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Abstract

Biomass burning is one of a relatively few natural processes that can inject globally

significant quantities of gases and aerosols into the atmosphere at altitudes well above

the planetary boundary layer, in some cases at heights in excess of 10 km. The “in-

jection height” of biomass burning emissions is therefore an important parameter to5

understand when considering the characteristics of the smoke plumes emanating from

landscape scale fires, and in particular when attempting to model their atmospheric

transport. Here we further extend the formulations used within a popular 1D plume rise

model, widely used for the estimation of landscape scale fire smoke plume injection

height, and develop and optimise the model both so that it can run with an increased10

set of remotely sensed observations. The model is well suited for application in at-

mospheric Chemistry Transport Models (CTMs) aimed at understanding smoke plume

downstream impacts, and whilst a number of wildfire emission inventories are available

for use in such CTMs, few include information on plume injection height. Since CTM

resolutions are typically too spatially coarse to capture the vertical transport induced15

by the heat released from landscape scale fires, approaches to estimate the emissions

injection height are typically based on parametrizations. Our extensions of the existing

1D plume rise model takes into account the impact of atmospheric stability and latent

heat on the plume up-draft, driving it with new information on active fire area and fire

radiative power (FRP) retrieved from MODIS satellite Earth Observation (EO) data,20

alongside ECMWF atmospheric profile information. We extend the model by adding an

equation for mass conservation and a new entrainment scheme, and optimise the val-

ues of the newly added parameters based on comparison to injection heights derived

from smoke plume height retrievals made using the MISR EO sensor. Our parameter

optimisation procedure is based on a twofold approach using sequentially a Simulating25

Annealing algorithm and a Markov chain Monte Carlo uncertainty test, and to try to

ensure the appropriate convergence on suitable parameter values we use a training

dataset consisting of only fires where a number of specific quality criteria are met, in-
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cluding local ambient wind shear limits derived from the ECMWF and MISR data, and

“steady state” plumes and fires showing only relatively small changes between con-

secutive MODIS observations. Using our optimised plume rise model (PRMv2) with

information from all MODIS-detected active fires detected in 2003 over North America,

with outputs gridded to a 0.1
◦

horizontal and 500m vertical resolution mesh, we are5

able to derive wildfire injection height distributions whose maxima extend to the type

of higher altitudes seen in actual observation-based wildfire plume datasets than are

those derived either via the original plume model or any other parametrization tested

herein. We also find our model to be the only one tested that more correctly simulates

the very high plume (6 to 8kma.s.l.), created by a large fire in Alberta (Canada) on10

the 17 August 2003, though even our approach does not reach the stratosphere as the

real plume is expected to have done. Our results lead us to believe that our PRMv2

approach to modelling the injection height of wildfire plumes is a strong candidate for

inclusion into CTMs aiming to represent this process, but we note that significant ad-

vances in the spatio-temporal resolutions of the data required to feed the model will15

also very likely bring key improvements in our ability to more accurately represent such

phenomena, and that there remain challenges to the detailed validation of such simu-

lations due to the relative sparseness of plume height observations and their currently

rather limited temporal coverage which are not necessarily well matched to when fires

are most active (MISR being confined to morning observations for example).20

1 Introduction to biomass burning plume injection heights

1.1 Background and motivation

Landscape scale vegetation fires, on average, burn an area equivalent to that of India

plus Pakistan every year (Giglio et al., 2010). Such burning of vegetation converts

the bulk of the consumed biomass into trace gases and particulates, with typically25

rather little of the original mass remaining in the post-fire ash (Smith et al., 2005). The
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composition of the atmosphere is therefore greatly affected by this biomass burning

(BB), with for example landscape fires being amongst the most dominant atmospheric

sources of carbon monoxide, black carbon and organic aerosols, as well as a very

important net source of CO2 through, for example, deforestation and peatland fires

(Kaiser et al., 2012; Ward et al., 2012). Chemical Transport Models (CTMs) are often5

used to study the large scale impacts of BB emissions, and many emission inventories

have been developed to support such modelling. Because of the global distribution,

but somewhat unpredictable and strongly varying nature of wildfire activity, the use of

satellite Earth Observation (EO) data is generally required for the development of such

BB emissions inventories. Different methods exist to convert EO data into emission10

inventories, either based on (i) top-down approaches using inverse modelling and/or

satellite-based retrievals of atmospheric trace gases such as CO (Gonzi and Palmer,

2010) or particulates (e.g. Aerosol Optical Depth; AOD Ichoku and Ellison, 2014), or

(ii) bottom-up methods related to use of EO products more directly targeting fire on the

landscape, such as burned area (van der Werf et al., 2010) or Fire Radiative Power15

(FRP) (Kaiser et al., 2012).

Unlike most emissions to the atmosphere (apart from aircraft emissions or volcanic

plumes), biomass burning is potentially able to loft and release its burden of gases and

particles at various altitudes and not just at the surface. Because atmospheric trans-

port is dependent on altitude, releasing smoke emissions at different heights into the20

atmosphere has a considerable influence on their region of impact, and may also alter

their chemical evolution as, for example, the advection resulting from the interaction

of the plume and the atmosphere can modify the ambient conditions within the devel-

oping plume (upon which its evolution in part depends). Examples of biomass burning

plumes reaching the high troposphere, or even the lower stratosphere, were first shown25

comprehensively by Fromm and Servranckx (2003), and subsequently the importance

of the phenomena has been highlighted in several modelling studies (Turquety et al.,

2007; Chen et al., 2009).
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As mentioned in the companion review to this work (Paugam et al., 2015), wildfire

smoke plume dynamics span many different spatial scales, ranging from some mil-

limetres around the flame where the heat is released primarily via the combustion of

hot gases, to several meters when the plume interacts with the atmosphere creating

turbulent mixing and the entrainment of ambient air in its core. Because all these dy-5

namical processes cannot be resolved at the resolutions usually employed within CTMs

(&100m), the plume dynamics and its associated vertical transport typically need in-

stead to be parametrized (Colarco et al., 2004). The end product of such a parametriza-

tion is usually termed the “Injection Height” (InjH), defined as the height or the vertical

layer in the CTM where smoke emissions associated with the observed/modelled fire10

are no longer controlled by the plume dynamics, and are therefore released into the

ambient atmosphere. To more fully model the impact and fate of the emissions from

landscape scale biomass burning, including for operational air quality or atmospheric

composition forecasts, CTMs ideally require information on this InjH, as well as on the

horizontal location, timing and quantity of the emissions themselves. However, at the15

global scale neither direct observations of InjH related information from satellite sen-

sors (Kahn et al., 2008; Chen et al., 2009; Val Martin et al., 2010), nor InjH parametriza-

tions used in models (Val Martin et al., 2012; Paugam et al., 2015), have been shown to

provide satisfactory information. Plume-top height observations from spaceborne sen-

sors such as the Multi-angle Imaging SpectroRadiometer (MISR), mounted onboard20

NASA’s Terra satellite, are available (Nelson et al., 2013), but they are generally rel-

atively sparse, and are certainly not timely enough to be used operationally in CTMs

targeting air quality early warning or the near real-time monitoring of atmospheric com-

position. Conversely current efforts on InjH predictions have only been able to substan-

tially improve large scale plume transport relatively locally (Elguindi et al., 2010), or25

on single events (Dirksen et al., 2009). The purpose of our current work is to extend

a popular current InjH parametrization scheme (Freitas et al., 2007), and optimise its

parameters via comparison to MISR-derived plume height observations. The aim is to

develop a more accurate parametrisation, suitable for near real-time implementation
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in a range of global-scale CTMs that aim to more accurately model biomass burning

emissions evolution and transport.

1.2 Basic plume dynamics and EO observations

Since plume dynamics are highly coupled to atmospheric processes, the development

and testing of a InjH parametrization that represents the vertical transport of the emitted5

material is a challenging task (Chen et al., 2009). Kahn et al. (2007) derived a simple

1-dimensional parametrization accounting for entrainment and buoyancy, but not moist

convection (i.e. no cloud formation, no latent heat). Using MISR data processed to

plume top height via a stereo-matching algorithm, sensitivity studies run for a single

fire event were used to understand the implication of entrainment and fire temperature10

on the final InjH. Based on this approach, Kahn et al. (2007) outline the physical pro-

cesses responsible of the vertical up-draft: the sensible heat flux or Convective Heat

Flux (CHF) released by the fire, the fire size at the plume base, and the entrainment of

ambient air. Kahn et al. (2007) also pointed out the potential effects of cloud physics

and the importance of specifying the correct local ambient atmospheric conditions.15

The role of the atmosphere in smoke plume vertical transport is indeed central and

two-fold, both acting against the buoyancy triggered by the initial CHF (via entrain-

ment), and also enhancing the plume rise as the ambient cooling favours water vapour

condensation and thus the release of latent heat. In certain scenarios, the latent heat

release is such that it can accelerate the vertical up-draft considerably, “pushing” the20

plume up to the stratosphere where the material contained within it can be released

(Fromm et al., 2010). To this non-exhaustive list of the factors controlling the final plume

InjH, subsequent studies have added the wind drag (Freitas et al., 2010), the number

of cores within the plume (Liu et al., 2010), and the number of initial Cloud Condensa-

tion Nuclei (CCN) (Reutter et al., 2013). Several parametrizations taking into account25

some or all of these influences already exist, and have been implemented in various

air quality models and CTMs (see Goodrick et al., 2013; Paugam et al., 2015, for re-

views). Among these, three make reference: (i) the 1-dimension off-line cloud Plume
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Rise Model (PRM) developed by Latham (1994) and later by Freitas et al. (2007, 2010);

(ii) the turbulent-convective flux based on the Eddy Diffusivity Mass Flux scheme (pyro-

EDMF; hereafter) derived by Rio et al. (2010), (iii) and the empirical/dimensional ap-

proach of Sofiev et al. (2012).

The prerequisites required to initialize these three plume rise models are generally5

information on fire size (usually the “active fire area” that denotes the area of active fuel

consumption and fire energy emission), the Convective Heat Flux (CHF), along with

the ambient atmospheric conditions (i.e. stratification, and also relative humidity when

microphysical processes are considered). While the host CTM, or global reanalysis

atmospheric model, can be used to extract the ambient atmospheric profiles at the fire10

location, satellite remote sensing data is generally required to characterize the active

fire area (AF-area), which equates to the surface area of a black body having the same

spectral emission properties as does the observed fire at the measurement wavebands

(Dozier, 1981). Furthermore, as described for example in Paugam et al. (2015), fire

radiative power (FRP) products can be used to estimate CHF via the ratio between15

radiant and convective heat release.

The Moderate-resolution Imaging Spectroradiometer (MODIS) sensor, operated on

the Aqua and Terra satellites, can provide multispectral observations from which the

FRP and AF-area of the detected fires (and individual fire pixels) can be derived. Since

MODIS and MISR are both available on the Terra satellite, it is relatively easy to obtain20

collocated active fire and smoke plume height information. Indeed, a large number of

fire events are available with such information, for example via the MISR plume height

project
1
. These data have already been used for the optimization and evaluation of var-

ious plume rise parametrizations, for example Sofiev et al. (2012) and Val Martin et al.

(2012). However, as mentioned in Paugam et al. (2015), CHF, AF-area and plume top25

height information extracted from simultaneously recorded MODIS and MISR observa-

tions do not take into account the time delay between the characteristics of the causal

fire and those of the plume top, which maybe importance since the height to which

1
https://www-misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/
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smoke ascends will be related to the fire characteristics present when that plume was

initially produced, and not necessarily to the fire characteristics at the time the plume

has reached neutral buoyancy. They also typically do not consider the potential ef-

fects of absorption of the emitted fire radiance by the plume itself, which might result

in erroneous fire activity measures. For these reasons, the selection of matched fire5

characteristics and plume top height observations needs to be done carefully when

collecting data for the formulation and evaluation of plume InjH parametrisations. Ide-

ally there should be a focus on remotely sensed observations that best represent a

“steady state” situation with regard to both the causal fire and the resultant plume,

avoiding situations where (i) the plume is potentially masking parts of the driving fire,10

or (ii) where the fire and plume are too close to their initialisation times and thus still

changing their nature, or too near to their end point where plume and atmospheric dy-

namical processes can be too highly coupled. The current work takes account of these

issues, making careful use of simultaneously recorded fire and plume observations to

try to minimise the effect of these issues, whilst remaining focused on the development15

and performance evaluation of the wildfire plume rise model of Freitas et al. (2007).

This PRM model is the most attractive for use as it has the largest range of physics

built in (i.e. micro-physical and wind shear effects), though its performance is still de-

bated, since the last comparison with MISR-derived plume top height data showed

rather poor agreement (Val Martin et al., 2012).20

In this study, we enhance the Freitas et al. (2007) PRM by improving (i) the dy-

namics of the model, with more physical constraints in terms of entrainment and de-

trainment; (ii) the conservation of mass; and (iii) the estimation of CHF from FRP ob-

servation. Furthermore, we aim at delivering an improved approach to the PRM per-

formance evaluation, by being very selective when identifying suitable MODIS- and25

MISR-derived datasets, e.g. screening the MISR data set to extract only those events

where we consider both the fire and the plume are at a mature stage of their evolution.

Our manuscript is structured as follows: Sect. 2 derives the equations used within our

enhanced version of the Freitas et al. (2007) PRM (which we term here PRMv2). Sec-
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tion 3 presents methodologies to derive fire activity information, which are then used

in Sect. 4 to define a robust dataset used for the model optimization and performance

evaluation dataset. In particular Sect. 4 lists the selection criteria used to extract only

fire events that we consider to be in a “steady state”. Section 5 introduces the opti-

mization procedure used to derive the new input parameters of PRMv2, and presents5

the results of the performance evaluation based on example of stable and unstable

atmosphere. Section 6 illustrates a first attempt to build a climatology of landscape-

scale InjH for North America, based on the newly optimised PRMv2, whilst the final

Section draws together the conclusions from the work, and discusses possible future

developments.10

2 Plume Rise Model (PRM) derivation

2.1 Past versions: PRMv0 and PRMv1

A detailed description, together with an overview of recent developments of the Freitas

et al. (2007) PRM used herein are reported in Paugam et al. (2015). The original ver-

sion, PRMv0, is described in detail in Freitas et al. (2007) and Freitas et al. (2010) and is15

a 1-dimensional plume model based on the original formulation of Latham (1994), con-

taining equations for vertical momentum, the first thermodynamic law and the continuity

of water phases that are solved explicitly. Freitas et al. (2007) and Freitas et al. (2010)

assume the wildfire to cover a circular area on the Earth surface, with homogeneous

fire characteristics defined by (i) CHF, derived as a fraction of the total heat released20

(following experimental work of McCarter and Broido, 1965), and (ii) AF-area derived

using the WF-ABBA Geostationary Operational Environmental Satellites (GOES) prod-

uct (Wild Fire Automated Biomass Burning Algorithm Prins et al., 1998). While the AF-

area used within PRMv0 was based on these remotely sensed data from GOES, the

total heat released was not estimated from the EO data, but instead a prescribed heat25

release range was used varying with vegetation type (e.g. 30 to 80kWm
−2

for tropical
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forest). The cloud physics within PRMv0 is based on a simple micro-physical module

counting 3 hydrometeors (cloud,rain,ice). The horizontal momentum is parametrized

through two entrainment coefficients modelling the effect of (i) the turbulence at the

edge of the stack (Freitas et al., 2007) (ii) and the drag caused by the ambient wind

shear (Freitas et al., 2010). Finally, in PRMv0 the plume top height was defined as the5

altitude where the vertical velocity falls below 1ms
−1

. During operations, the PRMv0

model is run twice for each extreme of the prescribed total heat release range, and

InjH defined as the layer set between the two model run outputs. While PRMv0 pro-

vided some reasonable results when compared with a very high resolution 3-D plume

rise model ATHAM (Freitas et al., 2010), comparisons of PRMv0 injection heights with10

MISR-derived plume top height datasets have not been so convincing (Val Martin et al.,

2012).

In an attempt to improve the performance of PRMv0, we previously derived a scheme

to estimate both AF-area and CHF from satellite EO data (Val Martin et al., 2012;

Paugam et al., 2015). This new version, PRMv1, kept the PRMv0 model core, but the15

initialization module was modified to accept both CHF and AF-area information, in this

case both derived from MODIS observations. The ability to relate CHF to an almost

directly observable variable (i.e. FRP, which is a standard product from MODIS Justice

et al., 2002), rather than estimating it indirectly from land cover type, was anticipated to

potentially bring significant advantages. Furthermore, since MODIS pixels have a sig-20

nificantly smaller ground footprint than do GOES pixels, the AF-area estimates derived

from them are expected to be more reliable than from GOES (Giglio and Justice, 2003;

Giglio and Schroeder, 2014). Finally, in PRMv1 we were also able to define the final

InjH as a single altitude, given by the modelled plume top height, rather than as the mid-

point of range of plume height estimates. One limitation introduced by use of MODIS25

data in PRMv1 is, however, that unlike the very frequently updated data provided by

GOES (Xu et al., 2010), MODIS provides observations only a few times per day for

any particular fire, cloud cover permitting. PRMv1 was applied in the work of Val Martin

et al. (2012), where it was referenced as the “dual-band” method due to the fact that
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data from two different wavebands of MODIS data are used in the derivation of AF-area

using the Dozier (1981) algorithm. When compared with MISR data however, the cor-

relation of the PRMv1 model InjH results and MISR-derived plume top height remained

low, and with a slope of the linear best fit lower than 0.5 (Val Martin et al., 2012).

2.2 Improved plume-atmosphere interactions: PRMv25

The processes involved in plume dynamics are dependent upon ambient atmospheric

conditions (e.g. entrainment, wind shear), and therefore on altitude. In the boundary

layer, entrainment and wind shear act against the buoyancy, while for plumes that

make it to the free troposphere, if entrainment, wind shear and stratification are still

a break to the residual buoyancy, the ambient cooling can generate latent heat via con-10

densation of the entrained water vapour and therefore potentially re-accelerate plume

rise. Combining all these effects, the detrainment of the plume in the atmosphere is

most certainly happening at all altitude levels (Kahn et al., 2007). To account for more

complex plume-atmosphere interactions, we have now further modified the PRMv1

model to handle horizontal mass exchange. To do so, the quantity ζ = ρR2
is intro-15

duced as a prognostic variable, with R(z) the radius of the plume and ρ(z) the air

density. Even though the horizontal flow is still parametrized, the plume mass is now

resolved, together with momentum and energy conservation. Figure 1 introduces the

system variables and the effect of the lateral flow parametrization, while the equations

are described in Appendix A.20

PRMv2 formulation is based on 4 prognostic variables ζ , w (vertical velocity), T
(temperature), and u (horizontal plume velocity) following

∂tw +w∂zw =
1

1+γ
gB−ǫw2, (1)

∂tT +w∂zT = −w
g

cp

−ǫw(T − Te)+ (∂tT )|micro, (2)

∂tζ +w∂zζ = −ζ∂zw +wζ (ǫ−δ), (3)25
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∂tu+w∂zu = −ǫw(u−ue), (4)

where g is the acceleration due to gravity, cp the specific heat at constant pressure,

and γ = 0.5 is the virtual mass coefficient introduced by Simpson and Wiggert (1969)

(see Appendix A for more details). Together with this system of equations, PRMv2 also

includes an equation for passive scalar transport. Given a mixing ratio φ, a passive5

tracer is advected following

∂tφ+w∂zφ = −ǫw(φ−φe) (5)

For each variable x(z), xe(z) stands for the ambient value. At each time step, assuming

that the air pressure within the plume equals the ambient pressure, ρ is evaluated using

the ideal gas law, ρ =
pe

ℜT
, with ℜ = 286.9Jkg

−1
K
−1

the perfect gas constant, and R the10

radius of the plume is computed from R =

√

ζ/ρ.

The en/de-trainment coefficients are inspired from shallow convection parametriza-

tions (Gregory, 2001; Pergaud et al., 2009) and parametrized using a set of 4 parame-

ters (Cǫ, Cδ , Cǫ,dyn, Cδ,dyn) (see Appendix A for more details) such that,

ǫ = max

(

0,Cǫ

B

w2

)

+Cǫ,dyn

1

w

du

dz
(6)15

δ = max

(

0,Cδ

B

w2

)

+Cδ,dynCǫ,dyn

1

w

du

dz
(7)

The microphysical scheme of the model remains unchanged from PRMv0 of Freitas

et al. (2007). To account for the effects of latent heat (e.g. (∂tT )|micro in Eq. 2), four

mixing ratios are transported for water vapour and the three hydrometeors cloud, rain

and ice.20

The PRMv2 model is run on a 100m resolution vertical grid, reaching a maximum

altitude of zmax
= 20km, with an adaptive time step calculated to respect the Courant–

Friedrich–Lewy stability criterion, with an upper limit of 5s (Freitas et al., 2007). To
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close the system of Eqs. (1)–(5), (i) boundary conditions are set to no slip at z = 0

(i.e. u(z = 0) = 0) and are open at the top, (ii) and ambient atmospheric profiles of

pressure pe, temperature Te, humidity re, and horizontal wind velocity ue are taken

from European Centre for Medium-range Weather Forecasts (ECMWF) analysis data.

Furthermore, as in Freitas et al. (2007) to take into account the flow singularity near the5

land surface, the vertical velocity (w(z = 0) = w0) and the temperature (T (z = 0) = T0)

are evaluated from the analytical model of Morton et al. (1956). Knowing the plume

radius R0 and the CHF, a virtual source height zv =
5
6
α−1R0 is derived and w0 and T0

are defined as

w0 =
5

6α

(

0.9αF

zv

)1/3

, (8)10

T0 = Te(z = 0)



1+
5

6α

F

g

z
−5/3
v

(0.9αF )1/3



 , (9)

where F is the buoyancy flux defined by F =
gℜCHF

πcppe(z=0)
and α is the entrainment coeffi-

cient of the Morton et al. (1956) model.

According to energy budget measurements conducted on small-scale vegetation

fires, convection represents around half of the total energy released during the com-15

bustion process (McCarter and Broido, 1965), and radiation around 10% (Freeborn

et al., 2008). This yields the relation CHF = 5FRP, which is the formula used in the

initialisation scheme of PRMv1. However, these measurements were conducted on

laboratory-scale fires, and the energy budgets of landscape scale fires may be differ-

ent, particularly as flame structure can change dramatically with fire properties. For20

example, short flames can have a low spectral emissivity at wavelengths outside of

the CO2 and H2O emission bands, but longer flames with path lengths exceeding 5m

appear to demonstrate black body-type behaviour (Johnston et al., 2014). In PRMv2,

a new parameter β has therefore been introduced to adjust for such potential variations

9827



ACPD

15, 9815–9895, 2015

PRM development

and optimization –

Part 2

R. Paugam et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

in energy partitioning, and CHF is defined as

CHF = β FRP. (10)

With the above definitions, the PRMv2 model is fully defined with the inputs of (i) AF-

area (R0 =

√

AF-area/π) and fire radiative power (FRP), (ii) local ambient atmospheric

profile at the fire location, and (iii) a set of 6 parameters: 4 for the en-de/trainment5

scheme (Cǫ, Cδ , Cǫ,dyn, Cδ,dyn) and 2 for the initialization module (α and β).

The end point of the time integration (tend) is controlled by the variation of the dry

air mass in the plume, Mp =
∫zmax

z=0
ζdz. When the mean of the relative variation of Mp

over the last 10 time steps is lower than 2×10
−5

, the plume is considered to be in

a steady state, and the relative entrainment (Mentr) and detrainment profiles (Mdetr) to10

fire activity (i.e. injected mass) can be determined from the ratio of the time integration

of the entrained and detrained mass flux (πǫζw and πδζw) and the injected mass at

the base of the plume.

Mentr(z,t = tend) =
dz
∫tend

t′=0
ǫ(z)πζ (z,t′)w(z,t′)dt′

∫tend

t′=0
πζ (0,t′)w(0,t′)dt′

[kg]

[kg]
(11)

Mdetr(z,t = tend) =
dz
∫tend

t′=0
δ(z)πζ (z,t′)w(z,t′)dt′

∫tend

t′=0
πζ (0,t′)w(0,t′)dt′

(12)15

However, as Mentr and Mdetr are dependent on the time integration, tend, and as the few

snapshots available from MODIS every day cannot provide fully accurate information

on the fires temporal evolution, to simplify the integration of PRMv2 into CTMs the final

InjH is defined as the altitude layer where detrainment Mdetr/M
max
detr > 0.5 and where

there is the highest net detrained mass Mdetr(z)−Mentr(z). This InjH altitude is hereafter20

denoted InjHPRMv2, whilst the plume top (e.g. for comparison to MISR-derived values)

is defined as the top of the InjH layer, denoted InjH
top

PRMv2
. An example of a PRMv2
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result for the fire O13 289-B39-P3 of the MISR-derived data set of (Nelson et al., 2013)

is shown in Fig. 2. The following Sect. 3 explains how the AF-area and FRP are derived

from the EO data for use in PRMv2, whilst Sect. 4 presents the robust compilation of

a set of fire and plume observables, and Sect. 5 describes the method used to estimate

values for the models remaining 6 parameters.5

3 Sub-pixel active fire information: FRP, temperature and active fire area

As mentioned in Sect. 2.2, the PRMv2 initialization module requires information on the

sub-pixel active fire characteristics. As in PRMv0 and PRMv1 (see Sect. 2.1), AF-area

is used as an estimate of the plumes basal radius R0, over which the convective flux

estimated from the FRP measurement is being homogeneously released. This section10

presents the approaches used to derive FRP and AF-area, and the methodology de-

veloped to estimate the atmospheric transmittance which is required in both FRP and

AF-area derivation.

3.1 Atmospheric transmittance

To adjust the measured radiances for atmospheric effects, we computed the atmo-15

spheric transmittance for each fire and waveband of observation, which is particularly

important when combining multispectral information to retrieve fire parameters, such

as when using the Dozier (1981) algorithm. Using ECMWF vertical profile data on

atmospheric temperature, water vapour and pressure, the MODTRAN atmospheric ra-

diative transfer model (Berk et al., 2006) was run to estimate the spectral distribution of20

atmospheric transmittance τ′λ at the location and time of the fire, with the assumption

of a fixed atmospheric GHG profile and a rural aerosol (23km visibility). For MODIS’

middle and thermal infrared (MIR and TIR) measurement wavebands, the effective

band-integrated atmospheric transmittance τ was calculated via the convolution of the
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spectral response function (SRF) fsrf:

τ =

∫

fsrf(λ)τ′(λ)dλ
∫

fsrf(λ)dλ
(13)

3.2 The Dozier algorithm implementation

We used an iterative solver to provide solutions to the Dozier (1981) dual-band equa-

tions fed with observations from MODIS’ MIR and TIR bands, using this system to5

derive the effective AF-area, as well as the fire-effective kinetic temperature Tf (Giglio

and Schroeder, 2014). We used the formulation of the Dozier (1981) dualband algo-

rithm used in Giglio and Kendall (2001) and Wooster et al. (2005):

Li

τi
= pB(Tf,λi )+ (1−p)

Lb,i

τi
for i = 1(λ ∈ MIR), and i = 2(λ ∈ TIR) (14)

where a fire emissivity of one in both MIR and TIR wavelength (ǫf,i = 1) is assumed,10

and where Li is the observed spectral radiance in waveband i of wavelength λi , B is the

Planck function, Lb,i is the “background” spectral radiance estimated from neighboured

pixels, and τi is the atmospheric transmittance of the band i defined by Eq. (13), p is

the proportion of the pixel covered with thermally emitting fire components (e.g. flaming

and smouldering areas of combustion), so that if Apixel is the pixel area, AF-area is15

therefore AF-area = pApixel.

Equation (14) was originally implemented with 1km spatial resolution (at nadir) data

from the Advanced Very High Resolution Radiometer (AVHRR), and later applied to

4km GOES (Prins et al., 1998) and to 370m Hotspot Recognition Sensor (HSRS)

data collected by the bi-spectral Infrared Detection Experimental Small Satellite (BIRD)20

(Wooster et al., 2003; Zhukov et al., 2006). Giglio and Kendall (2001) show that “du-

alband” retrievals become potentially unusable when fire fractional areas (p) fall below

0.005, due primarily to the difficulty in isolating small fire signals in the TIR band, and

(Giglio and Schroeder, 2014) indicates that as a result only around seven percent of
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MODIS active fire pixels actually provide meaningful AF-area retrievals. Analysis of

significantly coarser spatial resolution GOES imagery results in a even smaller pro-

portion of fires having meaningful retrievals, which is why we avoid use of GOES or

other geostationary data here. Instead we focus on MODIS, and maximised the ability

of the dual-band algorithm to derive useful information by clustering groups of spatially5

contiguous active fire pixels into single “fires”, whose mean MIR and TIR band spec-

tral radiances are then used as the algorithm inputs. This active fire pixel clustering

approach prior to application of the Dozier (1981) dualband algorithm was originally

used by Wooster et al. (2003) and Zhukov et al. (2006) with multispectral HSRS data

collected by the BIRD Small Satellite, and Peterson et al. (2013) recently used a similar10

method with MODIS data. The clustering minimises impacts from band-to-band non-

co-registration offsets (Shephard and Kennelly, 2003), though at the cost of a loss in

the spatial fidelity of the effective active fire temperature (Giglio and Schroeder, 2014).

However, since in the PRMv2 initialization scheme we only use the AF-area output of

the Dozier (1981) dualband algorithm, this loss of spatial fidelity in effective fire tem-15

perature has no significant impact.

It is important to note that the fire cluster information as derived from the Dozier

(1981) dualband algorithm represents everything in the selected fire pixel clusters that

are above the assumed background temperature, and for example Tf cannot be inter-

preted in terms of the true “fire temperature” (Giglio and Schroeder, 2014). Within the20

MODIS pixel footprint (>100ha), there very likely exists a mix of flaming, smouldering

and/or cooling areas, which are all emitting more energy per unit area than the ambient

background (see Eq. 14). Since the CHF responsible for the plume rise is mainly trig-

gered by the intense energy release associated with the flaming zone (Wooster et al.,

2003), we developed a filter to minimise the impact of the smouldering/cooling areas on25

the Dozier (1981) retrievals. Assuming lower sub-pixel effective fire temperatures are

more likely to be from pixels dominated by smouldering activity, we first run the Dozier

algorithm at pixel level (as in Giglio and Schroeder, 2014). We select only pixels with

Dozier (1981) retrievals that we consider valid (i.e. 100 < T < 1500K and AF-area > 0),
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and that have high sub-pixel fire effective temperatures (T > 600K). We cluster these

pixels into individual fires, and finally run the Dozier (1981) algorithm a second time on

each cluster. This filter is referenced hereafter as the “low sub-pixel temperature” filter,

and the threshold of 600K was selected such that mainly pixels at the edge of the raw

MODIS cluster were removed (which are more likely to contain high amounts of smoul-5

dering activity and cooling ground, behind the main fire front). We note that with regard

to FRP derivation using the MIR radiance method of (Wooster et al., 2003), this already

minimises the FRP contribution of “cooling” (but not smouldering) areas below 650K as

described in that work. It is true that this filter could possibly erroneously impact clus-

ters whose pixels are covered with small fraction of the fire front head, but we consider10

that this will have less effect that including large areas of smouldering ground within the

Dozier (1981) retrieval. Furthermore, since the input parameters of the model PRMv2

(see Sect. 2.2) are optimized to fit our fire/plume observations (see Sect. 5), the thresh-

old temperature for the filter does not need to be particularly well constrained, although

it is important that it lies towards the upper range of what is smouldering activity.15

To improve the convergence of Dozier (1981) algorithm, we follow Peterson et al.

(2014) and add an extra test on the TIR radiance signal, deselecting all filtered clusters

with ∆11 = L2 −Lb,2 < 0.5Wm
−2

str
−1

. A detailed evaluation of our implementation of

the Dozier (1981) algorithm, including a comparison of results from fires simultaneously

observed by MODIS and BIRD HSRS, is reported in Appendix B.20

3.3 FRP derivation

This section introduces two independent methods to derive FRP, based on the outputs

of the Dozier (1981) algorithm (FRPdoz) or on the single band approach of (Wooster

et al., 2005, FRPmir). As described in detail in Wooster et al. (2005), FRPmir is directly

derived from the MODIS MIR band observations assuming that (i) around fire temper-25

ature (∼ 700K) the Planck function in the MIR behaves as a quadrature function (i.e.

B(λMIR) = a T 4
f ∀T ∼ 700 with a being sensor specific; see Table 1 Wooster et al.,

2005), and (ii) that the spectrally integrated emissivity of the fire is similar to its emis-
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sivity in the MIR (ǫf ∼ ǫf,MIR). Using previous notation, FRPmir is then defined as

FRPmir = ApixelpσǫfT
4
f
= Apixel

σǫf

aǫf,MIR

pǫf,MIRB(λMIR,Tf)

= Apixel

σ

a

LMIR −Lb,MIR

τMIR

(15)

where σ is the Stefan–Boltzmann constant and where the last derivation uses Eq. (14)

applied to the MIR band with the assumption that fires are usually smaller than the pixel5

size, so that (1−p) ∼ 1. Following the derivation of FRPmir, FRPdoz is defined using the

output from the Dozier algorithm and assuming that the fire is a black body (ǫf = 1)

FRPdoz = AF-area σT 4
f

if Tf > Tb

= 0 if Tf = Tb (16)

Note here that we do not remove the contribution of the background as in Peterson et al.10

(2013). Indeed as shown in Eq. (15), FRPmir is defined as the radiation emitted by the

surface covered by the fire, without removal of the background contribution covering

the same surface. However following its definition FRPmir switches to 0 when the fire

temperature is equal to the background temperature. The same switch is applied to the

definition of FRPdoz.15

4 Datasets used for PRMv2 optimisation and performance evaluation

This section describes how the dataset containing fire characteristics (AF-area and

FRP), ambient atmospheric condition, and observed plume top height is computed. It is

based on the same fire and plume observations made by MODIS and MISR contained

in the official MISR plume injection height project (Nelson et al., 2013), except that20

we now add an estimate of AF-area to each selected fire (one which tries to minimise

impacts from the cooling ground behind the active fire front), provide an “observed” InjH

9833



ACPD

15, 9815–9895, 2015

PRM development

and optimization –

Part 2

R. Paugam et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

from the MISR-derived plume top height information in order to remove atmospheric

transport effects, and derive a new FRP for each fire by adjusting the observed value

for atmospheric transmittance effects and the influence of “cooling ground”.

4.1 Selecting a representative plume-fire-atmosphere dataset

FRP and active fire area5

As in Sofiev et al. (2012) and Val Martin et al. (2012), our database used for the PRMv2

model optimisation and evaluation was based on the MISR-derived plume height

dataset derived with the MINX software described in (Nelson et al., 2013). Instead of

using the MODIS active fire information provided in the MINX-derived database how-

ever, we re-extracted the relevant data from the original MODIS Active Fire (MOD14)10

products (Justice et al., 2002) such that definition of the active fire pixels relevant to

each plume remains unaffected by the exact delineation of the plume contour used in

MINX (Val Martin et al., 2012). Using the algorithms described in the previous section,

we derive AF-area and FRP for each clusters where flaming activity is dominant (i.e.

application of the low sub-pixel temperature filter). Furthermore, we required fire clus-15

ters to have a mean TIR band spectral radiance signal ∆11 > 0.5Wm
−2

str
−1

in order

to improve the convergence characteristics of our dualband algorithm implementation.

We used the MINX-derived smoke plume contour reference point for the plume lo-

cation, and applied our methodology to every MODIS active fire cluster found within

a radius of 20km. If more than one fire cluster was present, the cluster with the largest20

AF-area was selected for inclusion in the database as this was considered to be the

most likely cause of the observed plume.

Plume injection height

As mentioned previously, a good proxy for InjH is the final altitude of the smoke plume.

Previous studies using products from the MINX-MISR plume height project (Val Martin25
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et al., 2010; Sofiev et al., 2012) have defined InjH as the maximum height returned

by MISR within the MINX-identified plume contour. However, at the time of the MISR

observation the retrieved plume heights are not just representative of the current status

of the fire, but have also been influenced by the fires development over the previous

tens of minutes (or even perhaps hours; depending on the length of the plume and the5

ambient winds). Further influences come from local atmospheric dynamics, such as

e.g. orographic waves. To minimise the impact of such effects on the dataset, Val Martin

et al. (2012) defined InjH as extracted from MISR plume heights as the maximum of

the plume height distribution calculated from the MISR pixels within a distance of 10%

of the active fire cluster radius. We use a similar approach, defining a zone where we10

expect the plume to remain unaffected by horizontal atmospheric transport (hereafter

called the plume “stack”) using the pixel height variation along the plume length (see

Fig. 3). Using pixel heights distributed according to their distance to the fire cluster

(within bins of 1.5km), we considered the plume stack to stop where the local maximum

plume height falls below 25% of the stack height maximum, which was dynamically15

calculated when moving away from the cluster location. An example of the horizontal

extension of the stack is shown in Fig. 3, see red zone of the bottom plot.

The top of the stack (hstack
) was then defined as the mean of the binned local maxi-

mum height within 20% of the maximum stack height (see red points in the bottom plot

of Fig. 3).20

Figure 4 shows a comparison of the stack height hstack
and the original plume top

height hplume
as defined in the MISR plume height product. Plumes where the relative

difference between hstack
and hplume

exceeds 70% were removed from the database,

and we notice that this situation appears primarily associated with plumes attached

to multiple separate fire clusters. We deal here only with scenarios where a plume is25

linked to a single fire cluster, but in any case this filtering removes only 4.0% of the orig-

inal MINX MISR dataset. Considering the 3632 remaining fires, Fig. 4 shows that the

new definition of the stack top does not introduce a bias, since we see an almost one-

to-one relation between hstack
and hplume

(slope of 0.95). The new definition of hstack
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is rather an adjustment on a per fire basis, providing slightly updated interpretation of

plume height.

Together with hstack
, we introduce a measure of the InjH layer based on an alternative

definition to previous approaches since PRMv2 is able to solve the vertical detrainment

from the plume, and thus not only provides the final plume top height (as for PRMv1),5

but also vertical profile. We therefore define InjH as a detrainment zone, using the

vertical height distribution of the pixels contained in the stack. Using a 500m vertical

step, we define a density distribution of pixel height γh, and define InjH as the layer

contained between the highest local maximum of γh and the highest retrieved height.

Figure 2a shows the distribution γh for the stack shown in Fig. 3. As MISR is only able to10

observe the plume top, the above definition of the InjH layer is only weakly constrained

by the MISR-derived data, and will be used as such in the following Sections. That is,

we believe our definition of InjH [which is correlated to hstack
, not shown] is more repre-

sentative of the fires evolution, and more likely linked with the coincident measures of

CHF and AF-area that we are able to derive simultaneously than is the MISR-derived15

hstack
.

Atmospheric profile

We use ECMWF analysis runs to define, for each fire cluster, ambient atmospheric

profiles of pressure, temperature, humidity and wind, re-sampled to a 1.0
◦

resolution

horizontal grid. The vertical mesh of the ECMWF analysis contains 60 levels before20

the 1 February 2006, and 91 levels thereafter, with similar vertical resolution near the

ground (∼ 10m) gradually stretched up to the top of the domain located at 65 and 80km

for the 60 and 91 level grids, respectively. In addition, we also use the diagnostics

from the forecast runs of ECMWF (0.25
◦

resolution, ECMWF, 2012) to estimate the

boundary layer height (hBL
) and the total column water vapour (TCWV) at each fire25

location.
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4.2 Fire selection for the match-up database

Based on the different definitions of FRP, AF-area and plume height mentioned previ-

ously, 3 separate match-up datasets were defined.

1. the “raw fire cluster” MISR dataset, which is based on the original MINX-derived

plume height hplume
, showing a “good” quality flag. Here, FRP and AF-area were5

derived from direct application of the Dozier algorithm to MODIS fire clusters,

without use of the low sub-pixel temperature filter or TIR signal test. Hereafter

they are named FRP
r

and AF-area
r
, respectively. However, the same fire cluster

location selection as described in previous Section was used in cluster selection

close to the vicinity of the plume. This dataset covers 3313 fires.10

2. the “filtered fire cluster” MISR dataset, which is based on the previous data set

with full application of the methodologies for FRP, AF-area and stack height hstack

determination described in the previous section. This dataset covers 1992 fires.

3. the “Good” cluster dataset, which include FRP, AF area and InjH layer as defined

in previous section. It is specifically developed for the optimization of the PRMv215

model and detailed below.

To further maximise the appropriateness and quality of the match-up “fire-atmosphere-

plume height” dataset used to optimize and evaluate the PRMv2 model, in addition to

the criteria of the filtered fire cluster MISR dataset, the following requirements were

also set in the good fire data set:20

– The rejection of fires on agricultural land, since these are often quite small, con-

trolled fires with very changeable characteristics caused by human intervention,

and which may therefore be less likely to reach a steady state. According to the

MISR data set land cover map shown in Paugam et al. (2015), after removal of

agricultural fires, the remaining fires are located either on extra tropical forest or25

on savannah land cover types.
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– A correct match between the wind information extracted from the ECMWF anal-

ysis and from the MISR products. The stereo-matching algorithm used in MINX

corrects for plume displacement, and each pixel in the MISR plume height product

is characterized by a plume top height and local wind speed across and along the

plume direction (Nelson et al., 2013). Using all pixels from the MINX-contoured5

plume, and the same vertical resolution as the ECMWF atmospheric profile, we

derived a new wind profile with associated errorbars from the MISR observations

(see triangular points in Fig. 5). Plumes with less than 3 points in their profile were

rejected, and a correct match only accepted if the lowest residual errors between

the MISR- and ECMWF-derived wind profiles were below an arbitrary threshold of10

50, estimated empirically from multiple comparisons. The residual error is derived

to account both for wind and wind gradient, and is defined as

residual =
∑

∀k∈profile

[

uECMWF
h −uMIRS

h

uECMWF
h

]2

k

+

[

∇uECMWF
h −∇uMIRS

h

∇uECMWF
h

]2

k

(17)

where uX
h the amplitude of the horizontal wind profile X =ECMWF, or MISR. See

Fig. 5 for examples of matching and non-matching profiles. It is important to note15

that this criteria indirectly filters out fire events occurring on complicated terrain,

since the misrepresentation of terrain effects is a common reason for large scale

atmospheric models deviating from observations. It also removes smaller plumes,

and therefore indirectly but preferentially smaller fires, since profiles must have 3

or more points to be valid. The MISR flag and the wind profile tests together re-20

move a large proportion (76%) of the plumes within the initial MINX-MISR dataset.

– A limited number of fire clusters near the plumes origin. Only plumes with less

than 5 fire clusters within a 30km radius around the reference location (set in

the MINX-derived contour plume) are selected. This removes another 13% of the

MISR-derived plumes.25
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– A plume is clearly visibly observable. The objective here is to remove fires that fail

to show a well developed plume, possibly because it is too early in the fires life-

time. Each fires plumes development was assessed using simulated true colour

composite MODIS imagery covering 100km around each fires location, and to

be considered valid the MODIS imagery had to have at least one pixel within5

the MISR plume mask brighter than a pre-defined threshold (thus signifying the

present of a plume). In future, the MODIS cloud product might be usable in this

context. This condition predominately filters out smaller fires, and another 4% of

the MINX-MISR plumes were removed by its application.

Using the selection criteria outlined above, the MINX-MISR dataset was reduced to10

192 fires. Finally, MISR nadir-view imagery was used to perform a final visual inspection

of the remaining fire plumes, to ensure that no cluster except the one located near the

reference point was potentially affecting the matching plume. After this final check,

a set of 39 matched fire and plume observations remained for used in PRMv2 model

optimisation and evaluation.15

As mentioned previously, and in Paugam et al. (2015), it is important for our work

that the matched plume and fires were in relative steady states because, as shown by

the simulations of Trentmann et al. (2006), the plume needs time to adjust to changes

in the causal fires characteristics. In the ideal situation of a fire of constant heat release

modelled by Trentmann et al. (2006), the fire plume required 40min to reach a steady20

state. Real fires can change their characteristics over quite short time-scales, and also

fire activity varies strongly over the diurnal cycle (Roberts et al., 2009). Since plume dy-

namics are highly non-linear, it is difficult to estimate the time delay between a change

in fire characteristics and those in the resultant plume, and thus to understand when

fire and plume activity are time synchronised. Furthermore, when a fire is growing, its25

plume typically increases in size and the stack may increasingly fill with large partic-

ulates released by the fire, which can increase the scattering and/or blocking of the

fire-emitted MIR wavelength radiation (Kahn et al., 2007; Paugam et al., 2015). In sit-

uations of low ambient wind, where the stack can remain above the fire, where only
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one observation of the fire exists it is difficult to estimate the proportion of the emitted

MIR radiation that might be affected. To try to understand how the fire and plumes are

linked at the time of the MISR overpass, we used multiple overpasses of the Terra and

Aqua satellites to build a more comprehensive story of FRP and plume structure for

individual fires. For each of the previously 39 selected fires, for every overpass we ex-5

amined MODIS simulated true colour and Near-Infra Read (NIR) colour (R=2.15 µm,

G=1.24 µm, B=0.6 µm) composite imageries. Figure 6 shows an example, illustrating

the time evolution of the fire O18779-B36-P1 of the MISR dataset (see Supplement

Figs. S7–S45 for the time evolution of all fire from the good cluster dataset). For fires

located at higher latitudes, more than two overpasses (1 Terra+1 Aqua) are typically10

available, and for some fires we found up to 7 cloud-free overpasses.

The NIR colour composite provides qualitative information about both the fire and

the plume, providing an insight to the plumes relative location with respect to the fire,

to the plumes constituent make-up (e.g. ice vs. water droplets). In the case of the fire

O18779-B36-P1, since detected active fire pixels only appear on the edge of a large15

iced fluffy cloud, either the cloud mask in the MODIS fire product is masking the plume

as cloud and preventing detection of fire pixels underneath, and/or the plume is ab-

sorbing or scattering enough of the fires MIR radiation to limit the number of fire pixels

detected. Looking at the 21:50 UTC MODIS image closely, we can see that the plume

has extended southwards and blocked the detection of fire in a region where only20

10min ago in the last observation fire pixels were detected with the MODIS MYD14

product (Aqua observation). Only one of our 39 match-up fires showed this type of

obvious fire masking, and we believe that this will be more common in the case of

large fires with plumes containing larger particles, and where the ambient wind speed

is relatively low. Under such conditions, the MIR and TIR radiance signals from the25

fire maybe underestimated by different amounts, yielding an underestimated FRP (and

therefore CHF), and an increased uncertainty in AF-area. We removed this single fire

from our match-up database, leaving a total of 38 discrete fire events, and note that

in such dense plumes with a strong TIR signature InjH could probably instead likely

9840



ACPD

15, 9815–9895, 2015

PRM development

and optimization –

Part 2

R. Paugam et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

be estimated by matching the TIR brightness temperature and ambient atmospheric

temperature profiles (Smith and Platt, 1978).

4.3 Fire-plume-atmosphere interactions

To understand some of the interaction between plume and fire behaviours, Fig. 7 shows

for the 3 datasets introduced in previous section the relationships between the different5

fire and plume observables, namely FRP, AF-area, FRP density defined as

Qr =
FRP

AF-area
[kWm−2], (18)

and plume height (hplume
, hstack

depending of the dataset).

As in Val Martin et al. (2010) and Amiridis et al. (2010), we separate fires into two

classes according to the stability of the ambient atmosphere. Following the definition of10

Val Martin et al. (2010), we consider the atmosphere as stable if at the height z = zsmax

of the first maximum of the stability s =
∂θ
∂z

, s(zsmax) is 1Kkm
−1

greater than for the

3 layers above and below, and/or 1.5Kkm
−1

greater than 6 layers above and below.

Together with the 38 fires of the good cluster dataset (bottom row of Fig. 7i–k), fire and

plume observables are also reported for the raw fire clusters (top row, plot a–c) and the15

filtered fire clusters (middle row, plot d–f) MISR dataset introduced in previous section.

Considering only plumes above the boundary layer (hstack
or hplume > hBL

+0.25 [km],

red circle in 2 first columns of Fig. 7), the raw clusters data set show a higher corre-

lation between FRP
r

and hplume
for the unstable than stable atmosphere situations.

This is similar to the findings presented by Amiridis et al. (2010) for eastern European20

agricultural fires, and Val Martin et al. (2010) who used an early version of the dataset

used herein, and supports the prior findings of Lavoué et al. (2000) who demonstrated

a direct relationship between fire activity and plume height. However, as in Amiridis

et al. (2010) and Val Martin et al. (2010), we show that this behaviour only holds in

cases where atmospheric stratification is weak. The main modification in our raw clus-25

ter dataset when compared with the earlier dataset used by Val Martin et al. (2010),
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are (i) a selection of the MODIS fire cluster based on the full MOD14 product and

not only the fire pixels reported in the MINX output, and (ii) and an extra 755 events

totalling 3813 fires from which we only conserve 3313 where the Dozier (1981) algo-

rithm converges. The final number of plumes located above the PBL and which occur

in an unstable atmosphere is 148, compared to 32 in Val Martin et al. (2010), resulting5

in a lower correlation between hplume
and FRP

r
(0.4 compared to ∼ 0.5 for Val Mar-

tin et al., 2010), and a lower slope of the log-log relationship, decreasing from 0.2 for

Val Martin et al. (2010) to 0.08 here.

The filtered clusters data set (Fig. 7d–f) shows similar fire-plume behaviour as does

the raw clusters dataset. Even if FRP is now derived from cluster formed of only “hot”10

fire pixels (> 600K, see Sect. 4.1) and plume height is based on the new definition of

hstack
, the relationship between fire and plume observables hold, and even show better

features as the fire characteristics are now more independent Peterson et al. (2014).

The good clusters dataset contains only 4 fires with an unstable atmosphere,

amongst which 3 reach the free troposphere (red circle in Fig. 7j). However the previ-15

ous relationship between hstack
and FRP seems to hold, showing a strong correlation

of 0.9 even when including one fire which stays trapped in the PBL. Although the sam-

ple number is low, the effect of the atmospheric stability seems to be consistent and

therefore appears to establish a good test for the validation of plume rise models.

5 PRMv2 optimization and evaluation20

5.1 Optimization of PRMv2 parameters

5.1.1 Optimisation approaches

The variables contained within the PRMv2 model parameter vector (d = [α, Cǫ, Cδ ,

Cǫ,dyn, Cδ,dyn, β]) were defined in Sect. 2. To estimate the optimum value of each of

these parameters we used two related but distinct metropolis-type algorithms, a Sim-25
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ulated Annealing (SA Kirkpatrick et al., 1983) and an adaptive Markov Chain Monte

Carlo method (McMC Braswell et al., 2005) to: (i) identify the optimal parameter vec-

tor, d , capable of delivering physically representative observations of plume injection

height; and (ii) run a model sensitivity analysis to estimate the uncertainties of d with

regards to the MISR-derived InjH observations.5

We used an objective function (f ) to quantify the misfit between the InjH simula-

tions and observations. The same form of f , the residual sum of squares, was used

in both SA and McMC, selected to depend only on the top of the InjH layer, in order

to avoid over-constraining the system since the measure of the InjH layer thickness is

less robust than is its maximum height (see Sect. 4.1). MISR-derived injection height10

“observations” (yobs
= InjH

top

obs
) were compared to the simulated injection heights output

from PRMv2 (ŷ = InjH
top

PRMv2
):

f (yobs,d ,args) =
∑

obs.

[

aR,corr
(

ŷ(d ,args)− yobs
)]2

(19)

where ŷ(d ,args) is obtained from the PRMv2 model run with input of the vector pa-

rameter d and the arguments args : FRP, AF-area, and local atmospheric profiles (see15

Sect. 2.2), yobs
is derived from the MISR data set as explained in Sect. 4.1, and aR,corr

is a correction term to prevent the plume radius R diverging too greatly. aR,corr
is defined

such that if the relative variation of R between the base of the plume and the first model

level ∆Rz=0 =
R(z1)−R(z0)

R(z0)
exceeds a threshold of 200, then aR,corr

= 10∆Rz=0, otherwise

aR,corr
= 1.20

Although related by their shared use of the Metropolis criterion (Metropolis et al.,

1953), SA and McMC are fundamentally different algorithms generally applied for dif-

ferent purposes. SA is used primarily to find a single set of optimum parameter values

(d ) given some observations, whereas McMC is used to assess parameter value un-

certainty. In SA the probability of acceptance (Paccept) of a new parameter vector (dnew),25
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knowing its current vector (dcurrent) is defined as

Paccept = min
(

1,e− 1
2

∆E [f (dnew),f (dold)]

T

)

(20)

where ∆E is the gain of the likelihood function, which is a function of the objective

function evaluated with both old and new parameter values. If Paccept is greater than

or equal to unity, then the new innovation is accepted since the sum of the square of5

the residuals have fallen to a lower value. If Paccept is smaller than unity, then Paccept

is compared to a random number drawn from a uniform distribution U ∼ [0,1). In this

way, the SA algorithm has the chance to escape local minima by temporarily accepting

less good parameter innovations in the search for the values that minimise the objective

function globally. In addition, the probability value (chance of escape from local minima)10

is a function of the temperature T , which is decreased according to a cooling schedule

from which SA gets its name. As the algorithm converges to the assumed minima, the

cooling schedule dictates that fewer “bad” moves are accepted. Finally, some cessation

criterion is activated (e.g. number of iterations or minimum temperature) to accept the

“best guess” of the parameter vector, d .15

We used the SA algorithm to first assess the physical representativeness of the

observed fire plumes modelled by PRMv2. Several instances of SA were run with dif-

ferent training data sets D learning
, achieved by sampling a sub-set of 20 fires randomly

selected among the 38 fires of the good clusters data set whose selection was detailed

in Sect. 4. The instances were subsequently initiated with randomly selected starting20

points d0 in the prior parameter range (see Table 1). On completion of the SA runs, the

residuals for individual fires were analysed, and we identified fires whose plumes were

physically not well represented by PRMv2. SA was used in preference to McMC for this

step since it is less computationally demanding.

After running the SA algorithm, we used an adaptive McMC algorithm to analyse the25

error of the optimal vector, d , within a Bayesian probability framework. The aim was to

recover the joint posterior probability distribution of the model parameters that contains

information relating to both the optimal parameter values and their uncertainty, and is
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learned from the measured observations (yobs
). McMC numerically solves Bayes law

for the model parameters, d , which can be stated as:

P (d |yobs) ∝ P (yobs|d )× P (d ) (21)

where P (d |yobs
) is the joint posterior probability of the parameters. P (yobs|d ) is re-

ferred to as the likelihood of the observations and is where the physical model enters5

the equation and P (d ) is the prior distribution of parameters. Posterior probability dis-

tributions for individual parameters are referred to as marginal distributions, and are

used to calculate uncertainty bounds (credible intervals) and optimal values (for exam-

ple expectations or modes). Flatter, dispersed distributions represent more uncertainty

with respect to a particular parameter. In contrast tighter, peaked distributions mean10

that a parameter is well constrained by the available observations. Correlations be-

tween parameters are used to reveal structural inefficiencies in the underlying physical

model, and can be found by analysing the joint distributions.

P (yobs|d ) is formulated by assuming that each measurement is corrupted by an iden-

tically and normally distributed error term that is parametrised by zero mean and an15

estimate of error variance, s2
which represents the inherent error in each observation.

s2
is estimated from try and error to allow McMC to scan the parameter space with an

acceptance rate Raccept remaining above 30% (Gelman et al., 2000). The likelihood,

P (yobs|d ), is the product of the probability of each measurement given the current pa-

rameter guess, d :20

P (yobs|d ) =
∏

all obs.

1
√

2πs2

exp







−
[

aR,corr
(

ŷ(d ,args)− yobs
)]2

2s2






(22)

In practice, the log transform of the likelihood is used. This renders Eq. (22) as a sum

rather than a product over the observations, and thus facilitates the introduction of the

objective function, f , into the likelihood term (logP (yobs|d ) = constant− 1
2s2 f (yobs

,d )).
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For most non-trivial cases, it is not possible to analytically solve 21. McMC are a class

of algorithms that address this by sampling from a proposal distribution. If properly se-

lected, enough samples from the proposal distribution can be used to approximate the

target posterior distribution. We provide only a brief explanation of the McMC algorithm

used here, for full details see Braswell et al. (2005). McMC proceeds by first sampling5

a new parameter from the proposed distribution. The ratio of the likelihood of the old

parameter vector to the new parameter vector is then used for the metropolis step,

where “less good” guesses can be accepted by comparison to a uniform random num-

ber. Unlike SA there is no cooling schedule, which leaves the McMC algorithm free

to sample the posterior distribution, rather than focusing on a single set of parameter10

values, as in SA.

A particular obstacle to using the McMC method is finding an optimal proposed dis-

tribution for selecting new parameter values. If this distribution is poorly tuned, then

the ratio of accepted to rejected parameter values becomes too low, and the chain

(samples) does not properly converge to the stationary distribution. The Braswell et al.15

(2005) algorithm is an adaptive method that automatically tunes the proposal distribu-

tion during the initial stages of the run, based on the “acceptance ratio”. Once tuned,

the chain needs to be run for several thousand iterations; long enough to properly

sample the posterior distribution.

For PRMv2, we used McMC to compute the joint posterior distribution of the pa-20

rameter space. 68% Credible Intervals (CI, analogous to, but not the same as, Fre-

quentist confidence intervals) for marginal parameter distributions were calculated and

the correlations between the parameters analysed. Prior to this analysis, we had little

knowledge of the expected parameter values, with the exception of knowing reason-

able parameter bounds. Uniform bounded priors were used for all parameters, with the25

central value of the prior distribution selected as the initial guess for the distribution.
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5.1.2 Optimisation results

A total of 32 instances of SA were run, of which 53% (17 fires) ended with a sum square

residual error lower than 20 [m
2
] (∼median error of the 32 instance). Two fires were

frequently found that had large residual error values. One, O29627-B39-P1, showed in

Aqua MODIS imagery collected just 10min after the MISR overpass a neat alteration5

of the plume becoming brightener just above the fires location, which could come from

contamination of neighboured clouds being advected above the fire, or from the growth

of the plume itself (see Supplement Fig. S28). In this case, it is difficult to understand

precisely the plumes evolution. However, it is clear that at the time of the MISR imagery

the plume is not in a steady state The other O24457-B42-P2 showed the formation of10

a pyro-cumulus cloud 1:45 h after the MISR overpass (see Supplement Fig. S22). As

PRMv2 is able to converge for most of the remaining 36 test fires, we assumed that the

model physics are robust enough, and removed these 2 outliers from our analysis. The

sum square residual error (Eq. 19) calculated from the full 36 fire data-set (i.e. f all
) was

derived for each 17 vector parameter associated with “low” f , and the optimal vector15

parameter dSA selected as the vector with the lowest f all
(see Table 1). Comparison

of dSA with parameter values used in en/detrainment schemes of shallow convection

(Gregory, 2001; Pergaud et al., 2009; Chikira and Sugiyama, 2010) is difficult as our

formalism is slightly different (e.g. momentum source at ground level generated by

the fire, entrainment coefficient including wind shear effect, see Appendix A for more20

details). However it is interesting to see that the value of the entrainment coefficient

Cǫ is ∼ 3 times larger that typical value used in shallow convection, e.g. Chikira and

Sugiyama (2010) used 0.6 while Pergaud et al. (2009) used 0.55. In the configura-

tion of fire plume, high velocities at ground level create an extra source of momentum

and simultaneously decrease the entrainment as ǫ∝ 1
w (see Eq. 6). Therefore a higher25

value of Cǫ is necessary to balance changes in vertical velocity. Now, when a air parcel

moves upwards, its dynamics switches gradually from velocity dominated to buoyancy

dominated (similar to natural convection) which according to Chikira and Sugiyama
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(2010) requires a lower value of Cǫ. In the current approach however, Cǫ keeps the

same value along the plume. Future development of PRMv2 would investigate the im-

plementation of en/de-trainment coefficients varying with altitude and/or momentum

source strength.

Considering the entire InjH layer (not only its top height), Fig. 8 shows an almost5

one-to-one relationship between the MISR-derived observations and the PRMv2 simu-

lations using the parameter vector dSA for all 38 fires selected in Sect. 4.2. An excellent

match between modelled InjH and Observed InjH is present for all fires, except the two

outliers discussed above where the simulated InjH appears significantly overestimated,

perhaps because the morning MODIS overpass occurred towards the initial stage of10

the fire when the plume is still building up and adjusting to the increasing fire activity.

The sparse information we have, (2 snapshots) are insufficient to confirm this. In any

case, the optimised PRMv2 parameters developed in Sect. 2 are clearly able to deliver

InjH simulations that are very well matched in most cases to the MISR-derived plume

height estimates of the good cluster dataset defined in Sect. 4.15

To further validate PRMv2, as well as to study its sensitivity to the input parame-

ters, we used the Markov chain Monte Carlo (McMC) uncertainty test, introduced in

Sect. 5.1.1. The diagnostics from this can be found in the Supplement (Figs. S1–S3).

The McMC algorithm was run for over 20 000 iterations with an observation error s2
of

30, allowing the acceptance rate Raccpet to remain in the range 36–47%. Although s2
20

is representative of the inherent error in the observations, in this study we used trial

and error to estimate this value. We originally ran the McMC algorithm with smaller s2

values (< 0.5), however the algorithm failed to converge resulting in a poor sampling of

the posterior distribution. It is unclear as to whether the successful value is a precise

representation of the observation error, so we rather used the posterior distribution as25

an exploratory tool to assess correlations between parameters and the sensitivity of the

model to individual parameters. With the exception of the reported marginal intervals

and modes, we refrained from making detailed predictions of uncertainty using the full

posterior distribution, which we show in Fig. 9.
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The marginal parameter distributions dMcMC (see diagonal plots of Fig. 9) are used

to derive the 68% interval (shaded area in diagonal plots of Fig. 9) listed in Table 1.

The off-diagonal plots of Fig. 9 display the cross-correlation of the 6 parameters, in

particular showing that:

– α and Cǫ are anti-correlated, which makes senses as the initial up-draft w0 is5

inversely proportional to α (Eq. 8) such that if α increases, the updraft is weaker

and less entrainment (i.e. Cǫ) is necessary to slow down the plume rise,

– Cdyn,ǫ and Cdyn,δ are anti-correlated, this is due to the dependence of δdyn to 1
w ,

Cdyn,ǫ, and Cdyn,δ (Eq. A8). When Cdyn,ǫ increases, mass in the plume increases

and w decreases. As Cdyn,ǫ and Cdyn,δ are anti-correlated, this shows that even if10

the mass increases, Cdyn,δ increase is not necessary to control mass detrainment,

and even acts against it. The formulation of the dynamic detrainment should be

revised in the future, since the presence of Cdyn,ǫ is certainly unnecessary (i.e.

large 68% credible intervals).

– Cǫ and β are correlated for the same reason as α and Cǫ are anti-correlated.15

Indeed, β controls the initial updraft while Cǫ is responsible of the break. Those 2

parameters are the most sensible.

It is interesting to note that the parameter vector found via SA (dSA, purple lines in

Fig. 9) is in the range of the credible intervals of dMcMC. When only considering the 36

fires (i.e. with the two outliers of Fig. 8 removed), the two approaches deployed here20

(SA and McMC) are independent. Their convergence therefore supports the legitimacy

of our optimization procedure. During subsequent application of the PRMv2 model,

we decided to use the parameter vector dopt, defined by the mode of the posterior

dMcMC (see Table 1), because the marginal modes represent an optimal guess based

on a thorough exploration of the parameter landscape (posterior), whereas the SA25

represented a point guess defined by arbitrary stopping criteria.
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5.2 PRMv2 model performance evaluation

Due to the limited number of observations that came out of our match-up dataset selec-

tion criteria (see Sect. 4.2), the relative lack of information on the exact match between

fire and plume dynamics, and the potential alteration of the fire-emitted MIR signal

by certain of the plumes, we could only use 36 fires in our parameter optimization5

procedure (Sect. 5.1). To help evaluate the set of optimised parameters dopt, we there-

fore ran the “tuned” PRMv2 model on a year of MODIS observations of North Ameri-

can fires (latitude=35–70
◦
N, longitude=40–170

◦
W), checking whether the modelled

plume heights are able to reproduce the observed physical behaviour, in particular the

dependence to the atmospheric stability originally highlighted by Val Martin et al. (2010)10

and Amiridis et al. (2010) and described in Sect. 4.3.

Using the Collection 5 MODIS active fire product (Giglio et al., 2003), for each de-

tected fire pixel we ran the fire clustering algorithm detailed in Sect. 4.1 and computed

FRP and AF-area for each fire with the procedures detailed in Sect. 3. Along with

simulation of the plumes using the optimised PRMv2 model, we also ran the previous15

versions of PRM (PRMv0 and v1) and the plume injection height parametrization of

Sofiev et al. (2012) for this dataset. While PRMv0, PRMv1 and the Sofiev et al. (2012)

parametrizations were run for every detected fire where the Dozier (1981) algorithm

converges (i.e. 30 951 fires), PRMv2 was only run for the 19 804 fires which verify the

low sub-pixel temperature filter and the TIR radiance signal test introduced in Sect. 3.2.20

Following the results of Fig. 7, which shows the relationship between observed plume

height and FRP for stable and unstable atmospheres, Fig. 10 shows the relationship

between FRP and modelled plume injection height for plumes recorded as being above

the boundary layer for the three versions of PRM used here, as well as the Sofiev et al.

(2012) parametrization.25

PRMv2 is the only approach that produces behaviour similar to those of the ob-

servations, i.e. with a power law relationship (h = a FRP
k
) for scenarios with unstable

atmospheres that (i) has an exponent of the same order of magnitude (k ∼ 0.1) and (ii)
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exhibits a stronger correlation than when fires in stable atmospheres are considered.

Furthermore, PRMv2 is also the only approach that predicts a non-negligible number of

fires with an InjH top above 8km (see Table 2). Although PRMv2 seems able to better

represent the type of extreme plume heights caused by Pyro-Cumulonimbus (PyroCbs)

formation, it does not yet match the full extent of the plume heights reported in Fromm5

et al. (2010), who for 2002 detailed a total of 17 PyroCbs with a top plume height in

the range 9.5–13.0km. However, these observed heights are for the entire plume, in-

cluding far downwind of the source fire, whilst our models simulate only the height of

the stack closely located above the causal fire (Sect. 4.1). Since plume dynamics are

highly coupled to atmospheric transport, distal plume heights can be significantly af-10

fected by ambient physical processes. A complete evaluation of PRMv2 with respect to

such downwind plume top height observations requires to have PRMv2 implemented in

a host atmospheric model, and to prepare for such an implementation the next section

introduces a gridded product of InjH based upon PRMv2.

6 Towards a wildfire injection height climatology15

Here we present a first gridded product of plume InjH distribution, based on the PRMv2

model optimised in Sect. 5. Since PRMv2 has currently been optimized using North

American fires from the MISR plume height database, we only consider North Amer-

ica here, as per Sect. 5.1.2 (latitude=35–70
◦
N, longitude=40–170

◦
W). Sofiev et al.

(2013) already derived a global distribution of maximum smoke emission height using20

a different approach also based upon MODIS FRP observations and estimates of the

fire energy triggering plume updraft (Sofiev et al., 2012). In that work, MODIS-derived

emissions fires were gridded on a 1
◦ ×1

◦ ×500m global mesh at a monthly tempo-

ral resolution, and to account for periods between MODIS overpasses methods were

developed to estimate the FRP diurnal cycle and to fill (probably cloud-related) gaps25

between apparently missing observations (grid cells where no fire was seen in a month

but which are neighboured by at least 3 other cells with fires). In our approach we wish
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to primarily test the spatial variability of the PRMv2 model output, so that only fires

actually detected in Collection 5 MODIS Active Fire products are included, with no ad-

justment for the diurnal cycle or cloud cover/missing observations. We clustered the

detected fire pixels, and for each derived AF-area and FRP, and then estimated the

biomass burning rate (kgs
−1

) from the FRP using the biome-dependent conversion5

factors from the current version of the Global Fire Assimilation System (GFAS Kaiser

et al., 2012). Finally, we estimated the InjH of each plume using the optimised PRMv2

model, and gridded the results at a 1.0
◦

resolution and a 6 hourly temporal interval.

Each fire is assumed to last for 6h, and if it remains undetected by subsequent MODIS

observations it is assumed to be extinguished. Multiple overpasses of the same fire10

event are removed from the dataset, and only the highest FRP within each 6h time

slot are kept. Two observed “fire clusters” are considered to represent the same fire

if they are not on the same granule, and are within a horizontal distance of 1km or

less. Our approach also assumes that smoke from fires with a AF-area lower than

1ha are trapped within the boundary layer, since we know that AF-area estimates from15

smaller fires show increased inaccuracy (see Appendix B and in particular Fig. 16).

Furthermore, in this first approach, fires from all land cover types are included in the

gridded data, although agricultural fires would require further analysis (see discussion

in Sect. 4.2).

The seasonal maps of wildfire plume InjH resulting from use of PRMv2 with the20

MODIS active fire data are shown in Figs. 11 and 12. For each season, biomass burn-

ing rates for each 6h time slot are integrated and injected at the height predicted by

PRMv2. Hence, the fire-consumed “mass” can be seen as a tracer to which biomass

burning emission factors (e.g. Andreae and Merlet, 2001) should be applied in order to

derive the corresponding trace gas concentration at each atmospheric level. For each25

season of 2003, Figs. 11 and 12 show the horizontal distribution of the seasonally inte-

grated InjH median (equal fire-consumed mass above and below), all single fire events

with a modelled plume above 5km, and the seasonal vertical distribution of consumed

mass integrated along the longitude.
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The fire events used here are the same as those in Fig. 10, but InjH is now reported

as altitude above sea level (a.s.l.). The main point indicated by these gridded data is

the strong seasonal variability of landscape fire injection height, with a large InjH max-

ima in summer where the highest plumes can reach 10km altitude between latitudes

of 45 to 60
◦
N, though most still remain below 2km. In total, 92% of plume events with5

maximum altitudes > 5km occur during the summer months. During all other seasons,

plumes remain consistently below 6km, and the median injection heights show a simi-

lar pattern as do the occurrences of high plumes, which could indicate that in this type

of 1
◦

gridded product injection into the free troposphere is dominated by the highest

plumes. This is not always the case though, since for example close to Hudson Bay10

(Canada) the InjH median remains quite low (< 3km) despite a large number of higher

altitude plumes occurring in this area, and this is due to the occurrence of a larger

number of fires with low plume heights, seen in the vertical distribution of burnt mass

where a high peak (> 1Tg) appears close to the ground around 55
◦
N latitude. This

demonstrates that the definition of product representing “average InjH” on a grid like15

this is sensitive to the distribution of InjH at the sub-grid scale, suggesting the require-

ment to ultimately include compensation for “missing” periods of observations due to

e.g. MODIS overpass gaps and cloud cover.

In the vertical distribution of fire-consumed mass for Summer 2003, a peak of burnt

mass is clearly visible near 60
◦

latitude between 7 and 8km. This corresponds to20

a single large fire event which occurred on the 17 August in Alberta (Canada) around

(59.64
◦
N, 112.70

◦
W), and which was observed by MODIS 3 times between 19:05 and

20:55 UTC. This fire was already mentioned by Stocks et al. (2005), who estimated

that the plume reached the stratosphere. During this particular extreme fire event, the

fire front splits and spreads so quickly over the 110min interval between the first and25

last MODIS observation of the 17th, that our simple method of “fire tracking” (detailed

above in this section) fails. During the 6h slot containing multiple MODIS observations

of this particular event, the same fire were thus counted more than once. However,

we are here mainly interested in the InjH estimate, and less so in the fire-consumed
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mass, so it is interesting to see that for this extreme fire the optimised PRMv2 model

manages to simulate the occurrence of a very high altitude plume (6 to 8kma.s.l.),

though one that does not actually reach the stratosphere. Nevertheless, PRMv2 is the

only approach of the four schemes tested that is able to predict this intense up-draft

(see Supplement for other model results over Summer 2003, Figs. S4–S6). Although5

this first evaluation of the spatial and seasonal variation in PRMv2-derived fire plume

injection height does not constitute a true validation, it does demonstrate that even

though our approach relies on the same dynamical core of the original Freitas et al.

(2007) implementation (i.e. PRMv0), the en/de-trainment scheme we have added have

enhanced performance such that PRMv2 is more able to simulate the injection of high10

plumes rising up to 10km.

7 Summary and conclusions

To improve the modelling of biomass burning (BB) emissions transport, several

parametrizations of smoke plume injection height (InjH) for implementation in atmo-

spheric chemical transport models have been proposed (Freitas et al., 2010; Rio et al.,15

2010; Sofiev et al., 2012), but due to the coupling of plume dynamics and ambient

atmosphere their validation is difficult, in part because satellite EO data are currently

unable to deliver simultaneous information on fire and plume evolution at time-scale of

∼ 1 h or less and with a spatial resolution allowing the accurate derivation of sub-pixel

fire information.20

In this work, we therefore use a subset of the current North American MISR data

of (Nelson et al., 2013), extracting fire events where plume and fire activity shows

a relatively small change over consecutive Terra and Aqua MODIS observations. We

identify a dataset of 38 “good” fires to optimize an improved version of the original

plume rise model (PRM) of Freitas et al. (2007), and extend the model to include (i)25

a new entrainment and detrainment scheme, (ii) a mass conservation equation, and

(iii) a new method to estimate the convective energy released by the fire from a di-
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rect EO-observable (FRP). These developments of PRMv2 required introduction of six

new parameters, whose values were estimated using a two fold optimization procedure

based on Simulating Annealing and Markov chain Monte Carlo (McMC) uncertainty

testing.

The limited number of fire events available did not allow us to properly validate5

PRMv2 using modelled vs observed height comparisons, but when applied to a year

of MODIS active fire observations for North America PRMv2’s response to the effect of

atmospheric stability is consistent with previous findings showing a direct relationship

between plume height and FRP for fire events in unstable atmospheres (Val Martin

et al., 2010; Amiridis et al., 2010). In this first approach a simple model of 6h fire per-10

sistence was used and we restraint our analysis to the year 2003 over North America.

A comparison with other available parametrizations shows than PRMv2 is the model

simulating the largest number of high plume (> 8km) and in the particular case of the

year 2003 was the only model to capture a large fire event which occurs in Alberta

(Canada).15

After validation over more geographical locations (e.g. deforestation fire in South

America), the application of PRMv2 to global fire inventory would be considered to

set up “injection height climatology”, which could be either used as a model valida-

tion dataset if transport models have a sub-grid fire plume model, or as climatological

database to represent the effect of fire plumes in transport models (for models not20

having sub-grid parametrization).

From this work we conclude that plume rise models for application to landscape

scale fires are still very much worth developing, since they may help us understand

plume dynamics and in particular interpret the relatively sparse plume observations

available from instruments such as MISR. However, as recommended by Val Martin25

et al. (2012) and Ichoku et al. (2012), a proper understanding and therefore correct

parametrization of plume InjH will likely rely on high spatial and temporal resolution

information, including ideally simultaneous field measurements of the key parameters

driving smoke plume rise.
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Appendix A: PRMv2 equations

A1 Core equations

Using mass flux conservation, the Boussinesq approximation and introducing the vari-

able ζ = ρR2
which can be read as the mass per altitude meter, mass conservation

yields to5

∂tζ = −∂z(wζ )+wζ (ǫ−δ) (A1)

where ǫ and δ [m
−1

] are the entrainment and detrainment coefficients, respectively.

They model the in- (u+
) and out- (u−

) coming horizontal flow in the plume as u+
=

Rwǫ
2

and u−
=

Rδw
2

. Extending to a scalar with a mixing ration φ, the scalar transport

equation is10

∂tζsc = −∂z(wζsc)+wζsc(ǫ−δ) (A2)

where ζsc = ρφR2
. Assuming entrainment is controlled by ambient condition (Gregory,

2001), i.e. wζscǫ = ρR2wǫφe, with φe the mixing ratio of the ambient scalar, the scalar

conservation equation becomes

∂tφ+w∂zφ = −ǫw(φ−φe) (A3)15

The vertical momentum equation is derived as in Simpson and Wiggert (1969) and

Gregory (2001). The non hydrostatic pressure perturbation and the sub-grid turbulent

flux are expressed as a linear combination of the buoyancy and the entrainment terms,

which yields to

∂tw +w∂zw =
1

1+γ
gB−ǫw2, (A4)20

where γ = 0.5 is the virtual mass coefficient introduced by Simpson and Wiggert (1969)

and B =
Tv−Tve

Tve
−LWC the buoyancy term with LWC the reduction of buoyancy due to
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the weight of suspended water (Simpson and Wiggert, 1969) and Tv the virtual temper-

ature.

The energy conservation is ensured by the temperature equation, where source

terms are: the dry adiabatic lapse rate, latent heat (see Freitas et al., 2007 for de-

tails of the microphysical scheme) and lateral mixing with the ambient atmosphere5

(parametrized as in the momentum equation):

∂tT +w∂zT = −w
g

cp

−ǫw(T − Te)+ (∂tT )|micro. (A5)

Finally, as in PRMv0, the amplitude of the horizontal flow u is also transported to ac-

count for the drag effect of the ambient horizontal wind. Assuming that only momentum

transfer is affecting u advection, and following the derivation of Eq. (A3) it yields10

∂tu+w∂zu = −ǫw(u−ue), (A6)

where ue is the ambient atmospheric horizontal wind amplitude.

A2 The en/de-trainment scheme

In PRMv2, the entrainment (ǫ) and detrainment (δ) coefficients are defined to account

for the effect of the plume up-draft and the ambient wind shear.15

The effect of vertical plume transport on horizontal flow is modelled following the work

of Pergaud et al. (2009) on shallow convection parametrization. In a dry environment,

on the basis of dimensional analysis, Pergaud et al. (2009) show that ǫdry and δdry are

functions of both buoyancy and vertical velocity,

ǫdry,δdry∝
B

w2
.20

Using coefficient factors based on LES simulations, Pergaud et al. (2009) define ǫdry

and δdry as

ǫdry = max

(

0,Cǫ

B

w2

)

(A7)
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δdry = max

(

1

Lup − z
,Cδ

B

w2

)

(A8)

with, Cǫ = 0.55, Cδ = −10. Lup is the Bougeault upward mixing length. It is a function

of the turbulent kinetic energy (TKE) profile in the column, and is used here to ensure

that the detrainment is not null in the mixing layer. In our case, the plume updraft is

generally at its maximum in the PBL, and thus has positive buoyancy. To simplify the5

en/detrainment scheme, in our approach no detrainment induced by the plume updraft

is applied in the mixing layer. When the plume reaches the lifting condensation level,

Pergaud et al. (2009) switches the parametrization of the above lateral exchange to the

model of Kain and Fritsch (1990). In the current state of development of PRMv2, the

Kain and Fritsch (1990) scheme is not implemented yet.10

The main difference between our approach to en/de-trainment, and that of Freitas

et al. (2007), is that now the en/de-trainment scheme is no longer dependent of the

plume radius R. In PRMv0, the entrainment coefficient is defined as ǫ = 2αR−1
, and R

is derived following Turner (1973). In our approach, the new en/de-trainment scheme

and the conservation mass equation make R more dependent of the local dynamics15

(w, buoyancy), which helps to control mass exchange and therefore vertical transport.

However, in the case of fire plume the vertical updraft is expected to be much stronger

than for shallow convection event. Therefore the constant parameters Cǫ, and Cδ need

recalibration. Section 5 tackles this point. Note here that in shallow convection Cǫ is

usually ranging from 0 to 1 (Gregory, 2001; Chikira and Sugiyama, 2010), as it is20

assumed that entrainment only acts again buoyancy which is the main source of mo-

mentum. As explained by Chikira and Sugiyama (2010), in their formalism if Cǫ = 1,

it means that all the buoyancy used to accelerate the up-draft is balanced by the en-

trainment. In the case of a fire plume the buoyancy is no more the only source of

momentum, indeed the heat released by the fire can triggers high velocity at ground25

level (see w0 in Eq. 8). Therefore we decide in our approach to relax the constraint on

Cǫ and accept value grater than 1.
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To account also for wind shear effects in PRMv2, the approach of Freitas et al. (2010)

is used. Based on dimensional analysis, the dynamical entrainment coefficient is de-

fined as

ǫdyn = Cǫ,dyn

1

w

du

dz
.

This formulation shows that the stronger the updraft is, the less the plume is affected by5

wind shear (i.e. weak entrainment), and the stronger the wind shear the more likely the

vertical propagation of the plume is stopped (i.e. strong entrainment). The dynamical

detrainment δdyn, which only affects the mass conservation equation (Eq. 3), is chosen

to be directly proportional to ǫdyn,

δdyn = Cδ,dynǫdyn.10

This means that when the plume experiences the effect of wind shear, its dynamics will

only be affected by ǫdyn, while its mass gain/loss is controlled by the parameter Cδ,dyn.

Appendix B: Validation of the Dozier algorithm

B1 Application of the Dozier algorithm to MODIS and BIRD HSRS radiance

signal15

To validate our implementation of the Dozier (1981) “dualband” approach to estimat-

ing fire effective temperature (Tf) and sub-pixel active fire area (AF-area), along with

the FRP estimate derived via these terms (FRPdoz), we applied the Dozier (1981) al-

gorithm to a series of wildfire events observed almost simultaneously by MODIS on

the Terra satellite and by the Hotspot Recognition Sensor (HSRS) onboard the Bi-20

spectral Infrared Detection Experimental Small Satellite (BIRD), in a similar manner

to the original BIRD-MODIS inter comparison study of (Wooster et al., 2003). HSRS
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is specifically designed for making active fire retrievals using the Dozier (1981) “du-

alband” approach (Zhukov et al., 2006), and has a nadir ground pixel area roughly

10× smaller than MODIS and so should certainly provide more accurate active fire

information than can be obtained from MODIS when both sensors view the same fire

simultaneously (Wooster et al., 2003). From the BIRD archive, 38 fires were identi-5

fied with time differences between them and the matching MODIS observation ranging

from 20 to 84min. The HSRS MIR band is located at λ1 = 3.4–4.2µm and the TIR band

at λ2 = 8.5–9.3µm, similar to the MODIS band 21 (λ = 3.929–3.989µm, and band 29

(λ = 8.4–8.7µm) that we use here as the MODIS inputs to the Dozier (1981) algorithm.

Observations from BIRD and MODIS of the same fire were geo-referenced to a ge-10

ographic grid having a spacing similar to the double-sampling observation grid of the

native HSRS raw data (185m; Zhukov et al., 2006). Figure 13 provides an example of

the output from this process.

To make PRMv2 most easily applicable to the largest number of fire events seen

with MODIS, we also applied the Dozier (1981) algorithm using MODIS band 31 (λ =15

10.780–11.280µm) instead of the band that most closely matches the LWIR of BIRD

HSRS (MODIS Band 29), since along with the MIR band information, data from MODIS

band 31 is included in the MODIS Collection 5 active fire product (i.e. the MOD14

product Justice et al., 2002). Using the MODIS band 21 and 31 data obviates the need

to download and process the much larger level 1b MODIS data (i.e. the MOD021 km20

calibrated spectral radiance product), and our implementation of the Dozier (1981)

algorithm can thus be run using the MOD14 files alone. Fire detection algorithms from

Zhukov et al. (2006) and Giglio et al. (2003) are used to extract active fire pixels and

calculate the spectral radiance signal of each fire cluster from the BIRD HSRS and

MODIS data respectively. However, to estimate the background radiance, we explored25

an adaptation of existing methods since we noted that pixels nearby the fire cluster

appear quite often to have lower brightness temperatures if they are overlain by thick

smoke than if they are smoke free. Since such lowered brightness temperatures will

affect the estimation of the “background signal” used as input to the Dozier algorithm
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(see Eq. 14), using the MOD021 km product we instead calculated the background

radiance with the extremes removed from non-fire pixels selected within a 5km×5km

around the location of the fire cluster. Hereafter, a new mask (fire+ valid background

pixels, termed Mn) is applied to both the BIRD and MODIS data. When using only

the MOD14 product however, Mn cannot be calculated, since only the mean signal5

of the already identified background pixels is available in the MOD14 product file. In

this case, fire pixel and background pixel radiances are respectively derived for each

cluster as the sum of individual fire pixel radiances and the mean of their respective

background radiances, as defined in Giglio et al. (2003). In the following description,

this MOD14-derived mask is referred as M14. The smoke contaminated pixels close to10

the fire are more likely to influence the background signal calculated using M14 than

Mn not flagged cloud free and are likely to be part of the selected valid pixel of M14.

Thus, by using Mn we believe that we can lower the perturbing effect of the plume on

background temperature estimation, and therefore improve the determination of the

background radiance, in particular the TIR background radiance Lb,2 which is an input15

whose uncertainties have a strong influence on the final Dozier retrievals (Giglio and

Kendall, 2001; Wooster et al., 2003).

The Dozier algorithm is then applied to 5 different permutations of sensor (S =BIRD

represented by Bi and MODIS represented by Mo), band (b = MIR, TIR) and mask

(M =Mn,M14). The 5 are [Bi
MIR

, Bi
TIR

]MBIRD
n

, [Bi
MIR

, Bi
TIR

]Mn
, [Mo

MIR
21 , Mo

TIR
29 ]Mn

, [Mo
MIR
21 ,20

Mo
TIR
31 ]Mn

, and [Mo
MIR
21 , Mo

TIR
31 )]M14

. MBIRD
n is using the new fire mask built on the output

from the active fire detection algorithm of BIRD HSRS, while as described above Mn

is based on the output from the MODIS active fire detection algorithm. However, since

one MODIS active fire pixel can correspond to multiple BIRD active fire pixels, in the

MBIRD
n mask, the final active fire temperature and AF-area used for comparison with25

the matching MODIS observations are the mean temperature and the sum of the AF-

area of the BIRD clusters present within the area covered by the MODIS fire mask (see

Fig. 13).
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As a first test of our implementation, we compare the FRP retrieved via the out-

puts of the Dozier (1981) algorithm (FRPdoz) to that calculated using the single band

“MIR radiance” approach detailed in Wooster et al. (2003, 2005), here termed FRPmir.

A somewhat similar comparison just using BIRD HSRS data was previously shown by

Wooster et al. (2003). Figure 14 shows the results of the comparison for the 5 differ-5

ent permutations introduced above. Results are only shown for the 24 fires of the 38

selected fire events observed near simultaneously by both BIRD and MODIS, since

these are where the Dozier algorithm converges for every permutation. As discussed

by Giglio and Kendall (2001), the Dozier (1981) algorithm does not always converge,

and to do so requires (i) a cooling trail that does not exceed more than 50 times the10

active fire area, (ii) a reasonably strong fire thermal signature in both the MIR and TIR

bands, which from MODIS means a fire larger than 0.3ha, and (iii) an appropriately

low uncertainty on the input data, particularly in the estimation of the TIR background

radiance.

When using BIRD or MODIS data with the Mn mask, FRPmir and FRPdoz match well15

(r2 > 0.99), meaning that the assumptions made in Eqs. (14)–(16) appear valid, in par-

ticular ǫf,i = ǫf = 1 and (1−p) ∼ 1. Also note that the selection of the wavebands used

does not greatly affect FRP derivation (see [Mo
MIR
21 , Mo

TIR
29 ]Mn

and [Mo
MIR
21 , Mo

TIR
31 ]Mn

)

and using MBIRD
n or Mn affects essentially the low FRP of our fire selection. See differ-

ence between [Bi
MIR

, Bi
TIR

]MBIRD
n

and [Bi
MIR

, Bi
TIR

]Mn
). This confirms that a higher spatial20

resolution sensor is more sensitive to lower amounts of fire activity than is a coarser

spatial resolution sensor (Freeborn et al., 2009). Now, when considering the mask M14

Fig. 14 show a net degradation of the agreement between the FRPs. The only differ-

ence between [Mo
MIR
21 , Mo

TIR
31 ]Mn

, and [Mo
MIR
21 , Mo

TIR
31 ]M14

comes from the derivation of

the background radiance. Therefore the introduction of Mn seems to be effective in25

retrieving an appropriate background radiance.

To pursue the validation of our Dozier algorithm implementation, Figs. 15, 17 and 16

show a comparison between bands/mask selections for FRPdoz, Tf and AF-area for the

same 24 fires of Fig. 14.
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Assuming that (Bi
MIR

, Bi
TIR

]MBIRD
n

is the best available estimate of the fire sub-pixel

characteristics (high spatial resolution, low noise, and wide dynamic range Giglio and

Kendall, 2001; Zhukov et al., 2006), following the diagonal plots of Fig. 15 shows that

lowering the BIRD spatial resolution ([Bi
MIR

, Bi
TIR

]MBIRD
n

vs [Bi
MIR

, Bi
TIR

]Mn
), swapping

the sensor from BIRD to MODIS ([Bi
MIR

, Bi
TIR

]Mn
vs [Mo

MIR
21 , Mo

TIR
29 ]Mn

), changing the5

MODIS TIR waveband ([Mo
MIR
21 , Mo

TIR
29 ]Mn

vs [Mo
MIR
21 , Mo

TIR
31 ]Mn

), and altering the ac-

tive fire mask ([Mo
MIR
21 , Mo

TIR
31 ]Mn

vs [Mo
MIR
21 , Mo

TIR
31 ]M14

) all keep the retrieved FRPdoz

within a factor 2. When considering the separate calculation of Tf (Fig. 17) and AF-area

(Fig. 16), it appears that BIRD resolution decrease keeps AF-area within a factor 2

and Tf within ±100K. Sensor swap to MODIS keeps a fairly good correlation for Tf, but10

underestimates the active fire areas of small fires. Modification of the MODIS TIR band

decreases Tf by ∼ 25%, and increases AF-area by a factor 2. This is consistent with

(Giglio and Justice, 2003), since when using band 31 instead of 29, the TIR wavelength

increases causes the system of equations to be more sensitive to lower temperatures

and therefore to the cooling trail of the fire. Finally, using background temperatures di-15

rectly from the MODIS collection 5 active product (i.e. M14) decreases the accuracy of

the retrieval by another factor 2 for AF-area and adds a 100K error to Tf. Figures 15,

16 and 17 also show the time difference between the MODIS and BIRD overpasses,

and indicate no consistent relationship between the magnitude of this time difference

and the differences in retrieved fire characteristics coming from the two sensors. Fi-20

nally, the upper left plots of Figs. 15, 17, and 16 show errors introduced when directly

using data from the MOD14 product ([Mo
MIR
21 ,Mo

TIR
31 ]M14

) instead of the best available

measure of BIRD ([Bi
MIR

, Bi
TIR

]MBIRD
n

). It appears that the error made on FRPdoz is ac-

ceptable, but AF-area is generally higher (sometime by more than a factor two) and Tf

is underestimated by more than 100K for half of the fires. However, the trend remains25

seemingly correct, with a correlation on AF-area and Tf retrieval of around 0.7. This

suggests that when applied to [Mo
MIR
21 ,Mo

TIR
31 ]M14

, the Dozier algorithm is able to quan-
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titatively differentiate between fires on the basis of their retrieved active fire area and

temperature.

B2 Efficiency of the ∆11 test and the low sub-pixel temperature filter

Figure 18 shows the effect of the ∆11 test of the TIR radiance signal introduced in

Sect. 3.2, when applied to the system made of the low sub-pixel temperature filter5

(introduced in Sect. 3.2) and the Dozier (1981) algorithm. Using all available fires from

the Northern American MISR data set, AF-area and fire temperature Tf are derived from

the Dozier algorithm using the MOD14 data (above M14 mask) for the initial clusters

(formed with the fire pixels present in the MOD14 product) and for the filtered clusters

(clustered formed with only pixels having a sub-pixel temperature > 600K).10

When removing cool pixels, clusters should end up with higher active fire tem-

peratures and smaller areas. Figure 18c shows that a threshold value of ∆11 =

0.5Wm
−2

str
−1

gives therefore the optimal response of the filter. For values above

∆11 = 0.5, the number of available clusters drops which decreases the statistical rep-

resentativeness of the approach.15

Figure 18a and 18b shows that applying the ∆11 test removes initial small hot clus-

ters (AF-area< 1ha and Tf& 900K) where the Dozier algorithm fails to obtain higher

temperatures and lower AF-area after application of the filter, see differences in Tf and

AF-area between initial and filtered cluster for ∆11 = 0 (green) and 0.5 (red). The ap-

plication of the TIR test leads to the conclusion that the Dozier algorithm is then more20

likely to converge when applied to large fires. Our approach suggests that for MODIS,

a minimum fire size within a cluster of around 1ha is required for strong Dozier algo-

rithm performance. This echo’s the findings of Giglio and Kendall (2001), though our

lower limit is somewhat reduced compared to their estimate.

In the scope of this study, we suggest that our implementation of the Dozier al-25

gorithm based on the MOD14 data is able to characterize fires clusters by their

effective active fire temperature and area, and that when applied to flaming domi-

nated clusters where the TIR band signal is well characterized from the background
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(∆11 = L2−Lb,2 > 0.5Wm
−2

str
−1

), cluster active fire temperature and area show a con-

sistent behaviour which supports the convergence of the algorithm. We also note that

the retrieved active fire temperature and area are not directly physically interpretable as

the true temperature and area of the fire activity, unlike the FRP which is interpretable

as the overall radiative power of the fire, but that the active fire area parameter is able5

to be used within the optimised plume rise model (PRMv2) to characterise the area

over which the fires radiant (and also convective) heat is released.

Appendix C: Near infrared colour composite image

The colors in the NIR colour composite image shown in Fig. 6 can be explained as

follows:10

– Red – this represents a pixel containing an actively burning fire. The peak wave-

length of spectral emittance of a landscape scale fire is within or close to the

shortwave infrared (SWIR) spectral region. Therefore, a consequently increased

2.1µm signal causes the fire pixel to appear red in the colour composite, even

when the fire is highly sub-pixel.15

– White – this represents a pixel containing large particles: e.g. water droplets or

ice particles. These scatter electromagnetic radiation at the wavelengths used to

create the NIR colour composite approximately equally, due to their large size and

resultant non-selective scattering. For this reason, the same pixels also appear

white in the simulated true color composite.20

– Blue/cyan for pixels in the plume, coupled with bright pixels in the simulated true

color composite image: pixel containing more ice than water droplets, because re-

flectance of ice is lower than water at 2.1µm. A comparison with the optical phase

detection algorithm of the MODIS cloud product shows a rather good match.
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– Blue – this represents pixels containing smaller scattering particles, since the

0.6µm wavelength radiation is being preferentially scattered by Rayleigh scatter-

ing.

– Black – this represents pixels where the land surface is either a lake, river or

ocean, or is a recently burned area (water and the black ash typically laid down5

by fires has a low reflectance at IR wavelengths).

– Green – this represents a pixel containing substantial live vegetation, which has

a high reflectance in the NIR spectral region.

The Supplement related to this article is available online at

doi:10.5194/acpd-15-9815-2015-supplement.10
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Table 1. Input parameters of the PRMv2 model. See Sect. 2.2 for a description of each pa-

rameters. Parameter values calculated from the Simulated Annealing (SA) algorithm (dSA) and

the 68% confidence interval estimated from the Markov chain Monte Carlo (McMC) algorithm

(dMcMC) and the set of input parameters finally selected (dopt) are reported.

Parameter used in / Eqs. range dSA dMcMC68% CI dopt

α w0 / (8) and (9) [0.001,0.1] 0.04 0.02,0.07 0.039

Cǫ ǫ / (A7) [0.01,5] 2.27 1.6, 2.8 1.98

Cδ δ / (A8) [−25,−8] −8.00 −19.1,−8.4 −9.78

Cǫ,dyn ǫ / (A7) [0.3,5] 1.99 1.1,4.2 1.88

Cδ,dyn δ / (A8) [3,40] 16.7 3.8,20.4 8.37

β CHF / (10) [0.5,20] 1.00 0.2,2.2 0.88
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Table 2. Number of high fire plumes predicted by the 4 different plume rise models when run

on all Northern American fires of 2003 detected by the Moderate-resolution Imaging Spectro-

radiometer (MODIS) and reported in the collection 5 of the active fire product. Same fires are

used in Fig. 10. Height is Above Ground Level and in kilometres.

model number of plume number of plume number of plume maximum

> 4km > 6km > 8km plume height (km)

Sofiev 51 1 0 7.09

PRMv0 12 2 2 8.55

PRMv1 18 3 2 9.15

PRMv2 278 64 14 9.65
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Figure 1. Sketch of fire plume dynamics as parametrized in the PRMv2 plume rise model

developed herein. z is the vertical dimension, and the prognostic variables of the model are the

vertical wind speed w(z), the horizontal plume velocity u(z), the quantity ζ = ρR2
with ρ(z) the

air density in the plume and R(z) the plume radius, the air temperature in the plume T (z) and

the mixing ratio of cloud, rain and ice (φc, φr and φi). Boundary conditions are the convective

heat flux (CHF) and active fire area (AF-area) (see Sect. 4 for more details on CHF and AF-

area derivation). The horizontal flow is fully parametrized (only amplitude matters) to solve

en-de/trainment effects from wind shear and plume up-draft (since the 1−D-model does not

have a horizontal dimension, the left and right sides of the figure are not properly representative

of its operation). See Appendix A for more details on the derivation of the PRMv2 equations.
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(a) (b) (c)

Figure 2. Example of the input and output of the PRMv2 model for the fire O13289-B39-P3

of the MISR plume height dataset (Nelson et al., 2013), with input parameters defined as in

Sect. 5. The raw MISR measurement of the plume top height at each pixel, the density distribu-

tion of pixel height in the plume stack (see Sect. 4.1), the derived MISR detrainment zone (see

Sect. 4.1), and the input data for PRMv2 (FRP, AF-area, and ambient atmospheric profile) are

reported in panels (a) and (b). Panel (c) shows the PRMv2 output, where Mentr and Mdetr are

the relative entrainment and detrainment profile as defined in Eqs. (11) and (12), “PBL height”

is the height of the planetary boundary layer obtained from the European Centre for Medium-

range Weather Forecasts diagnostic, R is the radius of the plume, and “PRMv2 InjH” is the InjH

simulated with PRMv2 as defined in Sect. 2.2.
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(a) (b)

(c)

Figure 3. Methodology used here to derive injection height estimate from MISR plume top

height observations, as applied to the fire O13 289-B39-P3 of the MISR-derived plume height

data set of Nelson et al. (2013). (a) shows the plume contour as defined in the MINX tool used to

derive the MISR plume heights, superimposed on the MISR nadir view image, whilst (b) shows

the raw MISR-derived plume height distribution. (c) Shows the distribution of MISR-derived

plume height along the length of the plume transect shown in (a) and (b). This distribution is

used to define the plume “stack” close to the fire, where transport is not yet dominated by the

atmosphere (shown as the red rectangle). The plume injection height is then defined from the

distribution of pixel heights seen within the “stack”.
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Figure 4. Comparison between the smoke plume injection height measured at the location of

the plume stack (hstack
) calculated using the MISR-based methodology presented in Fig. 3,

and the plume top height hplume
as defined in the MISR plume height product (Nelson et al.,

2013). The 4% of fires having a difference of more than 70% between this two metrics are

removed from our training dataset, as detailed in Sect. 4.1. The black dashed line shows the

1-to-1 relationship between hstack
and hplume

. The red lines show the 70% range of validity used

herein, whilst the dotted black line shows the best fit between hstack
and hplume

for the final set

of “valid” plume.
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Figure 5. Example of horizontal wind amplitude profile at a fire location, as extracted from

the ECMWF analysis (black dashed line) and as derived from the MISR plume height product

(triangular points). The red line shows the best fit that minimizes the residual error defined by

Eq. (17). (a) shows a correct match where the plume is selected for further analysis, whereas

(b) shows a plot where the ECMWF and MISR-derived wind fields disagree significantly and

which is removed from the training dataset.
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Figure 6. Temporal evolution of fire O18779-B36-P1 of the MISR plume height project of (Nel-

son et al., 2013), as depicted by consecutive MODIS images. Observations are shown from all

MODIS overpasses, and for each overpass FRP and AF-area are computed with the dualband

algorithm of Dozier (1981) and shown in the top row (see Sect. 4.1), an RGB true colour com-

posite image is derived from the MODIS red, green and blue wavelength bands and shown in

the top row, and a RGB IR colour composite is derived from MODIS bands centred at 2.15,

1.24 and 0.6µm respectively. See Appendix C for an explanation of the simulated NIR colour

composite image colours. Each image is 100km×100km in size, centred on the location of

the MISR detected fire plume. The location of fire pixel from the collection 5 MODIS active fire

product (Giglio et al., 2003) are also shown in the simulated true colour composite images,

using the following colour code, black= sub-pixel effective fire temperature < 600K, red and

green= sub-pixel effective fire temperature > 600K. Red pixels mark the biggest cluster which

is selected if more than one cluster are surrounding the plume (see Sect. 4.1). The details of

the MODIS observation times and view angles are included above each image.
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Figure 7. Relationship between fire and plume observables: FRP, AF-area, FRP density and

plume height defined in Sect. 4.1 for the 3 dataset introduced in Sect. 4.2 and based on the

North American MISR-derived plume height database of Nelson et al. (2013). (a) and (b) show,

respectively, the relationships between FRP
r

and hplume
for the fires of the raw cluster data set

for atmospheric profiles with and without a stable layer, as was shown previously in (Val Martin

et al., 2010). In (a–e), (i) and (j) points with red color edges correspond to plumes detected

above the boundary layer, whilst not circled points come from fire plumes trapped within the

PBL. The coefficient of determination (r2
) is shown for cases with unstable atmosphere for all

fire if the fitted line is dashed black, or only for the fire plumes above the boundary layer if

the fitted line is red. For the 3 dataset those in unstable atmosphere always show a higher

coefficient of determination than those in stable atmosphere (Val Martin et al., 2010). The right

column shows the relationship between FRP density and AF-area as shown in Peterson et al.

(2014).

9883



ACPD

15, 9815–9895, 2015

PRM development

and optimization –

Part 2

R. Paugam et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Figure 8. One-to-one relationship between fire plume InjH layer (“detrainment zone”) estimated

from MISR observations (Sect. 4.1), and the equivalent injection height layer simulated by the

PRMv2 Model (Sect. 2.2). Results using the 38 fires of the final training dataset are shown (see

Sect. 4.2) and the PRMv2 is run using optimised input parameters dSA reported in Table 1. Two

fires are seen as outliers from the 1:1 relationship, and these are deselected for further analysis

as explained in the main text (Sect. 5.1.2).
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.

Figure 9. Result from the PRMv2 parameter uncertainty test based on the Markov chain Monte

Carlo (McMC) algorithm presented in Sect. 5.1.1. The McMC run is based on the observation

of the 36 fires selected in Sect. 4.2 (with the two outliers of Fig. 14 removed). Diagonal plots

show the Probability Density Function (PDF) of each parameter listed in Table 1. The highest

posterior density confidence interval for each parameter is computed from the PDF and are

marked in grey. Parameter values established via Simulated Annealing (SA) are reported in

purple. Off diagonal plots show the 2-dimensional correlation for each parameter. Points are

coloured according to the residual error of the chain element.
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Figure 10. Relationship between modelled injection height top layer height and FRP, for fire

plumes reaching the free troposphere. Fires are those detected by the Collection 5 MODIS

Active Fire Product for 2003 over North America (Giglio et al., 2003). As in Fig. 7, fires in stable

(left column) and unstable (right column) atmospheres are considered separately. The injection

heights are shown estimated using the three versions of the plume rise model considered

here (PRMv0, v1 and v2), along with the parametrization of Sofiev et al. (2012). The best fit

relationship between plume height (h) and FRP (h = a FRP
k
) is shown in red. For each plot, fit

parameters (a,k) and the coefficient of determination (r2
) are reported, as well as the number

of fires N which varies since we show results from only plumes that are reported to have heights

above the PBL using the particular model under examination. Injection height are reported as

height above ground level (km).
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Spring

Summer

Figure 11. Seasonal maps of the distribution of landscape fire smoke plume injection height

(InjH) over North America, calculated for the year 2003 from MODIS active fire product data,

a simple model of 6h fire persistence, and the optimised PRMv2 model. Results are shown

gridded at 1.0
◦
, with a 500m vertical grid resolution. For each season, the left column shows the

horizontal distribution of the seasonally integrated InjH median (equal fire-consumed mass is

located below and above), single fire events having a modelled plume height above 5 km, whilst

the vertical distribution of the emissions from the burnt biomass integrated over all longitudes

are shown in the right column.
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Figure 12. Same as for Fig. 11.
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(a) (b)

(c) (d)

Figure 13. Geo-referenced, co-located imagery collected by (a) and (c) the BIRD satellites

185m spatial resolution Hotspot Recognition Sensor (HSRS) in the MIR and LWIR bands re-

spectively (Zhukov et al., 2006), and (b) and (d) the 1km spatial resolution data collected in the

MIR and TIR bands of the MODIS sensor operated on the Terra satellite (Giglio et al., 2003).

Data are from a Siberian forest fire observed on the 10 July 2003 (57.8873
◦
N; 97.7711

◦
E). See

Appendix B for full wavelength specifications of each sensor. Imaging times were 05:32 UTC for

BIRD, and 04:55 UTC for MODIS. The red outline shows the fire cluster contour derived from

the active fire pixels detected by the Collection 5 MODIS Active Fire and Thermal Anomaly

product of (Giglio et al., 2003). In the BIRD imagery, the MIR band only shows pixels detected

as fire, while in the TIR band pixels outside the MODIS cluster mask are shaded.
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Figure 14. Comparison between FRPmir and FRPdoz for the 5[sensor
MIR
band,sensor

TIR
band]mask se-

lection introduced in the text. The masks (Mn, MBIRD
n , and M14) are different approaches to

evaluate fire and background radiance (see Appendix B for more details). FRPmir is retrieved

following the approach of Wooster et al. (2005) and FRPdoz is directly calculated from the output

of the Dozier (1981) algorithm assuming the fire is behaving as a black body.
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Figure 15. Comparison of fire radiative power as derived from active fire effective tempera-

ture and area measures output from implementation of the Dozier (1981) fire characterisation

approach for 5 sensor and active fire mask combinations introduced in Appendix B. FRPdoz

derivation is detailed in Sect. 3.3. The dashed lines represent the 1-to-1 relationship, whilst

dotted lines show agreement within a factor of 2. The colour of the points represents the abso-

lute overpass time difference between observation of the BIRD satellites Hotspot Recognition

Sensor (HSRS) and the MODIS sensor operated on the Terra satellite.
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Figure 16. Comparison of effective active fire area (AF-area; ha) as estimated from implemen-

tation of the Dozier (1981) fire characterisation approach for 5 sensor and active fire mask com-

binations introduced in Appendix B. AF-area derivation is presented in Sect. 3.2. The dashed

lines represent the 1-to-1 relationship, whilst dotted lines show agreement within a factor of 2.

The colour of the points represents the overpass time difference between observation of the

BIRD satellites Hotspot Recognition Sensor (HSRS) and the MODIS sensor operated on the

Terra satellite.
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Figure 17. Comparison of effective active fire area temperature (Tf, K) as estimated from imple-

mentation of the Dozier (1981) fire characterisation approach. Tf is shown calculated from the

five different sensor and active fire mask combinations introduced in Appendix B. The dashed

lines represent the 1-to-1 relationship, whilst except for panel (j) dotted lines show a ±100K

interval around this. For panel (j) the dotted lines represent the linear best fit. The colour of

the points represents the overpass time difference between observation of the BIRD satellites

Hotspot Recognition Sensor (HSRS) and the MODIS sensor operated on the Terra satellite.
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(a) (b) (c)

Figure 18. Action of the TIR radiance signature test (∆11 = LTIR
fire −L

TIR
background [Wm

−2
str

−1
]) on the

Dozier Algorithm response. For two values of the TIR radiance signature test, panels (a) (∆11 =

0, green) and (b) (∆11 = 0.5, red) show a 1-to-1 comparison of (i) Active Fire area (AF-area,

top) and (ii) fire temperature Tf (bottom) derived from the North American MISR dataset for fire

clusters formed of all fire pixels detected in the Collection 5 MODIS active fire product (MOD14

Giglio et al., 2003) (initial clusters) and filtered fire clusters formed of only MOD14 fire pixels

having a sub-pixel temperature > 600K (filtered clusters). Panel (c) reports the percentage of

fire clusters showing a consistent behaviour after application of the low sub-pixel temperature

of Sect. 3.2 (i.e. filtered cluster has a higher temperature and a lower area) for values of the

TIR radiance signature test (∆11) ranging from 0 to 2. The total number of selected clusters

matching the TIR radiance signature test is also reported (dashed dotted line). The green and

red points match information from panel (a) and (b) respectively.
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