001     189302
005     20210129215336.0
037 _ _ |a FZJ-2015-02480
041 _ _ |a English
100 1 _ |a Rüssmann, Philipp
|0 P:(DE-Juel1)157882
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a Topological and Dirac matter: from modeling to imaging
|g TopoDirac2014
|c Bordeaux
|d 2014-11-12 - 2014-11-14
|w France
245 _ _ |a Ab initio description of quasiparicle spin interference and time-reversal scattering processes off magnetic impurties
260 _ _ |c 2014
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1430372915_14042
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a In structure inversion-asymmetric environments such as surfaces and interfaces the spin of quasiparticles can have a profound effect on their interference. Quasiparticle interference patterns measured typically by scanning tunneling microscopy are not related in a trivial way to the dispersion of the electronic states. In fact, for Bi(110) [1] we could show that the observed interference patterns can be interpreted only by taking spin-conserving scattering events into account. In this contribution we go one step further and include explicitly in the analysis the scattering of single non-magnetic and magnetic impurities with and without spin-orbit interaction. We present density-functional calculations of the quasiparticle interference at surfaces due to scattering off magnetic adatoms. We consider two substrates Au(111) and a thin film of Bi2Te3, a three-dimensional topological insulator (3D-TI). Our focus is on 3d impurities on Au(111) where the spin-orbit coupling (SOC) causes a Rashba-type splitting of the surface. The spin polarization of the quasiparticle waves shows a non-collinear behavior because of SOC. We compare to previous model-based results [2] and discuss the relation to the scattering properties of the impurity. As a matter of principle, magnetic impurities at surfaces break the topological protection in 3D-TI and we study this loss of protection by taking into account time-reversed transitions caused by the magnetic moment. In our calculations we employ the KKR-Green function method for the electronic structure and scattering properties at defects [3, 4]. We acknowledge financial support from the DFG (SPP-1666) and from the VITI project (DBB01126) of the Helmholtz Association and computational support from the JARA-HPC Supercomputing Centre at the RWTH Aachen University. [1] J.I. Pascual, G. Bihlmayer, Yu. M. Koroteev, H.-P. Rust, G. Ceballos, M. Hansmann, K. Horn, E. V. Chulkov, S. Blügel, P. M. Echenique, and Ph. Hofmann Phys. Rev. Lett. 93, 196802 (2004)[2] S. Lounis, A. Bringer, and S. Blügel, Phys. Rev. Lett. 108, 207202 (2012).[3] S. Heers, PhD Thesis, RWTH Aachen (2011); D.S.G. Bauer, PhD Thesis, RWTH Aachen (2013), B. Zimmerman, PhD Thesis, RWTH Aachen (2014)[4] N. H. Long, P. Mavropoulos, B. Zimmermann, D. S. G. Bauer, S. Blügel, and Y. Mokrousov, Phys. Rev. B 90, 064406 (2014)
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 1
700 1 _ |a Mavropoulos, Phivos
|0 P:(DE-Juel1)130823
|b 1
|u fzj
700 1 _ |a Long, Nguyen Hoang
|0 P:(DE-Juel1)143632
|b 2
|u fzj
700 1 _ |a Bauer, David
|0 P:(DE-Juel1)130526
|b 3
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 4
|u fzj
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:189302
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157882
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130823
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)143632
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130526
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21