000189348 001__ 189348
000189348 005__ 20210129215343.0
000189348 020__ $$a044489703
000189348 037__ $$aFZJ-2015-02526
000189348 1001_ $$0P:(DE-Juel1)132118$$aGrotendorst, Johannes$$b0$$eCorresponding Author$$ufzj
000189348 1112_ $$a13th IMACS World Congress on Computation and Applied Mathematics$$cDublin$$d1991-07-22 - 1991-07-26$$wIreland
000189348 245__ $$aAlgorithms of mixed symbolic-numeric type for rational approximation
000189348 260__ $$aAmsterdam$$bElsevier Science Publishers$$c1992
000189348 29510 $$aArtificial Intelligence, Expert Systems and Symbolic Computing
000189348 300__ $$a145-154
000189348 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib
000189348 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1428930307_30907
000189348 3367_ $$2DRIVER$$abookPart
000189348 3367_ $$2ORCID$$aBOOK_CHAPTER
000189348 3367_ $$07$$2EndNote$$aBook Section
000189348 3367_ $$2BibTeX$$aINBOOK
000189348 3367_ $$2DataCite$$aOutput Types/Book chapter
000189348 520__ $$aThis paper describes the implementation of recursive algorithms for approximation and summation processes using the Maple programming language for symbolic computation. The programs are collected in the Maple package trans which contains most of the currently known algorithms (transformations) for the construction of rational approximations. The advantages of employing mixed symbolic-numeric computation techniques are indicated and demonstrated by some numerical examples.
000189348 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000189348 773__ $$y1992
000189348 909CO $$ooai:juser.fz-juelich.de:189348$$pVDB
000189348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132118$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189348 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000189348 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000189348 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000189348 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000189348 980__ $$acontb
000189348 980__ $$aVDB
000189348 980__ $$acontrib
000189348 980__ $$aI:(DE-Juel1)VDB62
000189348 980__ $$aI:(DE-Juel1)JSC-20090406
000189348 980__ $$aUNRESTRICTED
000189348 981__ $$aI:(DE-Juel1)JSC-20090406