000189501 001__ 189501
000189501 005__ 20220930130041.0
000189501 0247_ $$2doi$$a10.1063/1.4903468
000189501 0247_ $$2ISSN$$a0003-6951
000189501 0247_ $$2ISSN$$a1077-3118
000189501 0247_ $$2WOS$$aWOS:000346266000044
000189501 0247_ $$2Handle$$a2128/17329
000189501 037__ $$aFZJ-2015-02658
000189501 082__ $$a530
000189501 1001_ $$0P:(DE-Juel1)128613$$aMikulics, M.$$b0$$eCorresponding Author
000189501 245__ $$aReduction of skin effect losses in double-level-T-gate structure
000189501 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2014
000189501 3367_ $$2DRIVER$$aarticle
000189501 3367_ $$2DataCite$$aOutput Types/Journal article
000189501 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1429536205_28976
000189501 3367_ $$2BibTeX$$aARTICLE
000189501 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189501 3367_ $$00$$2EndNote$$aJournal Article
000189501 520__ $$aWe developed a T-gate technology based on selective wet etching yielding 200 nm wide T-gate structures used for fabrication of High Electron Mobility Transistors (HEMT). Major advantages of our process are the use of only  standard photolithographic process and the ability to generate T-gate stacks. A HEMT fabricated on AlGaN/GaN/sapphire with gate length Lg¼200 nm and double-stacked T-gates exhibits 60 GHz cutoff frequency showing ten-fold improvement compared to 6 GHz for the same device with 2 lm gate length. HEMTs with a double-level-T-gate (DLTG) structure exhibit up to 35% improvement of fmax value compared to a single T-gate device. This indicates a significant reduction of skin effect losses in DLTG structure compared to its standard T-gate counterpart. These results agree with the theoretical predictions.
000189501 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000189501 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189501 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b1$$ufzj
000189501 7001_ $$0P:(DE-Juel1)151156$$aArango, Yulieth$$b2
000189501 7001_ $$0P:(DE-Juel1)130495$$aAdam, Roman$$b3
000189501 7001_ $$0P:(DE-Juel1)125583$$aFox, Alfred$$b4$$ufzj
000189501 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b5
000189501 7001_ $$0P:(DE-HGF)0$$aGregušová, D.$$b6
000189501 7001_ $$0P:(DE-HGF)0$$aStanček, S.$$b7
000189501 7001_ $$0P:(DE-HGF)0$$aNovák, J.$$b8
000189501 7001_ $$0P:(DE-HGF)0$$aKordoš, P.$$b9
000189501 7001_ $$0P:(DE-HGF)0$$aSofer, Z.$$b10
000189501 7001_ $$0P:(DE-HGF)0$$aJuul, L.$$b11
000189501 7001_ $$0P:(DE-HGF)0$$aMarso, M.$$b12
000189501 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4903468$$gVol. 105, no. 23, p. 232102 -$$n23$$p232102$$tApplied physics letters$$v105$$x1077-3118$$y2014
000189501 8564_ $$uhttp://scitation.aip.org/content/aip/journal/apl/105/23/10.1063/1.4903468
000189501 8564_ $$uhttps://juser.fz-juelich.de/record/189501/files/1.4903468.pdf$$yOpenAccess
000189501 8564_ $$uhttps://juser.fz-juelich.de/record/189501/files/1.4903468.gif?subformat=icon$$xicon$$yOpenAccess
000189501 8564_ $$uhttps://juser.fz-juelich.de/record/189501/files/1.4903468.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000189501 8564_ $$uhttps://juser.fz-juelich.de/record/189501/files/1.4903468.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000189501 8564_ $$uhttps://juser.fz-juelich.de/record/189501/files/1.4903468.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000189501 8564_ $$uhttps://juser.fz-juelich.de/record/189501/files/1.4903468.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189501 8767_ $$907-Jan-15$$d07-Jan-15$$ePublication charges$$jZahlung erfolgt$$zUSD 325,-
000189501 909CO $$ooai:juser.fz-juelich.de:189501$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000189501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000189501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151156$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000189501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130495$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000189501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125583$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000189501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000189501 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000189501 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000189501 9141_ $$y2014
000189501 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189501 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189501 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189501 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189501 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189501 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000189501 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000189501 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189501 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189501 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189501 920__ $$lyes
000189501 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000189501 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000189501 980__ $$ajournal
000189501 980__ $$aVDB
000189501 980__ $$aUNRESTRICTED
000189501 980__ $$aI:(DE-Juel1)PGI-9-20110106
000189501 980__ $$aI:(DE-82)080009_20140620
000189501 980__ $$aAPC
000189501 9801_ $$aAPC
000189501 9801_ $$aFullTexts