001     189501
005     20220930130041.0
024 7 _ |a 10.1063/1.4903468
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a WOS:000346266000044
|2 WOS
024 7 _ |a 2128/17329
|2 Handle
037 _ _ |a FZJ-2015-02658
082 _ _ |a 530
100 1 _ |a Mikulics, M.
|0 P:(DE-Juel1)128613
|b 0
|e Corresponding Author
245 _ _ |a Reduction of skin effect losses in double-level-T-gate structure
260 _ _ |a Melville, NY
|c 2014
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1429536205_28976
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We developed a T-gate technology based on selective wet etching yielding 200 nm wide T-gate structures used for fabrication of High Electron Mobility Transistors (HEMT). Major advantages of our process are the use of only standard photolithographic process and the ability to generate T-gate stacks. A HEMT fabricated on AlGaN/GaN/sapphire with gate length Lg¼200 nm and double-stacked T-gates exhibits 60 GHz cutoff frequency showing ten-fold improvement compared to 6 GHz for the same device with 2 lm gate length. HEMTs with a double-level-T-gate (DLTG) structure exhibit up to 35% improvement of fmax value compared to a single T-gate device. This indicates a significant reduction of skin effect losses in DLTG structure compared to its standard T-gate counterpart. These results agree with the theoretical predictions.
536 _ _ |a 423 - Sensorics and bioinspired systems (POF2-423)
|0 G:(DE-HGF)POF2-423
|c POF2-423
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Hardtdegen, Hilde
|0 P:(DE-Juel1)125593
|b 1
|u fzj
700 1 _ |a Arango, Yulieth
|0 P:(DE-Juel1)151156
|b 2
700 1 _ |a Adam, Roman
|0 P:(DE-Juel1)130495
|b 3
700 1 _ |a Fox, Alfred
|0 P:(DE-Juel1)125583
|b 4
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 5
700 1 _ |a Gregušová, D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stanček, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Novák, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kordoš, P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Sofer, Z.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Juul, L.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Marso, M.
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1063/1.4903468
|g Vol. 105, no. 23, p. 232102 -
|0 PERI:(DE-600)1469436-0
|n 23
|p 232102
|t Applied physics letters
|v 105
|y 2014
|x 1077-3118
856 4 _ |u http://scitation.aip.org/content/aip/journal/apl/105/23/10.1063/1.4903468
856 4 _ |u https://juser.fz-juelich.de/record/189501/files/1.4903468.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189501/files/1.4903468.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189501/files/1.4903468.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189501/files/1.4903468.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189501/files/1.4903468.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189501/files/1.4903468.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:189501
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128613
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)125593
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151156
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130495
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125583
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125588
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-423
|2 G:(DE-HGF)POF2-400
|v Sensorics and bioinspired systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21