001     189465
005     20210129215358.0
037 _ _ |a FZJ-2015-02628
088 1 _ |a KFA-ZAM-IB-9301
088 _ _ |a KFA-ZAM-IB-9301
|2 JUEL
100 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Numerical Modelling of Field Scale Transport in Heterogeneous Variably Saturated Porous Media
260 _ _ |a Jülich
|c 1993
|b Zentralinstitut für Angewandte Mathematik
300 _ _ |a 29 p.
336 7 _ |a Report
|b report
|m report
|0 PUB:(DE-HGF)29
|s 1429076339_26839
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Report
|2 DataCite
336 7 _ |a TECHREPORT
|2 BibTeX
336 7 _ |a REPORT
|2 ORCID
336 7 _ |a Report
|0 10
|2 EndNote
336 7 _ |a report
|2 DRIVER
520 _ _ |a Many of the current environmental problems are caused by the transport of potentially hazardous agricultural and industrial chemicals in soil and aquifers. Most of these chemicals are introduced at the soil-air interface from where they are either directly transported to the underlying aquifer and drainage system or interact with the soil-aquifer matrix and biomass.A common approach to analyse transport and chemical processes in heterogeneous 3D porous media has been to model water and reactive solute transport using a combination of stochastic partial differential equations (transport) and nonlinear algebraic equations (reactions). Accounting for the heterogeneity of the porous medium, results in grid sizes of more than 10E+6 nodal points. In combination with the strong nonlinearity of the partial differential equations such problems can only be handled on vector or parallel computer systems using appropriate numerical solution techniques for the linearized set of equations. In our case, these equations are obtained by applying Galerkin's finite element method to the water and solute transport equation. In this paper, we will address numerical solution techniques appropriate for the linearized set of equations and their efficient implementation on the CRAY X-MP/416, the CRAY Y-MP8/832 and the INTEL iPSC/860. The need for modelling an integrated soil-aquifer-plant-atmosphere system will be illustrated by an ongoing KFA-project.
536 _ _ |a 899 - ohne Topic (POF2-899)
|0 G:(DE-HGF)POF2-899
|c POF2-899
|x 0
|f POF I
700 1 _ |a Lindenmayr, G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kuhr, A.
|0 P:(DE-Juel1)23142
|b 2
|u fzj
700 1 _ |a Welte, D. H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Basermann, A.
|0 P:(DE-HGF)0
|b 4
773 _ _ |y 1993
856 4 _ |u https://juser.fz-juelich.de/record/189465/files/ib-9301.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189465/files/ib-9301.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:189465
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)23142
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF2-890
|0 G:(DE-HGF)POF2-899
|2 G:(DE-HGF)POF2-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
920 1 _ |0 I:(DE-Juel1)VDB62
|k ZAM
|l Zentralinstitut für Angewandte Mathematik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 2
980 _ _ |a report
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)VDB62
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21