Hauptseite > Publikationsdatenbank > In situ transmission electron microscopy of ionic conductivity and reaction mechanism in ultrathin solid oxide fuel cells > print |
001 | 189387 | ||
005 | 20240610121205.0 | ||
024 | 7 | _ | |a 10.1017/S143192761401349X |2 doi |
024 | 7 | _ | |a 1431-9276 |2 ISSN |
024 | 7 | _ | |a 1435-8115 |2 ISSN |
024 | 7 | _ | |a WOS:000347233400020 |2 WOS |
037 | _ | _ | |a FZJ-2015-02562 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Tavabi, Amir Hossein |0 P:(DE-Juel1)157886 |b 0 |e Corresponding Author |u fzj |
245 | _ | _ | |a In situ transmission electron microscopy of ionic conductivity and reaction mechanism in ultrathin solid oxide fuel cells |
260 | _ | _ | |a New York, NY |c 2014 |b Cambridge University Press |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1429003141_26849 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Solid oxide fuel cells (SOFCs) are promising candidates for use in alternative energy technologies. A full understanding of the reaction mechanisms in these dynamic material systems is required to optimize device performance and overcome present limitations. Here, we show that in situ transmission electron microscopy (TEM) can be used to study redox reactions and ionic conductivity in SOFCs in a gas environment at elevated temperature. We examine model ultrathin half and complete cells in two environmental TEMs using off-axis electron holography and electron energy-loss spectroscopy. Our results from the model cells provide insight into the essential phenomena that are important for the operation of commercial devices. Changes in the activities of dopant cations in the solid electrolyte are detected during oxygen anion conduction, demonstrating the key role of dopants in electrolyte architecture in SOFCs. |
536 | _ | _ | |a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41) |0 G:(DE-HGF)POF2-42G41 |c POF2-42G41 |f POF II |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Arai, S. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Muto, S. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Tanji, T. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal |0 P:(DE-Juel1)144121 |b 4 |
773 | _ | _ | |a 10.1017/S143192761401349X |g Vol. 20, no. 06, p. 1817 - 1825 |0 PERI:(DE-600)1481716-0 |n 6 |p 1817 - 1825 |t Microscopy and microanalysis |v 20 |y 2014 |x 1435-8115 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189387/files/S143192761401349Xa.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189387/files/S143192761401349Xa.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:189387 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157886 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144121 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-42G41 |2 G:(DE-HGF)POF2-400 |v Peter Grünberg-Centre (PG-C) |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|