed in this study
is whether the merging of two contact patches happens
continuously or discontinuously. Figure 2 confirms previ-
ous findings [10, 13] that percolation is continuous when
surfaces interact solely with hard-wall repulsion. How-
ever, once finite-range repulsion (with the functional form
defined in the method section) or short-range attraction
are added, contact patches and likewise fluid channels co-
alesce and break up through instabilities. The behavior is
qualitatively similar for the two remaining models, despite
large quantitative differences.

Contacts also coalesce discontinuously when driven en-
tirely by adhesion. This is revealed in Figure 3. Despite
similar conditions — identical adhesion and surface spec-
tra — the quantitative differences between the three mod-
els are clearly borne out: The hexagonal (triangular) lat-
tice has by far the largest (smallest) propensity to form a
coalesced or percolated contact area. This is because its
peaks are rather blunt or obtuse (pointed or acute) and
the ridges connecting the peaks have small (large) cur-
vature. However, the hexagonal (triangular) lattice has
the smallest tendency to go into full contact, because its
troughs are rather deep (shallow) and the curvature nor-
mal to the ridges are large (small) in magnitude. In the
triangular lattice, the propensity to form full contact is
even so large that partial, coalesced contact is not even
metastable at finite adhesion and zero load. The square
model is somewhere in between the two extreme cases.

While adhesion-free/load-driven and adhesion-
driven/load-free percolation are qualitatively different in
that the former is continuous and the latter is discon-
tinuous, they happen at similar relative contact areas.
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Fig. 3: Relative contact area as a function of surface energy
γ0 for the three investigated models. The instabilities at lower
values of γ0 are related to percolation transitions. The single-
wavelength, triangular substrate circumvents the percolated,
partial contact regime by transitioning directly from isolated
contact patches to full contact.

The precise values in the purely load-driven case with
only hard-wall repulsion are ap = 0.17826(11) (triangular
lattice), 0.40185(6) (square lattice), and 0.67323(1)
(hexagonal lattice). Interestingly, the average of these
numbers (0.418) is close to the percolation threshold
identified for self-affine, isotropic, randomly-rough and
non-adhesive bodies (0.425) [22]. In the adhesion-driven
case, the percolation of contact is triggered at relative
contacts slightly below the given values of ap and ends
at values slightly above ap. The reverse transitions from
partial but coalesced to isolated contact patches also
occur near the respective values for ap, though shifted to
slightly smaller values.

While only peripheral to this work, we briefly discuss the
transition to full contact. In the purely force-driven case,
full contact occurs above critical mean pressures of pfc =
πE∗t̄/λ, where t̄ is the mean trough depth (stated in the
model section). This relation is readily obtained from the
single-wavelength, full-contact solution [10]. (In the orig-
inal work, an additional factor of

√
2 was included, as the

wavelength was defined to be λ/
√
2.) The purely adhesion-

driven percolation roughly follows the force-driven perco-
lation, e.g., the ratio γfc/γp is largest for the hexagonal
(135) and smallest for the triangular (1) model. Pertinent
ratios for the critical forces in the absence of adhesion are
31 (hexagonal) and 1.4 (triangular). Here and in the fol-
lowing, we do not address the reverse transition from full
to partial contact for adhesive surfaces, because it would
correspond to a Griffith-like fracture problem lacking an
initial crack. As such, for our and related adhesive laws,
full contact becomes unstable at tensile pressure . γ0/ρ.
The other adhesion-related results presented here barely
depend on the precise choice of ρ as long as ρ ≪ h0.

The above results reveal a quite significant influence of
local structure on prefactors. Some of the differences can
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normal loads and relative contact areas, although the two
geometries have identical height spectra. It might be pos-
sible to incorporate such effects — effectively representing
a correlation of the phases for different h̃(q) at fixed |q| —
into the theory via appropriate generalizations. Second,
in the absence of adhesion, we find that the length and the
width of a constriction are not similar in magnitude as as-
sumed in Ref. [14]. Instead they disappear with different
power laws as Lc is approached.

When adhesion is absent, the contact mechanics of
“well-behaved” saddle points shows universal behavior
near the percolation point. There, the gap is entirely de-
termined by the sign of the reduced load and scaling fac-
tors. Another aspect of the universal behavior is that the
pressure profile on a newly-formed contact ridge along the
transverse direction seems identical to that of a Hertzian
contact. We therefore see the possibility for closed-form
analytical solutions of the contact mechanics of a saddle
point, even if formulating the boundary conditions could
be difficult.
Finally, we find for idealized conditions frequently as-

sumed in continuum approaches (zero slip length, no con-
finement effects on viscosity, hard-wall repulsion only)
that the Reynolds flow through a critical constriction fol-
lows (Lc−L)β with β = 3.45. Since, for the given assump-
tions, most fluid pressure drops near a single constriction
in the immediate vicinity of the percolation point [14], the
leak rate of a seal that is pressed against a randomly rough
macroscopic solid would depend on load with the same
power law as the isolated constriction. Despite this knowl-
edge it is quite difficult to predict the absolute current
because the detailed topography of the last constriction
has a tremendous effect on prefactors but is usually un-
known. Still, the percolation exponent would result from
local contact mechanics and not, as commonly assumed in
the theory of percolation [28], from the disorder at large
length scales. Whether the classical view is reestablished
once adhesion is included remains to be seen.
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[22] Dapp W. B., Lücke A., Persson B. N. J. and Müser
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