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Abstract. This article outlines two parallelization tools, i.e. the Vienna
Fortran Compilation System and FORGE 90, and discusses their analysis
and transformation capabilities in the context of a regular grid applica-
tion simulating the growth of a silicon crystal. We present performance
results obtained on an iPSC/860 for both versions and for a manually
parallelized version.

1 Introduction

Parallelization of sequential applications for massively parallel systems is cur-
rently performed manually. The programmer first has to rewrite the whole ap-
plication in the message passing programming model before test runs can be
performed to evaluate the parallelization strategy. Manual parallelization can be
facilitated by appropriate tools, such as TOP? [1] that was developed at KFA
and allows the programmer to separate individual subroutines and provides an
environment for test runs of the parallel implementation of that subroutine.

Automatic parallelization is supported only by a few tools, e.g. the Vienna
Fortran Compilation System (VFCS) [6, 4], the Fortran D environment [3], and
FORGE 90, xHPF77 [2]. All these tools are based on the data distribution
approach. The user specifies the distribution of arrays to the processors and
the parallelization tool adapts the sequential code to the specified distribution.
The annotations specifying the data distribution have been standardized as High
Performance Fortran (HPF) [5].

In this article we introduce two tools, the VFCS and FORGE 90. We paral-
lelized a regular grid application simulating the melting process of silicon with
both tools and also used a hand-coded parallel version developed according to the
same parallelization strategy to analyze the effectiveness of the parallelization
tools.

2 Crystal Growth Simulation

The Crystal Growth Simulation is an application developed at KFA [7] for the
optimization of the silicon production process. For the quality of the silicon



crystal a constant convection in the melt is very important. The convection
results from the heating, the rotation of the crucible, and the rotation of the
crystal. The convection is modeled by a set of partial differential equations and
determined by an explicit finite difference scheme. Thus, array references are
regular and the application is a good candidate for state-of-the-art parallelization
tools.

The simulated crucible has a radius of 3 cm and a height of 4 cm and is
discretized into 30 x 90 x 40 elements. This determines the shape of the main
arrays to be 32 x 92 x 42 including some additional boundary cells. The boundary
cells determine the boundary conditions at the surface of the crucible, e.g. the
temperature of the heating, and the values at the inner surface where the crucible
is unfolded to give a regular three-dimensional structure. This relation between
the crucible and the main arrays is shown in Figure 1.
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Fig. 1. Application Domain

The algorithm consists of an initialization phase, a time loop, and an output
phase. In the time loop for each time step the new temperature, the pressure, and
the velocity are computed and the boundary conditions are updated. The most
time consuming procedure is the computation of the velocity and the pressure.
Here the linear equation system resulting from the partial differential equations
is solved by successive overrelaxation.

In this subroutine as well as in the other operations of the time loop mostly
stencil operations are performed on the data structures, i.e. to compute an array
element only the values of neighboring elements are needed. When updating
the boundary conditions some non-local operations are applied, such as copying
plane 91 onto plane 1 and plane 2 onto plane 92, thus simulating the closed
crucible.

The code is designed such that a simulation can be split into a sequence
of program runs. The program generates a continuation data set at the end of
a run. In addition, data can be output during the time loop to allow off-line



visualization. The I/O operations could not be parallelized by both tools and
are only supported in the manual version.

3 Parallelization Strategy

The code is parallelized according to the data partitioning approach. The main
arrays are divided into blocks that are assigned to the processors. For the ap-
plication the HPF BLOCK distribution strategy is optimal. Depending on the
number of processors all three dimensions can be partitioned.

The computation for such a distributed array is spread among the processors
with respect to data locality. Most systems apply the owner-computes rule, i.e.
the owner of an array element computes its new values. Current parallelization
tools either strictly apply this rule or individual loops are spread according to
the owner of a single array reference in the loop body and assignments to other
arrays may be executed for array elements not owned by the processor.

The transformation of Fortran 77 with data distribution annotations to mes-
sage passing code consists of several steps: interprocedural distribution analysis,
computation of communication patterns according to the data distribution and
the resulting work distribution, shrinking of arrays to save memory in each pro-
cessor, and implementation of the communication with as few synchronizations
as possible. The techniques applied in these steps are well developed for regu-
lar computations but are still in a research stage for irregular applications like
finite-element codes.

In this application, the distribution of arrays in blocks leads to two communi-
cation patterns: an overlap update and a remote copy. If we assume a distribution
in the second dimension, the stencil operations induce access to the boundary
elements of the neighboring blocks. Therefore, the left- and rightmost plane have
to be sent to the neighboring processors prior to the computation.

The copy operation outlined in the previous section leads to communication
between the rightmost and the leftmost processor only if the second dimension
is distributed. In all other cases this operation can be executed locally. There is
a similar operation to be performed in the first dimension.

4 Vienna Fortran Compilation System

The VFCS developed at the University of Vienna is the successor of the SUPERB
system. The input language is Vienna Fortran, a language extension to Fortran
77 providing very flexible data distribution mechanisms.

The system performs an automatic communication analysis which is specif-
ically tailored to overlap communication resulting from stencil operations. The
tool computes the overlap areas automatically from the work distribution and
the data distribution of right-hand side arrays.

Since the VFCS applies the owner-computes rule, assignments to auxiliary
variables in loops are executed by all processors, i.e. scalar variables are repli-
cated. If such an assignment is part of a stencil operation the overlap area cannot



be determined precisely. In such situations the user can apply several transfor-
mations to interactively optimize the code.

Mask propagation [4] determines, on the basis of dataflow information, in
which iterations a processor has to execute such an assignment. If those iterations
are unique the information can be used to determine the communication pattern.
This transformation is very useful for our application and makes it possible to
detect most of the stencil operations.

Since the VFCS is tailored to overlap communication, copy operations in
that application cannot be handled efficiently. They lead to an overlap area
in each process that consists of the total array. Since this results in a lot of
communication and memory overhead only the third dimension of the arrays
was distributed. In that dimension no copy operations occur.

In the communication optimization step the communication is vectorized and
performed very efficiently. An important missing optimization is the combination
of messages updating overlap areas of different arrays. Although the messages
are exchanged among the same pair of processors they are not combined to one
message.

During the work distribution optimization the loops are transformed such
that processors only execute those iterations that contain local computations.
This transformation is successful for almost all loops in that program. Only in
a few cases the distribution of work is performed on statement level. Individual
masks for statements in a loop are generated in the form of logical-ifs because the
loop transformation cannot ensure the owner-computes rule. A simple extension
of the existing transformation that allows to mask the entire loop based on
loop invariant expressions used in the statement-masks would allow to generate
efficient code.

The tool automatically shrinks the arrays to an appropriate shape for the
local part and the overlap area, i.e. the memory where communicated overlap
information is stored. This transformation as well as some other transformations
imply that the number of processors and the distribution is fixed at compile-time.
The generated code uses very few functions of a runtime library and thus can
be optimized manually.

5 FORGE 90

FORGE 90 is a commercial parallelization tool developed by Applied Paral-
lel Research. Similar to the VFCS it is an interactive tool that supports data
distributions as the basis for parallelization. The tool currently supports one-
dimensional block and cyclic distribution.

In the first step, the user supplies the data distribution. Then the user has
to pick individual loops in the program to spread the iterations over the proces-
sors. In contrast to the VFCS that strictly applies the owner-computes rule, the
generated code may contain remote stores.

The user can explicitely specify a work distribution which gives him much
flexibility to optimize data locality. When picking loops the user has to take



into account that FORGE 90 will implement communication resulting from the
data distribution and the work distribution in the best case before and after
the selected loop. Thus messages are vectorized with respect to this loop but
more aggressive message vectorization across surrounding sequential loops is not
supported.

This enforces that the first dimension of the arrays in our application has
to be distributed. The loops are implemented in such a way that the longest
loop, i.e. running over the second dimension, is the innermost to allow efficient
vectorization on Cray. Manual loop interchange in the entire code is an error-
prone operation and communicating values in the inner loops leads to very small
messages and a lot of communication overhead.

The loop partitioning step computes information which values have to be
communicated in a loop. The information presented is imprecise since it consists
of all references to distributed arrays. An analysis whether communication is
really necessary is later on performed in the backend. But an experienced user
can use the presented information to determine those references that do not need
any communication and thus can help the backend to eliminate unnecessary
runtime overhead.

Shrinking of arrays can be specified with the data distribution. Since memory
for shrinked arrays is allocated dynamically and all references to shrinked arrays
are linearized, the performance is not as good as with full-size arrays. Although
the difference was within a few percent we used full-size arrays for our perfor-
mance measurements. Due to these memory allocation strategies the generated
code can be executed on any number of processors. It includes a lot of calls to
a runtime library and thus manual optimization of the generated code is nearly
impossible.

6 Conclusion

Our experiments on the iPSC/860 showed that both tools lead to similar per-
formance if the data distribution was selected with respect to the capabilities of
the tools, 1.e. distribution of the third dimension for the VFCS and of the first
dimension for FORGE 90 . Both tools support only one-dimensional distribu-
tions for this application. The one-dimensional hand-coded version is 10 percent
faster than the automatically parallelized versions (Table 1 ).

The HPF BLOCK distribution is not suited if the number of elements in a
dimension is not much larger than the number of nodes. For example, the 16-
node version of ManuallD can utilize only 14 nodes and the 32-node version 21
nodes. The Vienna Fortran BLOCK strategy distributes the 42 elements in the
third dimension more evenly among the processors.

The two-dimensional hand-coded version performed much better due to a
lower communication overhead and a better load balance. In future, similar
execution times can be expected for the automatically parallelized code if the

! The FORGE 90 test version was limited to 16 nodes.



processors [FORGE 90|VFCS|ManuallD|Manual2D
1 198| 197 176 176
2 120| 116 104 100
4 79 82 70 50
8 58 55 54 29
16 41 42 37 17
32 * 39 35 10.5
speedup 16 4.8 4.7 4.8 10.5
speedup 32 5 5 17

Table 1. Execution Times (secs) and Speedup

tools are able to handle multi-dimensional distributions effectively. Extensions
of the techniques used in both tools, i.e. the compile-time analysis as well as the
code generation strategies for communication and work distribution, would be
sufficient for efficient parallelization of that application.
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