000189465 001__ 189465
000189465 005__ 20210129215358.0
000189465 037__ $$aFZJ-2015-02628
000189465 0881_ $$aKFA-ZAM-IB-9301
000189465 088__ $$2JUEL$$aKFA-ZAM-IB-9301
000189465 1001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b0$$eCorresponding Author$$ufzj
000189465 245__ $$aNumerical Modelling of Field Scale Transport in Heterogeneous Variably Saturated Porous Media
000189465 260__ $$aJülich$$bZentralinstitut für Angewandte Mathematik$$c1993
000189465 300__ $$a29 p.
000189465 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$breport$$mreport$$s1429076339_26839
000189465 3367_ $$2DataCite$$aOutput Types/Report
000189465 3367_ $$2BibTeX$$aTECHREPORT
000189465 3367_ $$2ORCID$$aREPORT
000189465 3367_ $$010$$2EndNote$$aReport
000189465 3367_ $$2DRIVER$$areport
000189465 520__ $$aMany of the current environmental problems are caused by the transport of potentially hazardous agricultural and industrial chemicals in soil and aquifers. Most of these chemicals are introduced at the soil-air interface from where they are either directly transported to the underlying aquifer and drainage system or interact with the soil-aquifer matrix and biomass.A common approach to analyse transport and chemical processes in heterogeneous 3D porous media has been to model water and reactive solute transport using a combination of stochastic partial differential equations (transport) and nonlinear algebraic equations (reactions). Accounting for the heterogeneity of the porous medium, results in grid sizes of more than 10E+6 nodal points. In combination with the strong nonlinearity of the partial differential equations such problems can only be handled on vector or parallel computer systems using appropriate numerical solution techniques for the linearized set of equations. In our case, these equations are obtained by applying Galerkin's finite element method to the water and solute transport equation. In this paper, we will address numerical solution techniques appropriate for the linearized set of equations and their efficient implementation on the CRAY X-MP/416, the CRAY Y-MP8/832 and the INTEL iPSC/860. The need for modelling an integrated soil-aquifer-plant-atmosphere system will be illustrated by an ongoing KFA-project.
000189465 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000189465 7001_ $$0P:(DE-HGF)0$$aLindenmayr, G.$$b1
000189465 7001_ $$0P:(DE-Juel1)23142$$aKuhr, A.$$b2$$ufzj
000189465 7001_ $$0P:(DE-HGF)0$$aWelte, D. H.$$b3
000189465 7001_ $$0P:(DE-HGF)0$$aBasermann, A.$$b4
000189465 773__ $$y1993
000189465 8564_ $$uhttps://juser.fz-juelich.de/record/189465/files/ib-9301.pdf$$yRestricted
000189465 8564_ $$uhttps://juser.fz-juelich.de/record/189465/files/ib-9301.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189465 909CO $$ooai:juser.fz-juelich.de:189465$$pVDB
000189465 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189465 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)23142$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000189465 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000189465 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000189465 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000189465 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000189465 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x2
000189465 980__ $$areport
000189465 980__ $$aVDB
000189465 980__ $$aI:(DE-Juel1)VDB62
000189465 980__ $$aI:(DE-Juel1)JSC-20090406
000189465 980__ $$aI:(DE-Juel1)IBG-3-20101118
000189465 980__ $$aUNRESTRICTED
000189465 981__ $$aI:(DE-Juel1)JSC-20090406
000189465 981__ $$aI:(DE-Juel1)IBG-3-20101118