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Comparison between exact and semilocal exchange potentials: An all-electron study for solids
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The exact-exchange (EXX) potential, which is obtained by solving the optimized-effective potential (OEP)

equation, is compared to various approximate semilocal exchange potentials for a set of selected solids (C, Si, BN,

MgO, Cu2O, and NiO). This is done in the framework of the linearized augmented plane-wave method, which

allows for a very accurate all-electron solution of electronic structure problems in solids. In order to assess the

ability of the semilocal potentials to approximate the EXX-OEP, we considered the EXX total energy, electronic

structure, electric-field gradient, and magnetic moment. An attempt to parametrize a semilocal exchange potential

is also reported.
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I. INTRODUCTION

Given an expression for the total energy of an atom,
molecule, or solid,

Etot = Ts + Een + EH + Exc + Enn, (1)

where the terms on the right-hand side represent the
noninteracting kinetic, electron-nucleus, Hartree, exchange-
correlation, and nucleus-nucleus energies, respectively, the
search for the Slater determinant which minimizes Etot leads
to one-electron Schrödinger equations

(

− 1
2
∇2 + ven(r) + vH(r) + v̂xc(r)

)

ψi(r) = εiψi(r) (2)

for the orbitals ψi and their energies εi . [For ease of notation,
all formulas are given in spin-unpolarized form and for nonzero
gap systems. N will denote the number of (doubly) occupied
orbitals.] In the Kohn-Sham (KS) [1] version of density func-
tional theory (DFT) [2], the exchange-correlation potential v̂xc

is calculated as the functional derivative of Exc with respect to
the electron density ρ (v̂xc = δExc/δρ) and, as a consequence,
v̂xc is a multiplicative potential (v̂xcψi = vxcψi); i.e., it is the
same for all orbitals. Instead, in the generalized KS (gKS)
framework, formally introduced in Ref. [3], the derivative
of Exc is taken with respect to ψi (v̂xcψi = (1/2) δExc/δψ

∗
i )

as in the Hartree-Fock (HF) method. In other words, in the
KS method the minimization of the total energy [Eq. (1)] is
done with the constraint that the orbitals forming the (single)
Slater determinant are solutions to a Schrödinger equation with
a multiplicative potential, whereas in the gKS scheme this
constraint is dropped. For exchange-correlation functionals
Exc which depend explicitly only on ρ (and eventually its
derivatives) like in the local density approximation (LDA) [1]
or generalized gradient approximation (GGA) [4,5], the gKS
method leads to the same multiplicative potential vxc as the KS
method. However, for an orbital-dependent functional Exc, i.e.,
a functional which depends on the orbitals ψi not only via ρ,
such as meta-GGA (see Ref. [6] and references therein), self-
interaction corrected [7], or hybrid [8] functionals, the gKS
method leads to a nonmultiplicative (i.e., orbital-dependent)
potential v̂xc = vxc,i as in the HF method. For such functionals,
the calculation of δExc/δρ, as required in the KS formalism,

is highly nontrivial, but possible by solving the optimized
effective potential (OEP) equation [9].

The focus of the present work will be on the multiplicative
exchange potential vx. More specifically, approximate semilo-
cal exchange potentials will be compared to the exact exchange
(EXX) potential obtained by means of the OEP method
(called EXX-OEP hereafter), which has been implemented
very recently [10–12] within the linearized augmented plane-
wave [13–15] (LAPW) method for solids.

The advantage of semilocal potentials, which depend
on the local quantities ρ, ∇ρ, ∇2ρ or the kinetic-energy

density t =
∑N

i=1 ∇ψ∗
i · ∇ψi is that they are rather simple

to implement and lead to calculations which are much faster
than EXX-OEP calculations or HF/hybrid calculations with a
nonmultiplicative potential. The LDA exchange potential is for
example a simple function of ρ, whereas in the case of GGA
functionals, the corresponding potential becomes a function of
ρ and its first two derivatives.

It is well known that the LDA exchange potential and the
vast majority of GGA exchange potentials barely resemble
the EXX-OEP [16,17]. Strictly speaking, one cannot expect
that LDA and GGA exchange potentials are close to the
EXX-OEP since the former also (fortuitously) mimic some
part of static correlation (see, e.g., Ref. [18]) because of the
self-interaction error [7]. However, several studies exist that
search for semilocal approximations for exchange with the
focus on vx rather than Ex. Among these studies are the early
works of Engel and Vosko [17], Baerends and co-workers
[19–22], and the more recent works of Becke and Johnson [23],
Staroverov and co-workers [24–27], Armiento et al. [28,29],
and others [30,31].

It is worth mentioning that all these approximations for
vx can be categorized in one of these two groups, namely,
those which are a functional derivative of an energy Ex

and those which are not (such potentials were termed stray

in Ref. [32]). Examples of exchange potentials which were
modeled with the constraint to be a functional derivative are
the ones from Engel and Vosko [17] (EV93) and Armiento and
Kümmel [29] (AK13), while the potentials from van Leeuwen
and Baerends [19] (LB94) and Becke and Johnson [23]
(BJ) are stray potentials. Not constraining a potential to be
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a functional derivative means much more freedom for its
analytical form; however it has been shown that stray potentials
have undesirable features both at the fundamental and practical
level [32–34]. Furthermore, attempts to turn a stray potential
into a functional derivative without loosing too much of its
original features have been rather unsuccessful up to now (see
Refs. [25,26,34]).

As already mentioned above, various semilocal exchange
potentials vx will be studied and compared to the EXX-OEP
which will serve as reference. We will focus in particular
on the BJ potential, which has been shown to reproduce
quite well the EXX-OEP potential in atoms [23,24] and has
been applied to molecules [35,36] and solids [37], as well as
modified to improve the results in various cases [24,28,38–42].
Furthermore, in an attempt to be as close as possible to the
EXX-OEP potential, a more general form of the BJ potential
will be proposed.

The paper is organized as follows. Section II gives a
summary of the EXX-OEP method and introduces the tested
semilocal exchange potentials, while the computational details
are given in Sec. III. Then, the results are presented and
discussed in Sec. IV. Finally, Sec. V gives the summary and
an outlook for possible improvements.

II. THEORY

A. Optimized effective potential

As mentioned in the Introduction, the calculation of the
multiplicative exchange-correlation potential vxc = δExc/δρ

for any orbital-dependent functional Exc can be achieved
by solving the integro-differential OEP equation [9] for vxc

(see Ref. [43] for a review), which is given in general
by

∫

χ (r,r′)vxc(r′)d3r ′ = �xc(r), (3)

with

�xc(r) =
∑

i

[∫ (

δExc

δψi(r′)

δψi(r
′)

δveff(r)
+ c.c.

)

d3r ′

+
δExc

δεi

δεi

δveff(r)

]

, (4)

where veff = ven + vH + vxc is the KS effective potential and

χ (r,r′) =
δρ(r)

δveff(r′)

= 2

N
∑

i=1

∞
∑

j=N+1

ψ∗
i (r)ψj (r)ψ∗

j (r′)ψi(r
′)

εi − εj

+ c.c. (5)

is the KS (noninteracting) density response function.
So far, the OEP method has been applied mostly to the EXX

energy

EEXX
x =−

N
∑

i=1

N
∑

j=1

∫∫

ψ∗
i (r)ψj (r)ψ∗

j (r′)ψi(r
′)

|r − r′|
d3rd3r ′,

(6)

which has the same analytic form as the HF exchange energy,
but is evaluated with the KS orbitals instead of the HF orbitals.
In the case of EXX, the sum over i in Eq. (4) runs over the
occupied orbitals only [Eq. (6) does not depend on unoccupied
orbitals] and δExc/δεi = 0.

Talman and Shadwick [44] were the first to report EXX-
OEP calculations (on spherical atoms). Initially, EXX-OEP
was proposed as an approximation to HF in order to get rid
of the nonmultiplicative HF potential. Later, it was recognized
that the EXX-OEP method represents also the exact exchange
method within the KS DFT framework (see, e.g., Ref. [16]
and references therein). Since then EXX-OEP has attracted
more and more attention. For solids the first EXX-OEP
implementation was reported by Kotani [45]. Subsequent
reports of OEP calculations on solids (the focus of the present
work) can be found in Refs. [10–12,46–62].

The implementation of the OEP equation is rather com-
plicated and its solution prone to instabilities in particular
if localized basis functions are used [63–65]. Recently, the
implementation of the EXX-OEP method within the LAPW
method has been reported [10–12,66]. It employs an auxiliary
basis, the mixed product basis, for representing the OEP. As
discussed in detail in Refs. [10,66], in order to obtain a stable
and physical EXX-OEP potential, the orbital (LAPW) and
auxiliary (mixed product) basis sets have to satisfy a basis-set
balance condition. This condition is fulfilled when the orbital
basis set is converged with respect to the auxiliary basis set
and usually demands large orbital basis sets. The usage of
(uneconomically) large LAPW basis sets can be avoided if the
response of the LAPW basis functions is explicitly taken into
account in the calculation of the KS orbital response δψi/δveff

in Eq. (4) and the calculation of the KS density response
[Eq. (5)] [11,12]. In this way, a much faster convergence
is achieved with respect to basis set size (and number of
unoccupied states) and the basis balance condition is fulfilled
with smaller orbital basis sets.

B. Semilocal potentials

Among the considered semilocal exchange potentials,
LDA [1] as well as the GGAs B88 [4], PBE [5], EV93 [17],
and AK13 [29] are functional derivatives of exchange-energy
functionals that have the generic form

Ex = −
3

4

(

3

π

)1/3 ∫

ρ4/3(r)Fx(s(r))d3r, (7)

where Fx(s) is the so-called exchange enhancement fac-
tor which depends on the reduced density gradient s =

|∇ρ|/[2(3π2)1/3ρ4/3]. LDA is the exact form for the ho-
mogeneous electron gas and corresponds to Fx(s) = 1. As
shown in Fig. 1, the enhancement factors of the GGA
functionals are larger than 1, thus correcting the tendency of
LDA to underestimate the magnitude of the exchange energy.
Compared to the standard PBE functional, EV93 and AK13
are much stronger. Note that at s = 0 all factors Fx(s) reduce to
1 in order to satisfy the homogeneous electron gas limit given
by LDA. B88 and PBE, which are among the most popular
GGA functionals for calculating the properties of molecules
and solids, respectively, were constructed without considering
the quality of the potential vx. For EV93 and AK13, however,
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FIG. 1. (Color online) The enhancement factors Fx(s) [see

Eq. (7)] of the different exchange functionals considered in this work.

the emphasis was put on vx. The parameters in EV93 were
determined by a fit to EXX-OEP potentials in atoms [17],
while Armiento and Kümmel were able to find an analytical
form for AK13 such that vx changes discontinuously at integer
particle numbers [29]. Both EV93 and AK13 were shown to
improve over the standard LDA and PBE functionals for the
band gaps in solids [29,37,67,68].

In addition to these potentials, we consider in this work the
BJ potential [23] which is of stray type (see Refs. [33,38]) and
has the form

vBJ
x (r) = vS/BR

x (r) +
1

π

√

5

6

√

t(r)

ρ(r)
, (8)

where vS/BR
x is either the Slater (S) potential [69]

vS
x (r) =−

2

ρ(r)

N
∑

i=1

N
∑

j=1

ψ∗
i (r)ψj (r)

∫

ψ∗
j (r′)ψi(r

′)

|r − r′|
d3r ′ (9)

or the Becke-Roussel potential [70]

vBR
x (r) = −

1

b(r)

(

1 − e−x(r) −
1

2
x(r)e−x(r)

)

. (10)

The function x in Eq. (10) can be calculated either by solving
at each point of space the nonlinear equation [70]

x(r)e−2x(r)/3

x(r) − 2
=

1

3

(

π

2

)2/3
ρ5/3(r)

Q(r)
, (11)

where

Q(r) = 1
12

[∇2ρ(r) − 4γD(r)] (12)

with

D(r) = t(r) −
1

8

|∇ρ(r)|2

ρ(r)
, (13)

or by using the analytical interpolation formula for x proposed
in Ref. [71] as done in the present work. After x is calculated,

b in Eq. (10) is given by

b(r) =

(

x3(r)e−x(r)

4πρ(r)

)1/3

. (14)

The parameter γ in Eq. (12) has to be set to 1 or 0.8 in order
to recover the exact exchange potential of the hydrogen atom
or the homogeneous electron gas, respectively [70]. Note that
since the BR potential and the second term of Eq. (8) depend
on the kinetic-energy density t , they are of the semilocal meta-
GGA form [72], while the Slater potential [Eq. (9)] is nonlocal
in the sense that the calculation of vS

x at r requires the value of
quantities (the occupied orbitals) at all points of space r′. For
closed-shell atoms it was shown that the BR potential is very
close to the Slater potential [23,70]. In the rest of this work,
we focus on the BJ-based potentials using the BR potential.

Several modifications of the BJ potential have been pro-
posed [24,28,39,40]. For instance, in Ref. [39] we proposed
the modified BJ (mBJ) potential

vmBJ
x (r) = cvBR

x (r) + (3c − 2)
1

π

√

5

6

√

t(r)

ρ(r)
, (15)

where c is a parameter that was introduced to improve the
agreement with experiment for the band gaps in solids and
that was parametrized using the average of |∇ρ|/ρ in the unit
cell.

As pointed out by Räsänen et al. in Ref. [40], the BJ
potential is not gauge-invariant, does not show the correct
asymptotic behavior at r → ∞ in finite systems, and the
correction to the Slater (or BR) term is not zero for one-electron
systems as it should be. In order to cure these deficiencies, they
proposed a universal correction (UC) to the BJ potential. For
systems with zero current density J (like those considered in
this work), the UC consists of replacing t by D [Eq. (13)] in
the second term of Eq. (8).

In an attempt to propose in the present work a semilocal
exchange potential which can reproduce accurately the EXX-
OEP, we will consider a more general form of the BJ and mBJ
potentials, called generalized BJ (gBJ) hereafter:

vgBJ
x (r) = cvBR

x (r) + (3c − 2)

1
2

(

3
π

)1/3

(

3
10

(3π2)2/3
)p

tp(r)

ρ(5p−1)/3(r)
,

(16)

which, in addition to the two parameters γ [in vBR
x , Eq. (12)]

and c as in mBJ, contains a third one (p) whose value is 0.5
in BJ and mBJ. The form of the second term of Eq. (16) was
chosen such that the LDA exchange potential is recovered for
constant electron densities (and if γ = 0.8; see above). As a
modification of Eq. (16), we will also consider its variant where
t in the second term is replaced by D (UC; Ref. [40]), leading
to the gBJUC potential. The parameters γ , c, and p of the
gBJ and gBJUC potentials were varied around the standard BJ
values within the intervals [0.4,1.4], [1.0,1.4], and [0.35,0.65]
and in steps of 0.2, 0.1, and 0.05, respectively. In the following,
BJ will denote the unmodified potential given by Eq. (8) using
BR with γ = 0.8 and similarly for BJUC. The values of the
parameters in the gBJ and gBJUC potentials will be specified
in this order: (γ,c,p).
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FIG. 2. (Color online) gBJ(γ,c,p) exchange potentials in C plot-

ted starting at a distance of 0.2 Å from the atom at site (1/4,1/4,1/4)

in the [111] direction. The center of the unit cell is at d = 2.32 Å.

The potentials were shifted such that
∫

cell
vx(r)d3r = 0.

Regarding the influence of the parameters γ , c, and p on
the shape of the gBJ potential, we have generally observed
that an increase of one or another of the parameters leads to
more pronounced variations, and this effect is rather similar
for the three parameters (see Fig. 2 for an illustrative example
in the diamond phase of C). Nevertheless, by looking more
closely at Fig. 2, we can notice some differences in the way
the parameters γ , c, and p modify the potential. For instance,
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t/
D

(b)

FIG. 3. (Color online) (a) BJ and BJUC exchange potentials in

C. (b) Ratio t/D for C. The path and potential shift are as in Fig. 1.

when γ is increased [Fig. 2(a)], the intershell peak at d ∼ 0.4 Å
gets more spiky, while the value of c affects the potential in a
broader region of space [Fig. 2(b)]. This is the reason why we
have found it useful to use three parameters instead of only one
or two in our attempt for reproducing at best the EXX-OEP
results with the gBJ(UC) potential.

The effect of the UC is shown in Fig. 3(a) by comparing the
BJ and BJUC potentials in C. Rather large differences between
the two potentials are visible in the core region (d < 0.4 Å
in this example) where the BJUC potential is much more
attractive than BJ. As a consequence, the core states are bound
stronger when the UC is used. We made the same observation
for all other investigated solids (see also Fig. 3 of Ref. [40] for
the Ne atom). In Fig. 3(b), the kinetic-energy density t and D

[Eq. (13)] are compared by showing the ratio t/D, where we
can see that it is indeed in the core region that t/D differs the
most from 1. Actually, the term |∇ρ|2/(8ρ) in D is the von
Weizsäcker [73] kinetic-energy density, which is close (but not
equal [74]) to the exact kinetic-energy density t close to the
nuclei and in the asymptotic regions. Therefore, in such regions
D is small and the BJUC potential is similar to the BR (or
Slater) potential which is by far too negative compared to EXX-
OEP [23]. Note that the (smaller) differences between t and D

in the region 0.4–1.4 Å also affect the potentials; however, due
to the alignment of the different potentials [

∫

cell
vx(r)d3r = 0],
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the differences between BJ and BJUC are transferred to
d > 1.2 Å.

III. COMPUTATIONAL DETAILS

The calculations with the semilocal potentials and EXX-
OEP were done with the WIEN2k [75] and FLEUR [76]
codes, respectively. Since the two codes use the same basis
set (LAPW [13–15]), it was also possible to calculate the
EXX-OEP orbitals with WIEN2k by fixing the potential vx

to the EXX-OEP read from a file (containing the radial
functions and Fourier coefficients of the spherical harmonics
and plane-wave expansions of the potential) generated by
FLEUR. Despite some (small) technical differences between
the two codes and different computational parameters used for
the calculations (e.g., basis sets), we observed for all solids
that running a PBE calculation with WIEN2k as usual or
with the FLEUR-generated PBE potential leads to very close
results (e.g., the transition energies differ by less than 0.02 eV).
Therefore, we are convinced that this procedure of calculating
orbitals using a potential generated from another code is
reliable in terms of accuracy. In addition, HF calculations
with the WIEN2k code were also done. Note, however, that
in the current implementation of the HF method [77], the
core electrons experience a semilocal potential, like in other
implementations of the HF method with the LAPW basis
set [78,79]. The k mesh for the integration of the Brillouin
zone and size of the basis sets were chosen to be converged
for the purpose of our work.

The set of solids that we will consider consists of the
nonmagnetic cubic (the space group, number of atoms in the
primitive unit cell, and cubic lattice constant are indicated
in parenthesis) C (Fd3m, two atoms, 3.57 Å), Si (Fd3m, two
atoms, 5.43 Å), MgO (Fm3m, two atoms, 4.23 Å), BN (F43m,
two atoms, 3.62 Å), and Cu2O (Pn3m, six atoms, 4.27 Å). C,
Si, and BN are covalent, while MgO and Cu2O are ionic. Also
included in our test set is NiO whose type-II antiferromagnetic

order along the [111] direction reduces the symmetry from
cubic (Fm3m, two atoms, 4.17 Å) to rhombohedral (R3m,
four atoms). All these solids are nonmetallic and while most
of them are simple sp-type semiconductors or insulators, two
of them, namely Cu2O and NiO, represent more stringent tests.

NiO is a rather difficult system to describe theoretically [80]
since the Ni-3d electrons are strongly correlated as it is
generally the case in magnetic 3d-transition-metal oxides.
Due to their inherent self-interaction error [7], the semilocal
functionals perform particularly badly in such systems and
more advanced methods like DFT+U [81] are commonly
used. In Refs. [77,82] we showed that a correct description of
the band gap and electric-field gradient (EFG) in Cu2O could
only be achieved with the hybrid functionals, while the results
obtained with the LDA, GGA, LDA+U , and mBJ methods
were qualitatively wrong.

IV. RESULTS AND DISCUSSION

We quantify the difference between the semilocal exchange
potentials and the reference EXX-OEP by comparing the EXX
total energy and the electronic structure for our test set of
solids. The electronic structure of the solids is assessed in terms
of the band transition across the band gap, the position of the
core electrons, and the density of states (DOS). Furthermore, as
a measure of the similarity of the electron density we compare
the resulting EFG in Cu2O and the magnetic moment in NiO.
We start with the discussion of the EXX total energy.

A. EXX total energy

The EXX total energy EEXX
tot , whose exchange energy is

given by Eq. (6) and which does not include correlation
energy, is calculated with orbitals generated either from the
(corresponding) EXX-OEP or from the semilocal exchange
potentials. The obtained total energies are shown in Table I.
The lowest EXX total energy is obtained by using the EXX-
OEP orbitals, which was expected since the EXX-OEP is also

TABLE I. EXX total energy EEXX
tot [i.e., Eq. (6) for exchange and no correlation] calculated with orbitals generated from various exchange

potentials. The values for the semilocal potentials are the differences with respect to EXX-OEP, and a positive value indicates that EXX-OEP

leads to a more negative energy as it always should. All values are in Ry/cell.

Potential C Si BN MgO Cu2O NiO

EXX-OEP −151.592 −1158.353 −158.623 −550.129 −13 527.771 −6377.723

LDA 0.042 0.079 0.047 0.079 0.678 0.949

PBE 0.026 0.040 0.027 0.037 0.446 0.619

B88 0.026 0.040 0.026 0.036 0.451 0.620

EV93 0.017 0.015 0.015 0.010 0.295 0.420

AK13 0.029 0.027 0.023 0.014 0.237 0.312

BJ 0.008 0.019 0.008 0.015 0.227 0.395

BJUC 0.074 0.096 0.067 0.072 0.270 0.642

gBJ(0.6,1.0,0.60)a 0.003 0.000 0.002 0.001 0.193 0.264

gBJ(1.4,1.1,0.50)b 0.014 0.054 0.013 0.037 0.368 0.257

gBJ(0.4,1.3,0.65)c 0.159 0.240 0.148 0.199 0.781 0.335

gBJUC(1.4,1.2,0.50)d 0.202 0.272 0.202 0.257 0.805 0.757

aGood compromise for the EXX total energy of C, Si, BN, MgO, and Cu2O.
bGood compromise for transition energies in C, Si, BN, and MgO.
cGood compromise for transition energies and Ni magnetic moment in NiO.
dGood compromise for transition energies and EFG in Cu2O.
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the solution of the equation δEEXX
tot /δveff = 0 [44]. The LDA

orbitals lead to energies which are higher by 0.04–0.08 Ry for
C, Si, BN, and MgO, 0.6 Ry for Cu2O, and 0.9 Ry for NiO. All
sets of GGA (PBE, B88, EV93, and AK13) orbitals improve
upon LDA by reducing the difference with respect to EXX-
OEP by a factor of 2 up to 4. On average EV93 and AK13 yield
total energies which are closer to the EXX-OEP energy than
PBE and B88. The BJ potential [Eq. (8)] shows a rather similar
performance to those of EV93 and AK13, while BJUC leads
to total energies that are sometimes even worse than LDA.

The results for the gBJ potential [Eq. (16)] are shown
for a few selected sets of parameters (γ , c, p). With the
parameters (0.6,1.0,0.60) the results are close to optimal
(within the space of parameters) for EEXX

tot and all solids
except NiO for which an increase of c to 1.2 or 1.3 would
further reduce the difference with respect to EXX-OEP by a
factor of 2. It should be stressed that the error obtained with
gBJ(0.6,1.0,0.60) is only of the order of 0.001%, i.e., below
1–3 mRy for the light solids without transition-metal atoms.
Nevertheless, as shown below, such a good agreement for
the total energy does not necessarily mean a good agreement
with EXX-OEP for other quantities like the transition energies,
which require other sets of parameters (γ , c, p) (also shown in
Table I). It should be also mentioned that showing the results
for the parameters (0.6,1.0,0.60) is only one choice among
a few others which lead to a similar (albeit maybe slightly
worse overall) agreement with EXX-OEP. For instance, by
varying only c with respect to the original BJ potential (i.e.,
considering mBJ) the results for EEXX

tot are also very good
with c = 1.1. The gBJUC orbitals lead systematically to
very high EXX total energies whatever the parameters (γ ,
c, p) are. Actually, this is related to the poor reproduction
of the EXX-OEP potential by gBJUC in the region close to

the nuclei (see below) which substantially affects the total
energy.

B. Electronic structure

We now turn to the discussion of the electronic structure and
focus first on the comparison of the direct transition energies
across the band gap.

1. Transition energies

For each solid the direct transition energies are calculated
at three k points in the Brillouin zone (expressed in primitive
basis for NiO and conventional basis for the other solids): Ŵ =

(0,0,0), X = (0,1,0), and L = (1/2,1/2,1/2) for C, Si, BN,
and MgO; Ŵ = (0,0,0), X = (0,1/2,0), and M = (1/2,1/2,0)
for Cu2O; Ŵ = (0,0,0), L = (0,1/2,0), and F = (0,1/2,1/2)
for NiO. The mean error (ME) and mean absolute error (MAE)
with respect to the EXX-OEP are shown in Table II for the
different solids and potentials. Applying the LDA the MAE
is in the range of 0.6–3.7 eV where the largest error is
for NiO. Actually, it is well known [50] that LDA strongly
underestimates the band gap with respect to experiment and
EXX-OEP. The GGA, and in particular EV93 and AK13,
improve over LDA by reducing the MAE by a few 0.1 eV
for C, Si, BN, and Cu2O or more than 1 eV for MgO and
NiO, but overall the errors remain rather substantial. BJ and
BJUC perform similarly to EV93 or AK13. For all these
potentials except AK13, the negative sign of the ME and its
magnitude which is equal to the MAE in most cases indicate
that the deviation from EXX-OEP corresponds to a systematic
underestimation of the transition energies.

For gBJ, we found that the parameters (1.4,1.1,0.50) lead
to a very small MAE (below 0.2 eV) for C, Si, BN, and MgO.

TABLE II. Statistics on direct transition energies �εk = εk
N+1 − εk

N at three different k points (specified in the text). The values for

EXX-OEP are the mean over the three k points of the transition energy (
∑

k �εEXX-OEP
k ), while for the semilocal potentials the values are the

MAEa and MEb with respect to EXX-OEP. All values are in eV.

C Si BN MgO Cu2O NiO

Potential
9.80 3.49 10.93 9.50 3.08 5.37

EXX-OEP MAE ME MAE ME MAE ME MAE ME MAE ME MAE ME

LDA 0.62 −0.62 0.68 −0.68 0.97 −0.97 1.95 −1.95 1.23 −1.23 3.68 −3.68

PBE 0.32 −0.32 0.41 −0.41 0.62 −0.62 1.30 −1.30 1.05 −1.05 3.11 −3.11

B88 0.32 −0.32 0.40 −0.40 0.60 −0.60 1.26 −1.26 1.04 −1.04 3.08 −3.08

EV93 0.31 −0.18 0.23 −0.17 0.41 −0.41 0.81 −0.81 0.98 −0.98 2.78 −2.78

AK13 0.30 −0.03 0.38 0.18 0.27 −0.11 0.19 0.19 0.82 −0.82 2.27 −2.27

BJ 0.27 −0.27 0.38 −0.38 0.45 −0.45 1.01 −1.01 0.95 −0.95 2.53 −2.53

BJUC 0.38 −0.38 0.53 −0.53 0.45 −0.45 0.44 −0.44 0.42 −0.42 2.64 −2.64

gBJ(0.6,1.0,0.60)c 0.13 −0.13 0.17 −0.17 0.29 −0.29 0.71 −0.71 1.01 −1.01 2.22 −2.22

gBJ(1.4,1.1,0.50)d 0.14 0.14 0.06 0.02 0.07 0.07 0.19 −0.19 0.87 −0.87 1.49 −1.35

gBJ(0.4,1.3,0.65)e 0.86 0.86 1.42 1.42 1.13 1.13 1.67 1.67 1.19 −1.19 0.28 0.11

gBJUC(1.4,1.2,0.50)f 0.10 0.10 0.01 −0.01 0.30 0.30 0.88 0.88 0.06 0.06 1.70 −1.54

aMAE =
∑

k |�εsemilocal
k − �εEXX-OEP

k |.
bME =

∑

k(�εsemilocal
k − �εEXX-OEP

k ).
cGood compromise for the EXX total energy of C, Si, BN, MgO, and Cu2O.
dGood compromise for transition energies in C, Si, BN, and MgO.
eGood compromise for transition energies and Ni magnetic moment in NiO.
fGood compromise for transition energies and EFG in Cu2O.
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TABLE III. MAREa and MREb (with respect to EXX-OEP and in %) for the energy position of the core states with respect to the valence

band maximum (�εcore,i = εcore,i − εVBM). The MARE and MRE are over all core states in the solid: C (1s), Si (1s), BN (B: 1s; N: 1s), MgO

(Mg: 1s; O: 1s), Cu2O (Cu: 1s, 2s, 2p; O: 1s), NiO (Ni: 1s, 2s, 2p; O: 1s). A negative MRE means that on average the core states are deeper

in energy than EXX-OEP.

C Si BN MgO Cu2O NiO

Potential MARE MRE MARE MRE MARE MRE MARE MRE MARE MRE MARE MRE

LDA 1.67 1.67 0.83 0.83 2.46 2.46 1.28 1.28 0.70 0.70 0.72 0.70

PBE 0.28 0.28 0.31 0.31 0.95 0.95 0.49 0.49 0.37 0.37 0.52 0.45

B88 0.20 0.20 0.28 0.28 0.85 0.85 0.45 0.45 0.34 0.34 0.51 0.42

EV93 0.27 −0.27 0.21 0.21 0.54 0.40 0.27 0.26 0.35 0.32 0.48 0.43

AK13 1.25 −1.25 0.07 −0.07 0.66 −0.66 0.36 −0.19 0.39 0.12 0.50 0.28

BJ 1.13 −1.13 0.11 −0.11 0.45 0.42 0.46 −0.24 0.27 −0.04 0.53 0.08

BJUC 7.82 −7.82 2.08 −2.08 7.44 −7.44 3.56 −3.56 1.50 −1.50 1.17 −1.17

gBJ(0.6,1.0,0.60)c 0.74 −0.74 0.03 −0.03 0.56 0.00 0.39 −0.05 0.20 −0.02 0.48 0.08

gBJ(1.4,1.1,0.50)d 1.61 −1.61 0.06 −0.06 1.03 −1.03 0.56 −0.40 0.64 0.20 0.63 0.43

gBJ(0.4,1.3,0.65)e 0.11 −0.11 0.04 0.04 0.67 0.62 0.24 0.19 0.17 0.00 0.40 0.15

gBJUC(1.4,1.2,0.50)f 12.96 −12.96 3.35 −3.35 12.96 −12.96 6.06 −6.06 2.21 −2.21 1.72 −1.62

aMARE =
∑core

i 100|�εsemilocal
core,i − �εEXX-OEP

core,i |/|�εEXX-OEP
core,i |.

bMRE =
∑core

i 100(�εsemilocal
core,i − �εEXX-OEP

core,i )/|�εEXX-OEP
core,i |.

cGood compromise for the EXX total energy of C, Si, BN, MgO, and Cu2O.
dGood compromise for transition energies in C, Si, BN, and MgO.
eGood compromise for transition energies and Ni magnetic moment in NiO.
fGood compromise for transition energies and EFG in Cu2O.

For Cu2O and NiO different sets of parameters are required.
For Cu2O it was not possible to find a combination of the
parameters (within the considered ranges) that reduces the
MAE below 0.7 eV. However, by considering the gBJ potential
with the UC (gBJUC), we were able to improve substantially
the results for the transitions energies. For instance (see
Table II), with the parameters (1.4,1.2,0.50), gBJUC leads
to a MAE of 0.06 eV for the transition energies of Cu2O.

In the case of NiO, a substantial improvement for the
transition energies can be obtained if the parameter c is
increased to at least 1.2. For instance, with the parameters
(0.4,1.3,0.65) the MAE on the transition energies is below
0.3 eV, which is one order of magnitude smaller than with
the other methods. We mention that for NiO, the values of the
parameters γ and p have little influence on the results and only
an increase of c can lead to a clear improvement.

2. Core states

We proceed by discussing the effect of the different
potentials on the binding energies of the core electrons.
Table III shows the averaged energetic position of the core
states with respect to the Fermi energy for the different solids
and potentials. For the definition of the mean absolute relative
error (MARE) and mean relative error (MRE) see caption
of Table III. As observed for the EXX total energy and the
transition energies, all GGA exchange potentials improve
over LDA by reducing the MARE below 0.5% for most
solids. The positive MRE for LDA, PBE, and B88 indicate
that these potentials lead to core states which are typically
bound too loosely with respect to EXX-OEP. For EV93,
AK13, and BJ there is no systematic trend. Among the four
selected parametrizations of the gBJ potential it turns out that
(0.4,1.3,0.65) (optimized for NiO) leads overall to a rather
clear improvement over the LDA and GGA potentials. The

accuracy obtained with the set of parameters (0.6,1.0,0.60)
(optimized for the EXX total energy) is satisfying except for
C. The results obtained with the gBJUC-based potentials are
extremely inaccurate, which is, as already mentioned above,
due to the very poor reproduction of the EXX-OEP close to
the nuclei, leading to core states that are too low in energy.

3. Density of states

The comparison of the electronic structure obtained with the
different exchange potentials focused so far on the transition
energies and the core states. In order to assess the differences
in the electronic structure on a wider energy spectrum of the
valence states, we compare the density of states of NiO and
Cu2O around the Fermi energy. We picked out these two solids
from our test set, since the largest changes in the DOS with
respect to the applied potential can be observed for these two
solids. For C, Si, BN, and MgO the basic structure of the DOS
remains very similar independent from the applied potential
(of course, apart from a rigid shift of the conduction bands).

Figures 4 and 5 show the DOS of Cu2O and NiO, respec-
tively, for a few selected potentials. In the case of Cu2O, we
can clearly see that the gBJUC(1.4,1.2,0.50) potential (very
good for the transition energies and EFG, see below) leads
to the best agreement with EXX-OEP, which is particularly
true for the partial Cu-3d DOS in the range from −3 to 0 eV
below the Fermi energy. The Cu-3d DOS obtained with the
other semilocal potentials, including gBJ without UC, are too
broad by about 1 eV. gBJUC(1.4,1.2,0.50) also leads to correct
positions of both the O-2p (extending from −7 to −5 eV)
and the conduction band Cu-4s states. The HF DOS differs
significantly from the other calculations employing a local
exchange potential including EXX-OEP. It is well known that
the HF method systematically leads to band gaps which are by
far too large compared to experiment. In the case of Cu2O, the
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EXX−OEP Total

Cu−d

O−p

PBE

gBJ(1.4,1.1,0.50)

gBJUC(1.4,1.2,0.50)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4
Energy   (eV)

HF

FIG. 4. (Color online) DOS of Cu2O. The Fermi energy is set at

zero.

HF band gap amounts to 10.4 eV, while it is only 2.17 eV in
experiment [83] and 1.44 eV with EXX-OEP. In the occupied
part of the spectrum, it is obvious that the main position of the
Cu-3d peaks are much lower in energy (below −4 eV), while
the bands in the energy range from −4 to 0 eV are a mixture
of Cu-3d and O-2p states. For other systems, a comparison
between the HF and EXX-OEP occupied spectrum can be
found in, e.g., Refs. [43,84,85].

For NiO, the semilocal methods lead to DOS that differ
markedly from the EXX-OEP DOS. As already discussed in
Refs. [12,61] the spin-up highest valence bands (between −0.8
and 0 eV) and lowest conduction bands in the EXX-OEP DOS
are of Ni-3d character coming from the Ni atom with more

spin-down electrons (Ni2 with t
↑

2g occupied and e
↑
g empty),

EXX−OEP Total

Ni1−d

Ni2−d

O−p

PBE

gBJ(0.4,1.3,0.65)

−10 −8 −6 −4 −2 0 2 4 6 8
Energy   (eV)

HF

FIG. 5. (Color online) Spin-up DOS of NiO. The Fermi energy

is set at zero.

while the spin-up states between −7.5 and −2 eV are mixtures

of Ni-3d from the Ni atom Ni1 (t
↑

2g and e
↑
g fully occupied) and

O-2p. Therefore, EXX-OEP leads to a clear energy separation
between the spin-up and spin-down Ni-3d states of the same
Ni atom. In the PBE DOS the position of the conduction states
is much too low and there is no Ni-3d peak similar to the one
at ∼−7.5 eV in the EXX-OEP DOS. In addition, there is very
little energy separation between the spin-up 3d states coming
from the two Ni atoms. The gBJ(0.4,1.3,0.65) potential leads
to a good band gap and a separation of ∼0.5 eV between the
spin-up 3d states from the two Ni atoms; however, there is still
no Ni-3d peak at the lower part of the valence DOS, which can
only be obtained by the LDA+U [81] or HF/hybrid [86–89]
methods. We mention that the gBJ potentials with small values
of c (1.0 or 1.1) and the gBJUC potentials do not produce any
energy separation between the 3d states of the two Ni atoms.
The valence part of the HF DOS starts at −10 eV and about five
sharp Ni-3d peaks are equally distributed in the energy range
−10 to −5 eV, while the DOS from −3 to 0 eV is exclusively
of O-2p character. The HF band gap is 13.9 eV, which is in fair
agreement with previous HF results [86–88]. In experiment, a
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TABLE IV. Spin magnetic moment µNi
S (in µB) inside the Ni

atomic sphere of radius 1.016 Å in NiO and EFG of Cu (in

1021 V/m2) in Cu2O.

EFGCu

Method µNi
S Total p-p d-d

EXX-OEP 1.91 −17.7 −25.0 7.2

LDA 1.30 −4.7 −15.7 10.8

PBE 1.43 −5.6 −16.3 10.5

B88 1.43 −5.6 −16.3 10.5

EV93 1.51 −6.8 −17.5 10.4

AK13 1.58 −8.1 −18.5 10.1

BJ 1.53 −7.4 −17.7 10.2

BJUC 1.41 −11.3 −19.4 7.9

gBJ(0.6,1.0,0.60)a 1.61 −7.0 −17.6 10.5

gBJ(1.4,1.1,0.50)b 1.66 −8.3 −19.3 10.8

gBJ(0.4,1.3,0.65)c 1.86 −5.1 −18.2 13.0

gBJUC(1.4,1.2,0.50)d 1.59 −15.1 −22.2 6.8

HF 1.88 −17.0 −25.0 7.9

Expt. 1.90 ± 0.2e 9.8f

aGood compromise for the EXX total energy of C, Si, BN, MgO, and

Cu2O.
bGood compromise for transition energies in C, Si, BN, and MgO.
cGood compromise for transition energies and Ni magnetic moment

in NiO.
dGood compromise for transition energies and EFG in Cu2O.
eDoes not include the orbital contribution µNi

L = 0.32 ± 0.05µB

(Refs. [92,93]).
fOnly the magnitude is known. Calculated using the quadrupole

moment Q
(

63Cu
)

= 0.22 (Refs. [94,95]).

gap of 4.0–4.3 eV is observed [90,91], while EXX-OEP gives
rise to 3.54 eV.

C. EFG of Cu2O and magnetic moment in NiO

As shown in Refs. [96,97] the EFG is mainly determined by
the nonspherical electron density close to the nucleus. Since
the density of the core electrons is (by construction) purely
spherical, it is the electron density of the valence states that
determines the EFG. Moreover, in the case of a 3d-transition
metal like Cu, the valence electron density in a region of a few
tenths of an angstrom from the nucleus is decisive. Hence, by
comparing the EFG of Cu2O for the different potentials we
indirectly measure the difference in the nonspherical part of
the valence electron density. The results for the EFG of Cu are
shown in Table IV. Similarly to the transition energies in Cu2O
(see Sec. IV B 1), only the gBJ potential with the UC (gBJUC)
is able to reproduce the EXX-OEP EFG qualitatively. For
instance, with the parameters (1.4,1.2,0.50), gBJUC leads to
an EFG of −15.1 × 1021 V/m2, while for all other potentials
(except BJUC), the magnitude of the EFG does not exceed
10 × 1021 V/m2. For gBJUC(1.4,1.2,0.50), not only the total
EFG, but also its two main components (p-p and d-d) agree
rather well with the EXX-OEP (and HF) values (see Table IV).
A detailed analysis of the UC will be provided in Sec. IV D.
A calculation with the nonmultiplicative HF potential leads to
an EFG of −17.0 × 1021 V/m2 which is relatively close to the
EXX-OEP value and expected since the first-order change in

the electron density due to the replacement vHF
x,i → vEXX-OEP

x

is zero [98–100]. The magnitude of the experimental EFG
amounts to 9.8 × 1021 V/m2 (Refs. [94,95]), which is much
smaller than the EXX-OEP or HF values. Thus, the impact
of the electron correlation on the EFG is significant: the
EXX-OEP value has to be reduced by the exact correlation
functional nearly by its half. Furthermore, it was shown
in Refs. [77,82,101–103] that the LDA, GGA, LDA+U ,
on-site-hybrid [89,104], and mBJ methods lead to an EFG
in Cu2O which is by far too small. The experimental value
could only be approached with full hybrid functionals.

Next we turn the discussion to the spin magnetic moment
µNi

S of Ni in NiO (results in Table IV). In contrast to the
EFG, µNi

S is determined by the difference of the spherical
spin-up and spin-down electron densities in the atomic spheres.
The best agreement with the EXX-OEP Ni spin magnetic
moment is obtained by the gBJ potential with a c parameter
of at least 1.2, which is in accordance with the observations
for the EXX total energy and transition energies in Secs. IV A
and IV B 1. In fact, the parameters (0.4,1.3,0.65) of the gBJ
potential lead to µNi

S = 1.86µB, which is very close to the
EXX-OEP, HF, and experimental values. All other investigated
potentials substantially underestimate the EXX-OEP spin-
magnetic moment.

D. Analysis of the potentials

In the following, the results of the previous subsections are
set in relation to the spatial form of the different exchange
potentials. We start with discussing the exchange potential of
C in the (110) plane (see Fig. 6). Since the LDA potential
depends only on the electron density ρ, the corresponding
contour plot is the most structureless. In comparison to the
other potentials it exhibits a more spherical shape around the
C atoms and is less corrugated in the interstitial region. It is less
attractive (i.e., negative) than EXX-OEP in the bonding region,
but more attractive in the interstitial. Therefore, compared
to LDA there is a transfer of electrons from the interstitial
to the bonding region with EXX-OEP (see Sec. IV E). The
GGA potentials (PBE, B88, EV93, and AK13), that depend
additionally on the first and second derivatives of ρ, show
stronger spatial variations. For example, the PBE potential is
more undulated than LDA, but features seen in the EXX-OEP
are still reproduced too weakly or completely missing. (B88
is not shown since its contour plot is very similar to the PBE
plot.) The GGA potentials EV93 and AK13 as well as the gBJ
potential are more anisotropic. The gBJ potential leads to an
improved agreement with EXX-OEP both in the bonding and
interstitial regions, whereas the EV93 and AK13 potentials
show too much variation in the interstitial region. We note that
similar conclusions can be drawn for Si, BN, and MgO.

However, it is also clear from Fig. 6 that the agreement
between EXX-OEP and the best semilocal potentials (gBJ) is
not perfect and that differences are still present. For a more
detailed analysis we show in Fig. 7 one-dimensional potentials
plots for Si. It becomes evident from Fig. 7(a) that AK13 (and
to a lesser extent also EV93) leads to completely unphysical
oscillations in the interstitial region of Si, while the EXX-OEP
and gBJ potentials are rather flat and very similar to each other
in this region. Actually, we have observed that in general the
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TRAN, BLAHA, BETZINGER, AND BLÜGEL PHYSICAL REVIEW B 91, 165121 (2015)

FIG. 6. (Color online) Two-dimensional plots of exchange po-

tentials vx in a (110) plane of C. The potentials were shifted such that
∫

cell
vx(r)d3r = 0. The contour lines start at −2 Ry (blue color) and

end at 1 Ry (red color) with an interval of 0.2 Ry.

AK13 and EV93 potentials show such large oscillations in
the wide interstitial regions present in such open structures,
which is due to their enhancement factors Fx(s) in Eq. (7)
whose magnitudes are much larger than for PBE and B88
(see Fig. 1). The direct effect of these much more positive
values of the AK13 potential in the interstitial region is to shift
up the unoccupied orbitals (located mainly in the interstitial)
relative to the occupied ones, thus explaining the positive (or
less negative than for most other potentials) AK13 values for
the ME on the transition energies (Table II).

In Fig. 7(b) we can see that the height of the intershell
peak at d ∼ 0.6 Å is strongly underestimated and washed out
by PBE, whereas EV93 and AK13 tend to overestimate the
peak height for Si. However, with increasing atomic number
the ability of the AK13 and EV93 potentials to reproduce the
height and position of the intershell peaks seems to improve.
As shown in Fig. 8, in the vicinity of the Cu atom both
AK13 and EV93 mimic the EXX-OEP quite accurately, while
substantial differences are present at the O atom [see Fig. 8(c)].
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FIG. 7. (Color online) Exchange potentials vx in Si plotted from

the vicinity of the atom at site (1/8,1/8,1/8) (d = 0) to (a) the center

of the unit cell (d = 3.53 Å) or (b) the mid-distance to the atom at

site (5/8,5/8,1/8) (d = 2.38 Å). The potentials were shifted such

that
∫

cell
vx(r)d3r = 0.

Similar observations hold for the intershells peaks in NiO. This
is in agreement with Refs. [17,29] which show that AK13
and EV93 reproduce very accurately the position and height
of the intershell peaks in transition-metal atoms. As already
discussed in Sec. II B and shown in Fig. 2, the height and
position of the peaks with gBJ depend strongly on the three
parameters γ , c, and p. As shown in Fig. 7(b), the intensity
of the peak is too large with (γ,c,p) = (1.4,1.1,0.50), but too
weak with (γ,c,p) = (0.6,1.0,0.60) (not shown).

Concerning the BJ-based potential with the UC, gBJUC,
the results are very bad for the EXX total energy and energy
position of core states as discussed above (see Tables I and III).
This is a consequence of the very inaccurate gBJUC potential
in the region close to the nuclei as shown in Figs. 8(a) and 8(c).
As discussed in Sec. II B, the effect of replacing the kinetic-
energy density t by D in the second term of Eq. (16) is very
large in the core region with the consequence that the potential
becomes too attractive. On the contrary, without the UC the
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FIG. 8. (Color online) Exchange potentials vx in Cu2O plotted from the Cu atom at site (1/2,1/2,0) (d = 0) in the direction of the O atom

at site (3/4,3/4,3/4) (d = 3.54 Å). Logarithmic scales on the x axis were used for panels (a) and (c) which correspond to the vicinity of the

Cu and O atoms, respectively. The potentials were shifted such that
∫

cell
vx(r)d3r = 0.

gBJ potential resembles the EXX-OEP very closely in the
core region [except at the position of the intershell peaks; see
Figs. 8(a) and 8(c)].

However, for Cu2O it was mandatory to use the UC in
order to obtain qualitative agreement with EXX-OEP for the
transition energies and EFG. For the EFG in particular, this
could seem puzzling that the gBJUC potential gives good
results despite that it looks quite inaccurate close to the Cu
nucleus. However, as already mentioned in Sec. IV C, the EFG
is determined by the nonsphericity of the electron density ρ

near the nucleus. More specifically, the EFG is determined
essentially by the radial function ρLM with (L,M) = (2,0)
of the spherical harmonics expansion of the electron density
inside the atomic sphere [96]. Figure 9(a) shows the (expected)
very good agreement between the gBJUC, EXX-OEP, and HF
methods for ρ20 (and also for ρ40 but not ρ00). By looking at the
corresponding radial function vx,20 of the exchange potential
[see Fig. 9(b)], we can observe a rather good agreement
between gBJUC and EXX-OEP in the region beyond 0.2 Å,
which mainly concerns the d-d component of the EFG (see
Table IV). We mention that the radial functions ρ20 and vx,20

obtained with B88, EV93, and AK13 are qualitatively similar
to PBE and gBJ without UC. For the p-p component, the
agreement between gBJUC and EXX-OEP also comes from
the valence region of the Cu atom and the interstitial, and, as
shown in Fig. 8(b), these two potentials are relatively close
to each other in this region. Actually, the correct description
of the Cu-p states far away from the Cu nucleus affects the
anisotropy of the Cu-p states close to the Cu nucleus. These
similarities observed in the EXX-OEP and gBJUC potentials
can also explain the agreement for the transition energies.

Turning to antiferromagnetic NiO, the difference v
↑
x − v

↓
x

between the spin-up and spin-down exchange potentials is
shown in Fig. 10. The angular eg shape around the Ni atoms
is the most pronounced with the EXX-OEP and gBJ [with
(γ,c,p) = (0.4,1.3,0.65)] potentials, thus leading to the large
band gaps between the t2g and eg states of the minority spin
(see DOS in Fig. 5) in comparison to the other potentials.

However, it can also be observed that the magnitude of v
↑
x − v

↓
x

is the largest with EXX-OEP (i.e., compared to gBJ there are
a couple of additional isolines between the Ni and O atoms),
which could explain the large exchange splitting between the
spin-up and spin-down states observed in Fig. 5 for EXX-OEP.

E. Analysis of the electron density

Figure 11 shows the electron density in Si obtained from
various potentials minus the LDA density, which serves as
reference. As discussed above for the case of C (Fig. 6),
which is very similar to Si and BN, the GGA, gBJ, and
EXX-OEP potentials are more attractive (repulsive) than
LDA in the bonding (interstitial) region of Si. Consequently,
the electron density is increased (decreased) in the bonding
(interstitial) region. From Fig. 11 it is rather clear that the
gBJ and EXX-OEP potentials lead to very similar electron
densities, while the EV93 and AK13 densities are, compared
to EXX-OEP, too large (small) in the bonding (interstitial)
regions.

As shown in Fig. 12 for NiO, the effect of using a
beyond-LDA potential is to increase the spin-up electron
density ρ↑ on the Ni atom with a full spin-up 3d shell (red
regions around the Ni atom at the left upper corner) and
to decrease the spin-down density ρ↓ on the same Ni atom
(which corresponds to ρ↑ around the other Ni atom). This
results in an increase of the magnetic moment of the Ni
atom as discussed above (see Table IV). The other effect of
using a beyond-LDA potential is to increase the ionicity (red
regions around the O atoms). More quantitatively, compared
to LDA the number of electrons inside the sphere of the Ni
atom changes by +0.01 (PBE), −0.01 (EV93, AK13), −0.14
[gBJ(0.4,1.3,0.65)], and −0.11 (EXX-OEP), while for the O
atom the changes are +0.10 (PBE), +0.16 (EV93), +0.23
(AK13), +0.47 [gBJ(0.4,1.3,0.65)], and +0.35 (EXX-OEP),
which shows that gBJ reproduces quite accurately the trends
of EXX-OEP. From Fig. 12, it is also rather clear that the
gBJ(0.4,1.3,0.65) and EXX-OEP electron densities are overall
very similar (note in particular the asymmetry of the 3d density
around the Ni atom with partially filled spin-up electrons).
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FIG. 9. (Color online) Plots of the radial functions ρ20 (a) and

vx,20 (b) versus the distance from the Cu atom in Cu2O. The functions
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In Fig. 13 we show the density of the core electrons of the
Cu atom in Cu2O. Compared to the density ρcore obtained with
EXX-OEP, the PBE core density is less contracted since it
has smaller values for r < 0.14 Å but is larger for r > 0.14 Å.
The reverse is true for the gBJUC potential since the positive

values of ρ
gBJUC
core − ρEXX-OEP

core are on average closer to the
nucleus than the negative values, which is a consequence of
the fact that close to the nuclei gBJUC is much more attractive
than the EXX-OEP and all other potentials (as discussed in
Secs. II B and IV D). The AK13 and gBJ potentials lead to
trends similar to PBE; however the discrepancies with respect
to EXX-OEP are reduced. Note also that the gBJ potential
with the parameters (γ,c,p) = (0.6,1.0,0.60), which are more
appropriate for the EXX total energy, leads to a slightly more
accurate core density than with the values (1.4,1.1,0.50) that
were determined for the transition energies.

FIG. 10. (Color online) Two-dimensional plots of the difference

between spin-up and spin-down exchange potentials (v↑
x − v↓

x ) in a

(001) plane of antiferromagnetic NiO. The contour lines start at −2

Ry (blue color) and end at 2 Ry (red color) with an interval of 0.235

Ry. The Ni atom with a full spin-up 3d shell is at the left upper corner.

V. SUMMARY AND OUTLOOK

In this work, we have compared several approximate
semilocal exchange potentials to the exact EXX-OEP. The
closeness between the semilocal and EXX-OEP potentials was
quantified by considering the EXX total energy and electronic
band structure for various solids, as well as the EFG in Cu2O
and the magnetic moment in NiO. An attempt to parametrize
a semilocal BJ-based potential has also been made and we
have shown that by the introduction of a few parameters,
it was possible to improve substantially the agreement with
EXX-OEP compared to the GGA and original BJ potentials.
However, it became also obvious that there is no universal set of
parameters that leads to satisfying results for all properties and
solids at the same time. For instance, if a set of parameters is
appropriate for the EXX total energy (or electronic structure)
of C, Si, BN, and MgO, then it will not work so well for
antiferromagnetic NiO, and vice versa. Another example was
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FIG. 11. (Color online) Electron density ρ obtained with dif-

ferent exchange potentials minus ρLDA plotted in a (110) plane

of Si. The contour lines start at −0.001 electrons/bohr3 (blue

color) and end at 0.001 electrons/bohr3 (red color) with an interval

of 0.0002 electrons/bohr3.

Cu2O for which it is mandatory to use the UC to obtain
qualitative agreement with EXX-OEP for the band gap and
EFG, while the UC is very detrimental for the EXX total
energy and energy position of the core states in all solids.

From the results, it is clear but not surprising that although
the BJ-based potentials lead to interesting results, the semilocal
approximations show limitations and, furthermore, there is no
systematic way to improve their accuracy. Beyond the semilo-
cal level of theory, there is the group of exchange potentials
which consist of the nonlocal Slater potential vS

x [Eq. (9)] plus
a term which is either nonlocal [like in the Krieger-Li-Iafrate
(KLI) [105] or localized HF (LHF) [106,107] potentials] or
local with an eventual dependency on the energies of the
occupied orbitals [20,108]. The computational cost of these
potentials is rather high since the Slater potential and the
nonlocal terms require the calculation of HF-type integrals
(see Ref. [85] for a summary of the expression of these
potentials). These nonlocal potentials avoid some of the

FIG. 12. (Color online) Spin-up electron density ρ↑ obtained

with different exchange potentials minus ρLDA
↑ plotted in a

(001) plane of antiferromagnetic NiO. The contour lines start at

−0.005 electrons/bohr3 (blue color) and end at 0.005 electrons/bohr3

(red color) with an interval of 0.001 electrons/bohr3. The Ni atom

with a full spin-up 3d shell is at the left upper corner.

technical difficulties of EXX-OEP as their construction in-
volves only the occupied orbitals. There are numerous studies
on the Slater-based potentials and we just mention Ref. [109]
where it was shown that the KLI- and LHF-generated orbitals
lead to EXX total energy of atoms which are much lower
than with BJ orbitals. However, Engel (Ref. [61]) noted that
the KLI approximation is not able to open the band gap in
antiferromagnetic FeO, while a band gap of 1.66 eV is obtained
with EXX-OEP (augmented by LDA for correlation).

On the other hand, as already mentioned in Sec. II B, the
semilocal BR potential [70] [Eq. (10)] seems to reproduce
(at least visually) quite accurately the features of the Slater
potential in atoms [23,70]; however, the agreement is not
perfect (see Ref. [34]) and the comparison of the EXX total
energies evaluated with BJ(Slater) and BJ(BR) orbitals shows
nonnegligible differences in some cases [23]. Avoiding the
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FIG. 13. (Color online) The difference between the density ρcore

of the core electrons of Cu in Cu2O calculated with semilocal

functionals and ρcore from EXX-OEP (multiplied by 4πr2).

calculation of the Slater potential by using the BR potential
instead would certainly be advantageous, but more comparison
studies between the BR and Slater potentials are needed.

A possible way of improving the reliability of a semilocal
potential (e.g., gBJ) to reproduce EXX-OEP could be to use
a similar parametrization as the one used for the constant c in
the mBJ potential [39] [Eq. (15)]:

c = α + β

(

1

Vcell

∫

cell

|∇ρ(r′)|

ρ(r′)
d3r ′

)1/2

, (17)

where α and β are parameters and Vcell is the unit cell
volume. It has been shown that with the optimized values
α = −0.012 and β = 1.023 bohr1/2, mBJ reproduces with
rather great accuracy the experimental band gap of many
solids [39,82,110,111]. Actually, the use of an integral
expression like Eq. (17) is a way to introduce nonlocality
(similarly to that with the Slater potential), but in a cheap

way since there is no summation over orbitals like in the
Slater potential. However, the drawback of using the average
of |∇ρ|/ρ in the unit cell is that this quantity is infinite for
systems with an infinite vacuum (e.g., isolated molecule or
surface). An alternative to Eq. (17) which can be applied to any
kind of systems might be helpful in improving the universal
character of a potential like gBJ. For instance, as suggested by
Marques et al. in Ref. [112], a possibility would be to make c

r-dependent and the integrand in Eq. (17) localized around r

by multiplying |∇ρ|/ρ by a function of |r − r′| which goes to
zero at |r − r′| → ∞.

In order to adjust the parameters of an approximate
functional for each system, an approach as suggested in
Ref. [113] might be helpful. The free parameters of the
potential are adapted at each iteration such that the EXX
total energy becomes minimal. However, such a procedure
is rather expensive since the equations to determine the
parameters involve HF-like matrix elements between occupied
and unoccupied orbitals. Nevertheless, this would be a way to
adjust the parameters for each solid and therefore improve the
universality of the potential.

Moreover, we mention the work of Staroverov and co-
workers [85,109] who proposed an expression for a multiplica-
tive exchange potential (making no use of unoccupied orbitals)
which leads to results that are quasi-identical to the EXX-OEP
results. However, this approach requires the HF orbitals which
reduces its use for solids and large-scale applications.

Finally, we note the very few studies reporting OEP calcula-
tions including correlation like the random-phase approxima-
tion (RPA) in addition to EXX (see Refs. [48,49,59,60,62] for
results on solids). The RPA-OEP potentials could certainly also
serve as reference for the modeling of realistic multiplicative
exchange-correlation potentials vxc including correlation.
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[43] S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).

[44] J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).

[45] T. Kotani, Phys. Rev. B 50, 14816 (1994).

[46] T. Kotani, Phys. Rev. Lett. 74, 2989 (1995).

[47] T. Kotani and H. Akai, Phys. Rev. B 54, 16502 (1996).

[48] T. Kotani, J. Phys.: Condens. Matter 10, 9241 (1998).

[49] T. Kotani and H. Akai, J. Magn. Magn. Mater. 177–181, 569

(1998).

[50] M. Städele, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev.

Lett. 79, 2089 (1997).
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[52] W. G. Aulbur, M. Städele, and A. Görling, Phys. Rev. B 62,

7121 (2000).

[53] A. Fleszar, Phys. Rev. B 64, 245204 (2001).

[54] R. J. Magyar, A. Fleszar, and E. K. U. Gross, Phys. Rev. B 69,

045111 (2004).

[55] P. Rinke, A. Qteish, J. Neugebauer, C. Freysoldt, and

M. Scheffler, New J. Phys. 7, 126 (2005).

[56] A. Qteish, A. I. Al-Sharif, M. Fuchs, M. Scheffler, S. Boeck,

and J. Neugebauer, Phys. Rev. B 72, 155317 (2005).

[57] A. Qteish, P. Rinke, M. Scheffler, and J. Neugebauer, Phys.

Rev. B 74, 245208 (2006).

[58] P. Rinke, M. Scheffler, A. Qteish, M. Winkelnkemper,

D. Bimberg, and J. Neugebauer, Appl. Phys. Lett. 89, 161919

(2006).
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