001     189433
005     20240610121206.0
024 7 _ |a 10.1063/1.4887488
|2 doi
024 7 _ |a 0021-8979
|2 ISSN
024 7 _ |a 0148-6349
|2 ISSN
024 7 _ |a 1089-7550
|2 ISSN
024 7 _ |a WOS:000340267600042
|2 WOS
024 7 _ |a 2128/16820
|2 Handle
037 _ _ |a FZJ-2015-02600
082 _ _ |a 530
100 1 _ |a Akhtari-Zavareh, Azadeh
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Off-axis electron holography of ferromagnetic multilayer nanowires
260 _ _ |a Melville, NY
|c 2014
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1429077176_26846
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by pulsed-potential electrodeposition in nanoporous alumina membranes. The NW composition and layer thicknesses were measured using scanning transmission electron microscopy and energy dispersive spectroscopy. The magnetization of individual NWs depended upon the thicknesses of the layers and the direction of an external magnetic field, which had been applied in situ. When the CoFeB was thicker than the diameter (50 nm), magnetization was axial for all external field directions, while thinner layers could be randomized via a perpendicular field. In some cases, magnetization inside the wire was detected at an angle with respect to the axis of the wires. In thinner Cu/CoFeB (<10 nm each) multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different from those predicted from calibration growths based on uniform composition NWs. In particular, a significant fraction of Cu (up to 50 at. %) was present in the CoFeB layers such that the measured magnetic induction was lower than expected. These results will be used to better understand previously measured effective anisotropy fields of similar NW arrays.
536 _ _ |a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)
|0 G:(DE-HGF)POF2-42G41
|c POF2-42G41
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Carignan, L. P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yelon, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ménard, D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kasama, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Herring, R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 6
|u fzj
700 1 _ |a McCartney, M. R.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kavanagh, K. L.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1063/1.4887488
|g Vol. 116, no. 2, p. 023902 -
|0 PERI:(DE-600)1476463-5
|n 2
|p 023902
|t Journal of applied physics
|v 116
|y 2014
|x 1089-7550
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/189433/files/1.4887488.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/189433/files/1.4887488.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:189433
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144121
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-42G41
|2 G:(DE-HGF)POF2-400
|v Peter Grünberg-Centre (PG-C)
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21