000189316 001__ 189316
000189316 005__ 20250129094248.0
000189316 0247_ $$2doi$$a10.1016/j.jssc.2015.03.018
000189316 0247_ $$2ISSN$$a0022-4596
000189316 0247_ $$2ISSN$$a1095-726X
000189316 0247_ $$2WOS$$aWOS:000355639500008
000189316 0247_ $$2altmetric$$aaltmetric:5720619
000189316 037__ $$aFZJ-2015-02494
000189316 082__ $$a540
000189316 1001_ $$0P:(DE-HGF)0$$aSamain, Louise$$b0
000189316 245__ $$aCrystal structure and high-temperature properties of the Ruddlesden–Popper phases Sr$_{3−x}$Y$_{x}$(Fe $_{1.25}$ Ni$_{0.75}$)O$_{7−δ}$ (0≤x≤0.75)
000189316 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015
000189316 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428925950_10880
000189316 3367_ $$2DataCite$$aOutput Types/Journal article
000189316 3367_ $$00$$2EndNote$$aJournal Article
000189316 3367_ $$2BibTeX$$aARTICLE
000189316 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189316 3367_ $$2DRIVER$$aarticle
000189316 520__ $$aRuddlesden–Popper n=2 member phases Sr3−xYxFe1.25Ni0.75O7−δ, 0≤x≤0.75, have been investigated by X-ray and neutron powder diffraction, thermogravimetry and Mössbauer spectroscopy. Both samples as-prepared at 1300 °C under N2(g) flow and samples subsequently air-annealed at 900 °C were studied. The as-prepared x=0.75 phase is highly oxygen deficient with δ=1, the O1 atom site being vacant, and the Fe3+/Ni2+ ions having a square pyramidal coordination. For as-prepared phases with lower x values, the Mössbauer spectral data are in good agreement with the presence of both 5- and 4-coordinated Fe3+ ions, implying in addition a partial occupancy of the O3 atom sites that form the basal plane of the square pyramid. The air-annealed x=0.75 sample has a δ value of 0.61(1) and the structure has Fe/Ni ions in both square pyramids and octahedra. Mössbauer spectroscopy shows the phase to contain only Fe3+, implying that all Ni is present as Ni3+. Air-annealed phases with lower x values are found to contain both Fe3+ and Fe4+. For both the as-prepared and the air-annealed samples, the Y3+ cations are found to be mainly located in the perovskite block. The high-temperature thermal expansion of as-prepared and air-annealed x=0.75 phases were investigated by high-temperature X-ray diffraction and dilatometry and the linear thermal expansion coefficient determined to be 14.4 ppm K−1. Electrical conductivity measurements showed that the air-annealed samples have higher conductivity than the as-prepared ones.
000189316 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000189316 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000189316 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x2
000189316 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000189316 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189316 7001_ $$0P:(DE-HGF)0$$aAmshoff, Philipp$$b1
000189316 7001_ $$0P:(DE-HGF)0$$aBiendicho, Jordi J.$$b2
000189316 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b3
000189316 7001_ $$0P:(DE-Juel1)159434$$aMahmoud, Abdelfattah$$b4
000189316 7001_ $$0P:(DE-HGF)0$$aIstomin, Sergey Ya.$$b5
000189316 7001_ $$0P:(DE-HGF)0$$aGrins, Jekabs$$b6
000189316 7001_ $$0P:(DE-HGF)0$$aSvensson, Gunnar$$b7$$eCorresponding Author
000189316 7001_ $$0P:(DE-Juel1)130706$$aHermann, Raphael$$b8
000189316 773__ $$0PERI:(DE-600)1469806-7$$a10.1016/j.jssc.2015.03.018$$gVol. 227, p. 45 - 54$$p45 - 54$$tJournal of solid state chemistry$$v227$$x0022-4596$$y2015
000189316 8564_ $$uhttps://juser.fz-juelich.de/record/189316/files/1-s2.0-S002245961500105X-main.pdf$$yRestricted
000189316 8564_ $$uhttps://juser.fz-juelich.de/record/189316/files/1-s2.0-S002245961500105X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189316 909CO $$ooai:juser.fz-juelich.de:189316$$pVDB
000189316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000189316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159434$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000189316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130706$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000189316 9130_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vSpin-based and quantum information$$x0
000189316 9130_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vExploratory materials and phenomena$$x1
000189316 9130_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vNeutrons$$x2
000189316 9130_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vIn-house Research with PNI$$x3
000189316 9130_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vJCNS$$x4
000189316 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000189316 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000189316 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000189316 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000189316 9141_ $$y2015
000189316 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189316 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189316 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189316 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189316 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189316 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189316 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189316 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189316 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000189316 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000189316 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000189316 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000189316 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x3
000189316 980__ $$ajournal
000189316 980__ $$aVDB
000189316 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000189316 980__ $$aI:(DE-Juel1)PGI-4-20110106
000189316 980__ $$aI:(DE-82)080009_20140620
000189316 980__ $$aI:(DE-Juel1)IEK-1-20101013
000189316 980__ $$aUNRESTRICTED
000189316 981__ $$aI:(DE-Juel1)IMD-2-20101013
000189316 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000189316 981__ $$aI:(DE-Juel1)PGI-4-20110106
000189316 981__ $$aI:(DE-Juel1)IEK-1-20101013