001     189264
005     20240712100846.0
024 7 _ |a 10.5194/acpd-15-7895-2015
|2 doi
024 7 _ |a 1680-7367
|2 ISSN
024 7 _ |a 1680-7375
|2 ISSN
024 7 _ |a 2128/8881
|2 Handle
037 _ _ |a FZJ-2015-02442
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Rolf, C.
|0 P:(DE-Juel1)139013
|b 0
|e Corresponding Author
245 _ _ |a Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012
260 _ _ |a Katlenburg-Lindau
|c 2015
|b EGU
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435310056_10156
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Dehydration in the Antarctic winter stratosphere is a well-known phenomenon that is occasionally observed by balloon-borne and satellite measurements. However, in-situ measurements of dehydration in the Antarctic vortex are very rare. Here, we present detailed observations with the in-situ and GLORIA remote sensing instrument payload aboard the new German aircraft HALO. Strongly dehydrated air masses down to 1.6 ppmv of water vapor were observed as far north as 47° S and between 12 and 13 km in altitude, which has never been observed by satellites. The dehydration can be traced back to individual ice formation events, where ice crystals sedimented out and water vapor was irreversibly removed. Within these dehydrated stratospheric air masses, filaments of moister air reaching down to the tropopause are detected with the high resolution limb sounder, GLORIA. Furthermore, dehydrated air masses are observed with GLORIA in the Antarctic troposphere down to 7 km. With the help of a backward trajectory analysis, a tropospheric origin of the moist filaments in the vortex can be identified, while the dry air masses in the troposphere have stratospheric origins. The transport pathways of Antarctic stratosphere/troposphere exchange are investigated and the irrelevant role of the Antarctic thermal tropopause as a transport barrier is confirmed. Further, it is shown that the exchange process can be attributed to several successive Rossby wave events in combination with an isentropic interchange of air masses across the weak tropopause and subsequent subsidence due to radiative cooling. Once transported to the troposphere, air masses with stratospheric origin are able to reach near-surface levels within 1–2 months.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Afchine, A.
|0 P:(DE-Juel1)129108
|b 1
700 1 _ |a Bozem, H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Buchholz, B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ebert, V.
|0 0000-0002-1394-3097
|b 4
700 1 _ |a Guggenmoser, T.
|0 P:(DE-Juel1)143753
|b 5
700 1 _ |a Hoor, P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Konopka, P.
|0 P:(DE-Juel1)129130
|b 7
700 1 _ |a Kretschmer, E.
|0 0000-0001-8923-5516
|b 8
700 1 _ |a Müller, S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schlager, H.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Spelten, N.
|0 P:(DE-Juel1)129155
|b 11
700 1 _ |a Sumińska-Ebersoldt, O.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Ungermann, Jörn
|0 P:(DE-Juel1)129105
|b 13
|u fzj
700 1 _ |a Zahn, A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Krämer, M.
|0 P:(DE-Juel1)129131
|b 15
773 _ _ |a 10.5194/acpd-15-7895-2015
|g Vol. 15, no. 6, p. 7895 - 7932
|0 PERI:(DE-600)2069857-4
|n 6
|p 7895 - 7932
|t Atmospheric chemistry and physics / Discussions
|v 15
|y 2015
|x 1680-7375
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/189264/files/acpd-15-7895-2015.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/189264/files/acpd-15-7895-2015.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:189264
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)139013
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129108
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)143753
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129130
910 1 _ |a Uni Mainz
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-Juel1)132767
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129155
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)129105
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)129131
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-234
|2 G:(DE-HGF)POF2-200
|v Composition and Dynamics of the Upper Troposphere and Stratosphere
|x 0
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21