000189302 001__ 189302
000189302 005__ 20210129215336.0
000189302 037__ $$aFZJ-2015-02480
000189302 041__ $$aEnglish
000189302 1001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b0$$eCorresponding Author$$ufzj
000189302 1112_ $$aTopological and Dirac matter: from modeling to imaging$$cBordeaux$$d2014-11-12 - 2014-11-14$$gTopoDirac2014$$wFrance
000189302 245__ $$aAb initio description of quasiparicle spin interference and time-reversal scattering processes off magnetic impurties
000189302 260__ $$c2014
000189302 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1430372915_14042$$xOther
000189302 3367_ $$033$$2EndNote$$aConference Paper
000189302 3367_ $$2DataCite$$aOutput Types/Conference Poster
000189302 3367_ $$2DRIVER$$aconferenceObject
000189302 3367_ $$2ORCID$$aCONFERENCE_POSTER
000189302 3367_ $$2BibTeX$$aINPROCEEDINGS
000189302 520__ $$aIn structure inversion-asymmetric environments such as surfaces and interfaces the spin of quasiparticles can have a profound effect on their interference. Quasiparticle interference patterns measured typically by scanning tunneling microscopy are not related in a trivial way to the dispersion of the electronic states. In fact, for Bi(110) [1] we could show that the observed interference patterns can be interpreted only by taking spin-conserving scattering events into account. In this contribution we go one step further and include explicitly in the analysis the scattering of single non-magnetic and magnetic impurities with and without spin-orbit interaction.  We present density-functional calculations of the quasiparticle interference at surfaces due to scattering off magnetic adatoms. We consider two substrates Au(111) and a thin film of Bi2Te3, a three-dimensional topological insulator (3D-TI). Our focus is on 3d impurities on Au(111) where the spin-orbit coupling (SOC) causes a Rashba-type splitting of the surface. The spin polarization of the quasiparticle waves shows a non-collinear behavior because of SOC.  We compare to previous model-based results [2] and discuss the relation to the scattering properties of the impurity. As a matter of principle, magnetic impurities at surfaces break the topological protection in 3D-TI and we study this loss of protection by taking into account time-reversed transitions caused by the magnetic moment. In our calculations we employ the KKR-Green function method for the electronic structure and scattering properties at defects [3, 4]. We acknowledge financial support from the DFG (SPP-1666) and from the VITI project  (DBB01126) of the Helmholtz Association and computational support from the JARA-HPC Supercomputing Centre at the RWTH Aachen University.  [1] J.I. Pascual, G. Bihlmayer, Yu. M. Koroteev, H.-P. Rust, G. Ceballos, M. Hansmann, K. Horn, E. V. Chulkov, S. Blügel, P. M. Echenique, and Ph. Hofmann Phys. Rev. Lett. 93, 196802 (2004)[2] S. Lounis, A. Bringer, and S. Blügel, Phys. Rev. Lett. 108, 207202  (2012).[3] S. Heers, PhD Thesis, RWTH Aachen (2011); D.S.G. Bauer, PhD Thesis, RWTH Aachen (2013), B. Zimmerman, PhD Thesis, RWTH Aachen (2014)[4] N. H. Long, P. Mavropoulos, B. Zimmermann, D. S. G. Bauer, S. Blügel, and Y. Mokrousov, Phys. Rev. B 90, 064406 (2014)
000189302 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000189302 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000189302 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000189302 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Phivos$$b1$$ufzj
000189302 7001_ $$0P:(DE-Juel1)143632$$aLong, Nguyen Hoang$$b2$$ufzj
000189302 7001_ $$0P:(DE-Juel1)130526$$aBauer, David$$b3$$ufzj
000189302 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
000189302 773__ $$y2014
000189302 909CO $$ooai:juser.fz-juelich.de:189302$$pVDB
000189302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130823$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000189302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143632$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000189302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130526$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000189302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000189302 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000189302 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000189302 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000189302 9141_ $$y2014
000189302 920__ $$lyes
000189302 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000189302 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000189302 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000189302 980__ $$aposter
000189302 980__ $$aVDB
000189302 980__ $$aI:(DE-Juel1)PGI-1-20110106
000189302 980__ $$aI:(DE-Juel1)IAS-1-20090406
000189302 980__ $$aI:(DE-82)080009_20140620
000189302 980__ $$aUNRESTRICTED
000189302 981__ $$aI:(DE-Juel1)IAS-1-20090406