000189318 001__ 189318
000189318 005__ 20240712100848.0
000189318 0247_ $$2doi$$a10.5194/acpd-15-4383-2015
000189318 0247_ $$2ISSN$$a1680-7367
000189318 0247_ $$2ISSN$$a1680-7375
000189318 037__ $$aFZJ-2015-02496
000189318 082__ $$a550
000189318 1001_ $$aTao, M.$$b0
000189318 245__ $$aImpact of the 2009 major stratospheric sudden warming on the composition of the stratosphere
000189318 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000189318 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428923595_10878
000189318 3367_ $$2DataCite$$aOutput Types/Journal article
000189318 3367_ $$00$$2EndNote$$aJournal Article
000189318 3367_ $$2BibTeX$$aARTICLE
000189318 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189318 3367_ $$2DRIVER$$aarticle
000189318 500__ $$aCopernicus CCBY
000189318 520__ $$aIn a case study of a remarkable Major stratospheric sudden Warming (MW) during the boreal winter 2008/09, we investigate how transport and mixing triggered by this event affect the composition of the whole stratosphere in the Northern Hemisphere. We simulate this event with the Chemical Lagrangian Model of the Stratosphere (CLaMS), with optimized mixing parameters and with no mixing, i.e. with transport occurring only along the Lagrangian trajectories. The results are investigated by using the tracer–tracer correlation technique and by applying the Transformed Eulerian Mean formalism. The CLaMS simulation of N2O and O3 with optimized mixing parameters shows good agreement with the Aura Microwave Limb Sounder (MLS) data. The spatial distribution of mixing intensity in CLaMS correlates fairly well with the Eliassen–Palm flux convergence and illustrates how planetary waves drive mixing. By comparing the simulations with and without mixing, we find that after the MW poleward transport of air increases not only across the vortex edge but also across the subtropical transport barrier. Moreover, the MW event also accelerates polar descent and tropical ascent of the Brewer–Dobson circulation. The accelerated ascent in the tropics and descent at high latitudes firstly occurs in the upper stratosphere and then propagates downward to the lower stratosphere. This downward propagation takes over one month from the potential temperature level of 1000 to 400 K.
000189318 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189318 7001_ $$aKonopka, P.$$b1
000189318 7001_ $$aPloeger, F.$$b2
000189318 7001_ $$00000-0002-9485-866X$$aGrooß, J.-U.$$b3
000189318 7001_ $$00000-0002-5024-9977$$aMüller, R.$$b4
000189318 7001_ $$aVolk, C. M.$$b5
000189318 7001_ $$aWalker, K. A.$$b6
000189318 7001_ $$aRiese, M.$$b7
000189318 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-15-4383-2015$$gVol. 15, no. 4, p. 4383 - 4426$$n4$$p4383 - 4426$$tAtmospheric chemistry and physics / Discussions$$v15$$x1680-7375$$y2015
000189318 8564_ $$uhttps://juser.fz-juelich.de/record/189318/files/acpd-15-4383-2015.pdf$$yOpenAccess
000189318 8564_ $$uhttps://juser.fz-juelich.de/record/189318/files/acpd-15-4383-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189318 8767_ $$92015-04-10$$d2015-04-13$$eAPC$$jZahlung erfolgt$$pacp-2014-984
000189318 909CO $$ooai:juser.fz-juelich.de:189318$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000189318 9141_ $$y2015
000189318 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000189318 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000189318 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189318 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000189318 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000189318 9801_ $$aFullTexts
000189318 980__ $$ajournal
000189318 980__ $$aVDB
000189318 980__ $$aI:(DE-Juel1)IEK-7-20101013
000189318 980__ $$aUNRESTRICTED
000189318 980__ $$aFullTexts
000189318 980__ $$aAPC
000189318 981__ $$aI:(DE-Juel1)ICE-4-20101013