000189433 001__ 189433
000189433 005__ 20240610121206.0
000189433 0247_ $$2doi$$a10.1063/1.4887488
000189433 0247_ $$2ISSN$$a0021-8979
000189433 0247_ $$2ISSN$$a0148-6349
000189433 0247_ $$2ISSN$$a1089-7550
000189433 0247_ $$2WOS$$aWOS:000340267600042
000189433 0247_ $$2Handle$$a2128/16820
000189433 037__ $$aFZJ-2015-02600
000189433 082__ $$a530
000189433 1001_ $$0P:(DE-HGF)0$$aAkhtari-Zavareh, Azadeh$$b0
000189433 245__ $$aOff-axis electron holography of ferromagnetic multilayer nanowires
000189433 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2014
000189433 3367_ $$2DRIVER$$aarticle
000189433 3367_ $$2DataCite$$aOutput Types/Journal article
000189433 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1429077176_26846
000189433 3367_ $$2BibTeX$$aARTICLE
000189433 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189433 3367_ $$00$$2EndNote$$aJournal Article
000189433 520__ $$aWe have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by pulsed-potential electrodeposition in nanoporous alumina membranes. The NW composition and layer thicknesses were measured using scanning transmission electron microscopy and energy dispersive spectroscopy. The magnetization of individual NWs depended upon the thicknesses of the layers and the direction of an external magnetic field, which had been applied in situ. When the CoFeB was thicker than the diameter (50 nm), magnetization was axial for all external field directions, while thinner layers could be randomized via a perpendicular field. In some cases, magnetization inside the wire was detected at an angle with respect to the axis of the wires. In thinner Cu/CoFeB (<10 nm each) multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different from those predicted from calibration growths based on uniform composition NWs. In particular, a significant fraction of Cu (up to 50 at. %) was present in the CoFeB layers such that the measured magnetic induction was lower than expected. These results will be used to better understand previously measured effective anisotropy fields of similar NW arrays.
000189433 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000189433 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189433 7001_ $$0P:(DE-HGF)0$$aCarignan, L. P.$$b1
000189433 7001_ $$0P:(DE-HGF)0$$aYelon, A.$$b2
000189433 7001_ $$0P:(DE-HGF)0$$aMénard, D.$$b3
000189433 7001_ $$0P:(DE-HGF)0$$aKasama, T.$$b4
000189433 7001_ $$0P:(DE-HGF)0$$aHerring, R.$$b5
000189433 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b6$$ufzj
000189433 7001_ $$0P:(DE-HGF)0$$aMcCartney, M. R.$$b7
000189433 7001_ $$0P:(DE-HGF)0$$aKavanagh, K. L.$$b8
000189433 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.4887488$$gVol. 116, no. 2, p. 023902 -$$n2$$p023902 $$tJournal of applied physics$$v116$$x1089-7550$$y2014
000189433 8564_ $$uhttps://juser.fz-juelich.de/record/189433/files/1.4887488.pdf$$yOpenAccess
000189433 8564_ $$uhttps://juser.fz-juelich.de/record/189433/files/1.4887488.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189433 909CO $$ooai:juser.fz-juelich.de:189433$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000189433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000189433 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000189433 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000189433 9141_ $$y2014
000189433 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189433 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189433 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189433 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189433 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189433 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000189433 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000189433 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189433 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189433 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189433 920__ $$lyes
000189433 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000189433 9801_ $$aFullTexts
000189433 980__ $$ajournal
000189433 980__ $$aVDB
000189433 980__ $$aUNRESTRICTED
000189433 980__ $$aI:(DE-Juel1)PGI-5-20110106
000189433 981__ $$aI:(DE-Juel1)ER-C-1-20170209