
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik
D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Automatic Parallelization of a

Crystal Growth Simulation Program for

Distributed-Memory Systems

Michael Gerndt

KFA-ZAM-IB-9404

Februar 1994
(Stand 17.02.94)

To be published in the proceedings of HPCN Europe, April 19-20, 1994

Automatic Parallelization of a Crystal GrowthSimulation Program for Distributed-MemorySystemsMichael GerndtCentral Institute for Applied MathematicsResearch Centre J�ulichD-52425 J�ulichemail: m.gerndt@kfa-juelich.deAbstract. This article outlines two parallelization tools, i.e. the ViennaFortran Compilation System and FORGE 90, and discusses their analysisand transformation capabilities in the context of a regular grid applica-tion simulating the growth of a silicon crystal. We present performanceresults obtained on an iPSC/860 for both versions and for a manuallyparallelized version.1 IntroductionParallelization of sequential applications for massively parallel systems is cur-rently performed manually. The programmer �rst has to rewrite the whole ap-plication in the message passing programming model before test runs can beperformed to evaluate the parallelization strategy. Manual parallelization can befacilitated by appropriate tools, such as TOP2 [1] that was developed at KFAand allows the programmer to separate individual subroutines and provides anenvironment for test runs of the parallel implementation of that subroutine.Automatic parallelization is supported only by a few tools, e.g. the ViennaFortran Compilation System (VFCS) [6, 4], the Fortran D environment [3], andFORGE 90, xHPF77 [2]. All these tools are based on the data distributionapproach. The user speci�es the distribution of arrays to the processors andthe parallelization tool adapts the sequential code to the speci�ed distribution.The annotations specifying the data distribution have been standardized as HighPerformance Fortran (HPF) [5].In this article we introduce two tools, the VFCS and FORGE 90. We paral-lelized a regular grid application simulating the melting process of silicon withboth tools and also used a hand-coded parallel version developed according to thesame parallelization strategy to analyze the e�ectiveness of the parallelizationtools.2 Crystal Growth SimulationThe Crystal Growth Simulation is an application developed at KFA [7] for theoptimization of the silicon production process. For the quality of the silicon

crystal a constant convection in the melt is very important. The convectionresults from the heating, the rotation of the crucible, and the rotation of thecrystal. The convection is modeled by a set of partial di�erential equations anddetermined by an explicit �nite di�erence scheme. Thus, array references areregular and the application is a good candidate for state-of-the-art parallelizationtools.The simulated crucible has a radius of 3 cm and a height of 4 cm and isdiscretized into 30 x 90 x 40 elements. This determines the shape of the mainarrays to be 32 x 92 x 42 including some additional boundary cells. The boundarycells determine the boundary conditions at the surface of the crucible, e.g. thetemperature of the heating, and the values at the inner surface where the crucibleis unfolded to give a regular three-dimensional structure. This relation betweenthe crucible and the main arrays is shown in Figure 1.
3 cm

4
 c

m

(a) discretized crucible

32 x 92 x 42

0 4 360 4
o o o o

(b) resulting array structure

(c) owned segment with overlapFig. 1. Application DomainThe algorithm consists of an initialization phase, a time loop, and an outputphase. In the time loop for each time step the new temperature, the pressure, andthe velocity are computed and the boundary conditions are updated. The mosttime consuming procedure is the computation of the velocity and the pressure.Here the linear equation system resulting from the partial di�erential equationsis solved by successive overrelaxation.In this subroutine as well as in the other operations of the time loop mostlystencil operations are performed on the data structures, i.e. to compute an arrayelement only the values of neighboring elements are needed. When updatingthe boundary conditions some non-local operations are applied, such as copyingplane 91 onto plane 1 and plane 2 onto plane 92, thus simulating the closedcrucible.The code is designed such that a simulation can be split into a sequenceof program runs. The program generates a continuation data set at the end ofa run. In addition, data can be output during the time loop to allow o�-line

visualization. The I/O operations could not be parallelized by both tools andare only supported in the manual version.3 Parallelization StrategyThe code is parallelized according to the data partitioning approach. The mainarrays are divided into blocks that are assigned to the processors. For the ap-plication the HPF BLOCK distribution strategy is optimal. Depending on thenumber of processors all three dimensions can be partitioned.The computation for such a distributed array is spread among the processorswith respect to data locality. Most systems apply the owner-computes rule, i.e.the owner of an array element computes its new values. Current parallelizationtools either strictly apply this rule or individual loops are spread according tothe owner of a single array reference in the loop body and assignments to otherarrays may be executed for array elements not owned by the processor.The transformation of Fortran 77 with data distribution annotations to mes-sage passing code consists of several steps: interprocedural distribution analysis,computation of communication patterns according to the data distribution andthe resulting work distribution, shrinking of arrays to save memory in each pro-cessor, and implementation of the communication with as few synchronizationsas possible. The techniques applied in these steps are well developed for regu-lar computations but are still in a research stage for irregular applications like�nite-element codes.In this application, the distribution of arrays in blocks leads to two communi-cation patterns: an overlap update and a remote copy. If we assume a distributionin the second dimension, the stencil operations induce access to the boundaryelements of the neighboring blocks. Therefore, the left- and rightmost plane haveto be sent to the neighboring processors prior to the computation.The copy operation outlined in the previous section leads to communicationbetween the rightmost and the leftmost processor only if the second dimensionis distributed. In all other cases this operation can be executed locally. There isa similar operation to be performed in the �rst dimension.4 Vienna Fortran Compilation SystemThe VFCS developed at the University of Vienna is the successor of the SUPERBsystem. The input language is Vienna Fortran, a language extension to Fortran77 providing very
exible data distribution mechanisms.The system performs an automatic communication analysis which is specif-ically tailored to overlap communication resulting from stencil operations. Thetool computes the overlap areas automatically from the work distribution andthe data distribution of right-hand side arrays.Since the VFCS applies the owner-computes rule, assignments to auxiliaryvariables in loops are executed by all processors, i.e. scalar variables are repli-cated. If such an assignment is part of a stencil operation the overlap area cannot

be determined precisely. In such situations the user can apply several transfor-mations to interactively optimize the code.Mask propagation [4] determines, on the basis of data
ow information, inwhich iterations a processor has to execute such an assignment. If those iterationsare unique the information can be used to determine the communication pattern.This transformation is very useful for our application and makes it possible todetect most of the stencil operations.Since the VFCS is tailored to overlap communication, copy operations inthat application cannot be handled e�ciently. They lead to an overlap areain each process that consists of the total array. Since this results in a lot ofcommunication and memory overhead only the third dimension of the arrayswas distributed. In that dimension no copy operations occur.In the communication optimization step the communication is vectorized andperformed very e�ciently. An importantmissing optimization is the combinationof messages updating overlap areas of di�erent arrays. Although the messagesare exchanged among the same pair of processors they are not combined to onemessage.During the work distribution optimization the loops are transformed suchthat processors only execute those iterations that contain local computations.This transformation is successful for almost all loops in that program. Only ina few cases the distribution of work is performed on statement level. Individualmasks for statements in a loop are generated in the form of logical-ifs because theloop transformation cannot ensure the owner-computes rule. A simple extensionof the existing transformation that allows to mask the entire loop based onloop invariant expressions used in the statement-masks would allow to generatee�cient code.The tool automatically shrinks the arrays to an appropriate shape for thelocal part and the overlap area, i.e. the memory where communicated overlapinformation is stored. This transformation as well as some other transformationsimply that the number of processors and the distribution is �xed at compile-time.The generated code uses very few functions of a runtime library and thus canbe optimized manually.5 FORGE 90FORGE 90 is a commercial parallelization tool developed by Applied Paral-lel Research. Similar to the VFCS it is an interactive tool that supports datadistributions as the basis for parallelization. The tool currently supports one-dimensional block and cyclic distribution.In the �rst step, the user supplies the data distribution. Then the user hasto pick individual loops in the program to spread the iterations over the proces-sors. In contrast to the VFCS that strictly applies the owner-computes rule, thegenerated code may contain remote stores.The user can explicitely specify a work distribution which gives him much
exibility to optimize data locality. When picking loops the user has to take

into account that FORGE 90 will implement communication resulting from thedata distribution and the work distribution in the best case before and afterthe selected loop. Thus messages are vectorized with respect to this loop butmore aggressive message vectorization across surrounding sequential loops is notsupported.This enforces that the �rst dimension of the arrays in our application hasto be distributed. The loops are implemented in such a way that the longestloop, i.e. running over the second dimension, is the innermost to allow e�cientvectorization on Cray. Manual loop interchange in the entire code is an error-prone operation and communicating values in the inner loops leads to very smallmessages and a lot of communication overhead.The loop partitioning step computes information which values have to becommunicated in a loop. The information presented is imprecise since it consistsof all references to distributed arrays. An analysis whether communication isreally necessary is later on performed in the backend. But an experienced usercan use the presented information to determine those references that do not needany communication and thus can help the backend to eliminate unnecessaryruntime overhead.Shrinking of arrays can be speci�ed with the data distribution. Since memoryfor shrinked arrays is allocated dynamically and all references to shrinked arraysare linearized, the performance is not as good as with full-size arrays. Althoughthe di�erence was within a few percent we used full-size arrays for our perfor-mance measurements. Due to these memory allocation strategies the generatedcode can be executed on any number of processors. It includes a lot of calls toa runtime library and thus manual optimization of the generated code is nearlyimpossible.6 ConclusionOur experiments on the iPSC/860 showed that both tools lead to similar per-formance if the data distribution was selected with respect to the capabilities ofthe tools, i.e. distribution of the third dimension for the VFCS and of the �rstdimension for FORGE 90 1. Both tools support only one-dimensional distribu-tions for this application. The one-dimensional hand-coded version is 10 percentfaster than the automatically parallelized versions (Table 1).The HPF BLOCK distribution is not suited if the number of elements in adimension is not much larger than the number of nodes. For example, the 16-node version of Manual1D can utilize only 14 nodes and the 32-node version 21nodes. The Vienna Fortran BLOCK strategy distributes the 42 elements in thethird dimension more evenly among the processors.The two-dimensional hand-coded version performed much better due to alower communication overhead and a better load balance. In future, similarexecution times can be expected for the automatically parallelized code if the1 The FORGE 90 test version was limited to 16 nodes.

processors FORGE 90 VFCS Manual1D Manual2D1 198 197 176 1762 120 116 104 1004 79 82 70 508 58 55 54 2916 41 42 37 1732 * 39 35 10.5speedup 16 4.8 4.7 4.8 10.5speedup 32 5 5 17Table 1. Execution Times (secs) and Speeduptools are able to handle multi-dimensional distributions e�ectively. Extensionsof the techniques used in both tools, i.e. the compile-time analysis as well as thecode generation strategies for communication and work distribution, would besu�cient for e�cient parallelization of that application.AcknowledgementWe thank K. Wingerath (Institut f�ur Festk�orperforschung) for providing accessto the application and giving us a lot of background information and R. Disse-mond for implementing the manually parallelized version.References1. U. Detert, H.M. Gerndt, TOP2: Tool Suite for Partial Parallelization, Version2.01, User's Guide, Forschungszentrum J�ulich, Interner Bericht KFA-ZAM-IB-9321, 19932. Applied Parallel Research, FORGE 90, Distributed Memory Parallelizer,User's Guide, Version 8.7, User's Guide, 19933. S. Hiranandani, K. Kennedy, C. Tseng, Compiler Optimizations for Fortran Don MIMD Distributed-Memory Machines, Proceedings of the SupercomputingConference 1991, Albuquerque, 86-100, November 19914. M. Gerndt, Updating Distributed Variables in Local Computations, Concur-rency: Practice and Experience, Vol. 2(3), 171-193, September 19905. HPFF, High Performance Fortran Language Speci�cation, High PerformanceFortran Forum, Version 1.0, Rice University Houston Texas, May 19936. H. Zima, P. Brezany, B. Chapman, P. Mehrotra, A. Schwald, Vienna Fortran- A language Speci�cation Version 1.1, University of Vienna, ACPC-TR 92-4,March 19927. M. Mihelcic, H. Wenzl, K. Wingerath, Flow in Czochralski Crystal GrowthMelts, Bericht des Forschungszentrums J�ulich, No. 2697, ISSN 0366-0885, De-cember 1992

This article was processed using the LaTEX macro package with LLNCS style

