Home > Publications database > Ab initio description of quasiparicle spin interference and time-reversal scattering processes off magnetic impurties > print |
001 | 189302 | ||
005 | 20210129215336.0 | ||
037 | _ | _ | |a FZJ-2015-02480 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Rüssmann, Philipp |0 P:(DE-Juel1)157882 |b 0 |e Corresponding Author |u fzj |
111 | 2 | _ | |a Topological and Dirac matter: from modeling to imaging |g TopoDirac2014 |c Bordeaux |d 2014-11-12 - 2014-11-14 |w France |
245 | _ | _ | |a Ab initio description of quasiparicle spin interference and time-reversal scattering processes off magnetic impurties |
260 | _ | _ | |c 2014 |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1430372915_14042 |2 PUB:(DE-HGF) |x Other |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
520 | _ | _ | |a In structure inversion-asymmetric environments such as surfaces and interfaces the spin of quasiparticles can have a profound effect on their interference. Quasiparticle interference patterns measured typically by scanning tunneling microscopy are not related in a trivial way to the dispersion of the electronic states. In fact, for Bi(110) [1] we could show that the observed interference patterns can be interpreted only by taking spin-conserving scattering events into account. In this contribution we go one step further and include explicitly in the analysis the scattering of single non-magnetic and magnetic impurities with and without spin-orbit interaction. We present density-functional calculations of the quasiparticle interference at surfaces due to scattering off magnetic adatoms. We consider two substrates Au(111) and a thin film of Bi2Te3, a three-dimensional topological insulator (3D-TI). Our focus is on 3d impurities on Au(111) where the spin-orbit coupling (SOC) causes a Rashba-type splitting of the surface. The spin polarization of the quasiparticle waves shows a non-collinear behavior because of SOC. We compare to previous model-based results [2] and discuss the relation to the scattering properties of the impurity. As a matter of principle, magnetic impurities at surfaces break the topological protection in 3D-TI and we study this loss of protection by taking into account time-reversed transitions caused by the magnetic moment. In our calculations we employ the KKR-Green function method for the electronic structure and scattering properties at defects [3, 4]. We acknowledge financial support from the DFG (SPP-1666) and from the VITI project (DBB01126) of the Helmholtz Association and computational support from the JARA-HPC Supercomputing Centre at the RWTH Aachen University. [1] J.I. Pascual, G. Bihlmayer, Yu. M. Koroteev, H.-P. Rust, G. Ceballos, M. Hansmann, K. Horn, E. V. Chulkov, S. Blügel, P. M. Echenique, and Ph. Hofmann Phys. Rev. Lett. 93, 196802 (2004)[2] S. Lounis, A. Bringer, and S. Blügel, Phys. Rev. Lett. 108, 207202 (2012).[3] S. Heers, PhD Thesis, RWTH Aachen (2011); D.S.G. Bauer, PhD Thesis, RWTH Aachen (2013), B. Zimmerman, PhD Thesis, RWTH Aachen (2014)[4] N. H. Long, P. Mavropoulos, B. Zimmermann, D. S. G. Bauer, S. Blügel, and Y. Mokrousov, Phys. Rev. B 90, 064406 (2014) |
536 | _ | _ | |a 422 - Spin-based and quantum information (POF2-422) |0 G:(DE-HGF)POF2-422 |c POF2-422 |f POF II |x 0 |
650 | 2 | 7 | |a Materials Science |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |x 0 |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 1 |
700 | 1 | _ | |a Mavropoulos, Phivos |0 P:(DE-Juel1)130823 |b 1 |u fzj |
700 | 1 | _ | |a Long, Nguyen Hoang |0 P:(DE-Juel1)143632 |b 2 |u fzj |
700 | 1 | _ | |a Bauer, David |0 P:(DE-Juel1)130526 |b 3 |u fzj |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 4 |u fzj |
773 | _ | _ | |y 2014 |
909 | C | O | |o oai:juser.fz-juelich.de:189302 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157882 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130823 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)143632 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130526 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130548 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |2 G:(DE-HGF)POF3-100 |v Controlling Spin-Based Phenomena |x 0 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 1 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-422 |2 G:(DE-HGF)POF2-400 |v Spin-based and quantum information |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2014 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|