000189240 001__ 189240
000189240 005__ 20240712112824.0
000189240 0247_ $$2doi$$a10.1016/j.ultramic.2015.03.016
000189240 0247_ $$2ISSN$$a0304-3991
000189240 0247_ $$2ISSN$$a1879-2723
000189240 0247_ $$2WOS$$aWOS:000355018700009
000189240 037__ $$aFZJ-2015-02428
000189240 082__ $$a570
000189240 1001_ $$0P:(DE-HGF)0$$aMacLaren, Ian$$b0$$eCorresponding Author
000189240 245__ $$aOn the origin of differential phase contrast at a locally charged and globally charge-compensated domain boundary in a polar-ordered material
000189240 260__ $$aAmsterdam$$bElsevier Science$$c2015
000189240 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428931499_30913
000189240 3367_ $$2DataCite$$aOutput Types/Journal article
000189240 3367_ $$00$$2EndNote$$aJournal Article
000189240 3367_ $$2BibTeX$$aARTICLE
000189240 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189240 3367_ $$2DRIVER$$aarticle
000189240 520__ $$aDifferential phase contrast (DPC) imaging in the scanning transmission electron microscope is applied to the study of a charged antiphase domain boundary in doped bismuth ferrite. A clear differential signal is seen, which matches the expected direction of the electric field at the boundary. However, further study by scanned diffraction reveals that there is no measurable deflection of the primary diffraction disc and hence no significant free E-field in the material. Instead, the DPC signal arises from a modulation of the intensity profile within the primary diffraction disc in the vicinity of the boundary. Simulations are used to show that this modulation arises purely from the local change in crystallographic structure at the boundary and not from an electric field. This study highlights the care that is required when interpreting signals recorded from ferroelectric materials using both DPC imaging and other phase contrast techniques.
000189240 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000189240 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189240 7001_ $$0P:(DE-HGF)0$$aWang, LiQiu$$b1
000189240 7001_ $$0P:(DE-HGF)0$$aMcGrouther, Damien$$b2
000189240 7001_ $$0P:(DE-HGF)0$$aCraven, Alan J.$$b3
000189240 7001_ $$0P:(DE-HGF)0$$aMcVitie, Stephen$$b4
000189240 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b5$$ufzj
000189240 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b6$$ufzj
000189240 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b7$$ufzj
000189240 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b8$$ufzj
000189240 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2015.03.016$$gVol. 154, p. 57 - 63$$p57 - 63$$tUltramicroscopy$$v154$$x0304-3991$$y2015
000189240 8564_ $$uhttps://juser.fz-juelich.de/record/189240/files/1-s2.0-S0304399115000650-main.pdf$$yRestricted
000189240 8564_ $$uhttps://juser.fz-juelich.de/record/189240/files/1-s2.0-S0304399115000650-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189240 909CO $$ooai:juser.fz-juelich.de:189240$$pVDB
000189240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000189240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000189240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000189240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000189240 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000189240 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000189240 9141_ $$y2015
000189240 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189240 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189240 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189240 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189240 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189240 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189240 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189240 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000189240 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000189240 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000189240 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189240 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000189240 920__ $$lyes
000189240 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000189240 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000189240 980__ $$ajournal
000189240 980__ $$aVDB
000189240 980__ $$aI:(DE-Juel1)PGI-5-20110106
000189240 980__ $$aI:(DE-Juel1)IEK-9-20110218
000189240 980__ $$aUNRESTRICTED
000189240 981__ $$aI:(DE-Juel1)IET-1-20110218
000189240 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000189240 981__ $$aI:(DE-Juel1)IEK-9-20110218