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Abstract – Mechanics play a significant role during tissue development. One of the key char-
acteristics that underlies this mechanical role is the homeostatic pressure, which is the pressure
stalling growth. In this work, we explore the possibility of a negative bulk homeostatic pressure
by means of a mesoscale simulation approach and experimental data of several cell lines. We show
how different cell properties change the bulk homeostatic pressure, which could explain the benefit
of some observed morphological changes during cancer progression. Furthermore, we study the
dependence of growth on pressure and estimate the bulk homeostatic pressure of five cell lines.
Four out of five result in a bulk homeostatic pressure in the order of minus one or two kPa.

Introduction. – While growth of eukaryotic cells is
mainly determined by signaling and nutrition, the notion
that mechanics also play a role has been advancing con-
tinuously over the years. Ingber and colleagues noted
already thirty years ago that tensile stresses can regu-
late tissue architecture [1]. Today, mechanotransduction
and mechanobiology are important fields of research [2,3].
From a physics point of view, a cell has to increase its
volume in order to accommodate for new cell material.
In terms of thermodynamics, pressure is the conjugated
variable of volume. Therefore, it seems natural to investi-
gate the pressure cells can develop as well as its feedback
onto growth. Mechanical feedback on growth has been
implemented in many different ways [4, 5]. One intuitive
approach is to expand the growth rate in powers of the
pressure around the zero growth rate pressure – the home-

ostatic pressure [6]. In this theory, the homeostatic state
of a tissue is characterized by the balance of cell division
and cell death (apoptosis) rate, which reflects a dynamic
steady state with respect to the number of cells. The tis-
sue maintains a well defined pressure, called homeostatic
pressure PH , and the overall growth rate k around the
homeostatic state depends on the difference between PH

and the externally imposed pressure P i:

k = κ(PH − P i). (1)

The concept is best understood with a simple gedankenex-
periment : a tissue is confined in a small chamber, where
one of the walls acts as a movable piston connected to a
spring. Cells are placed inside the chamber and the tis-
sue grows, compressing the spring. Eventually, the force
exerted by the piston on the cells is large enough to slow
down division, yielding a steady state, where apoptosis
balances cell division.
It is a challenging task to measure this homeostatic pres-

sure experimentally. In some attempts, researchers em-
bedded cells in an elastic shell that can be deformed by
the tissue, but the tissue never reached a steady-state and
therefore a well-defined pressure [7]. Another approach
exerted a compressive stress directly onto multicellular
spheroids [5,8,9], which resulted in a slow down in growth.

A detailed analysis showed that spheroid growth is
highly dominated by surface effects in the sense that cell
division happens mainly at the first 2-3 cell layers of the
free surface. Although some physiological gradients of nu-
trients or growth factors exist [10], this surface growth ef-
fect is also seen in simulations [9], where we can decouple
the mechanics from the biochemistry. A possible intuitive
explanation by simple mechanics would be as follows. A
growing cell increases its volume, creating a strain dipole.
The energy required to insert such a dipole at the surface
of the tissue is smaller than in the bulk as in the former
case part of the necessary strain field is cut away. There-
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system reaches its homeostatic state, where the measured
pressure equals the homeostatic pressure.

Experimentally, pressure is applied to spheroids by
adding a biocompatible polymer, Dextran, to the cul-
ture medium. Dextran does not penetrate the spheroid,
and rather exert an osmotic stress onto the whole struc-
ture. This method, however, can only apply compressive
stresses onto the surface of a growing spheroid. The effect
of Dextran can be mimicked in the simulations by a purely
repulsive van der Waals gas, which then applies the stress
on the system [8,9, 11]. This method, however, requires a
complete tissue spheroid placed in a simulation box with
hard walls. The pressure applied on the spheroid due to
the additional gas particles is then calculated from the
momentum transfer onto the walls. A direct comparison
of the results of the constant pressure ensemble and the
van der Waals gas show a perfect agreement. However,
the constant pressure ensemble is computationally much
more efficient (due to its smaller system size) and addi-
tionally can also impose tensile stresses onto the system.
Therefore, all bulk growth rate related results shown in
this article, were obtained with this method.

The experimental data consists of 5 distinct cell lines of
immortalized cells. The CT26 and HT29 cell lines both
come from colon carcinoma (HT29 originate from a human
tumor and have a more epithelial phenotype, while CT26
originate from a murine tumor and have a mesenchymal
phenotype). The AB6 cell line comes from the immortal-
ization of murine spontaneous sarcoma and also have a
mesenchymal phenotype. The FHI cell line, coming from
Schwannoma, and the BC52 cell line, coming from human
breast cancer, both have an epithelial phenotype.

Results. – With the gedankenexperiment described
above, we have seen how a negative homeostatic pressure
could still form a macroscopic tissue and develop a tensile
state (See Fig. 1). However, to quantify the stress repsonse
of the tissue this setup might still contain boundary effects.
We thus utilize the constant pressure ensemble to better
understand the response of growing tissues to mechani-
cal stresses and describe experimental data in more de-
tail. Starting from the standard parameter set as defined
in [8,9], we investigated the bulk homeostatic pressure de-
pendence on different model parameters. We focused on
the growth force strength B∗, the adhesion strength f∗

1

and the cell stiffness K, since these parameters have a
straightforward analogon in real tissues and can in princi-
ple be measured [15–23]. The results are shown in Fig. 2
and display a linear relationship between P b

H
and f∗

1 and
B∗, respectively. The critical adhesion strength f∗

c
(B∗)

characterizes the transition from a negative to a positive
P b

H
. Finally, we find P b

H
to increase with the compressibil-

ity K (see Fig. 2b). This increase is somewhat nonlinear
and the slope changes with B∗.

A negative P b

H
naturally leads to a stable steady state

for a freely growing tissue. Assuming a similar two rate
growth model as in [8], the time evolution of the radius R
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Fig. 2: Bulk homoestatic pressure dependence on model pa-
rameters. a) Bulk homeostatic pressure P b

H in simulation units
as a function of adhesion strength f∗

1 and growth force B∗.
Solid lines represent linear fits. b) Bulk homeostatic pressure
P b
H as a function of cell compressibility K. Solid lines represent

linear fits. All data were measured in full periodic boundaries.
Error bars represent standard deviations.
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Fig. 3: Steady state radius Rss of a freely growing spheroid as
a function of adhesion strength f∗

1 for different growth forces
B∗. The solid lines represent fits of Rss = α/(f∗

1
−f∗

c
). All data

were measured in full periodic boundaries. Error bars represent
standard deviations.
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Fig. 4: Growth rate under compression and tension. a), bulk
growth rate kb as a function of the imposed pressure P i for
several parameter sets. b), same as in a) but shifted by the
bulk homeostatic pressure P b

H , which collapses all curves onto
one. Note the two linear regimes.

of such a tissue spheroid reads:

∂tR
3 = kbR

3 + 3λδksR
2, (4)

where kb is the growth rate in bulk and δks > 0 is the
growth rate increment in a small region λ at the surface.
A stable steady state (∂tR

3 = 0) can only arise if kb < 0
and δks > −kb. An unstable steady state exists for kb > 0
and δks < −kb. Plugging equation (1) into equation (4)
leads to a steady state radius Rss ∝ 1/P b

H
, which can be

rewritten to Rss ∝ 1/(f∗

1 −f∗

c
) using our earlier simulation

results, diverging at the same critical adhesion strength.
This dependence is perfectly reproduced in the simulations
as shown in Fig. 3.
As a next step, we analyzed the bulk growth rate kb for

a wide range of imposed pressures P i. Although experi-
mentally not yet accessible, we simulated not only tissues
under compression (P i > 0) but also tissues under tension
(P i < 0). Our studies reveal a distinct non linearity of the
bulk growth rate kb with the imposed pressure P i.
In Fig. 4 the bulk growth rate is displayed as a func-

tion of the imposed pressure P i for different parameter
sets. The general behavior separates into three distinct
regimes. Equation (1) holds in the domain close to the

 1

 10

 100

-8 -6 -4 -2  0

S
u

m
 o

f 
s
q

u
a

re
d

 r
e

s
id

u
a

ls
 χ

2

Bulk homeostatic pressure P
b
H [kPa]

 0.9  1  1.1  1.2  1.3

Adhesion strength f1
*

 0.8

 1

 1.2

 1.4

G
ro

w
th

 f
o

rc
e

 s
tr

e
n

g
th

 B
 *

 1

 10

 100

S
u

m
 o

f 
s
q

u
a

re
d

 r
e

s
id

u
a

ls
 χ

2

-0.1 -1 -10

Bulk homeostatic pressure P
b
H [kPa]

a)

b)

Fig. 5: Sum of squared residuals. a) The sum of squared residu-
als χ2 as a function of the bulk homeostatic pressure P b

H . There
exists a clear minimum around −1 to −2 kPa. b) The sum of
squared residuals χ2 as a function of growth force B∗ and ad-
hesion strength f∗

1 (heat map directly below black crosses with
scale on the right) and the bulk homeostatic pressure P b

H as a
function of the same parameters (heat map above black crosses
with scale above plot). The black crosses mark the exact val-
ues for B∗ and f∗

1 used in the according simulations. Note that
the low χ2 (blue) always coincide with a P b

H of −1 to −2 kPa
(red/orange).

homeostatic pressure (with slope κ), which extends a bit
further towards cell compression. Under stronger tension,
another linear regime with slope κt is observed. The
slopes κ are very similar (κ ≈ (−0.60 ± 0.07) · 10−3)
for all tested parameter sets, while κt seems to change
(κt ≈ (−8.0 ± 1.9) · 10−3), however, not statistically sig-
nificant. The third region reveals an asymptotic behavior,
where cell division is mostly suppressed due to the imposed
pressure and therefore the growth rate kb approaches the
fixed apoptosis rate. All curves fall on top of each other,
when we shift them by their bulk homeostatic pressure.
Former experiments measured the growth of cellular ag-

gregates under pressure [8, 24]. From the growth curves
and the surface growth model of Eq. 4, the bulk growth
rate and the surface rate increment have been extracted
for 5 different cell lines under various intensities of pres-
sure (see Tab. 1). All studied cell lines have a negative
bulk growth rate at zero external pressure, indicative of a
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Table 1: Bulk growth rate kb of several different cell lines with
and without pressure. The pressure PDex exerted by the added
Dextran is 10 kPa for HT29 and CT26 and 5 kPa otherwise.
Furthermore, the bulk homeostatic pressure estimation via lin-
ear interpolation is shown. Growth rates taken from [8,24].

kb(0) [d
−1] kb(PDex) [d

−1] P b

H
[kPa]

AB6 −0.02(1) −0.04(2) −5(7)
BC52 −0.07(1) −0.15(1) −4(1)
FHI −0.59(5) −1.08(37) −6(5)
HT29 −0.0020(1) −0.13(12) −0.16(15)
CT26 −0.24(1) −0.49(10) −14(4)

ing the epithilia to be under tension. Intuitively one could
think a tensile homeostasis is unstable: a simple cut re-
laxes stress, leading to an elevated pressure and thus more
apoptosis. However, as we have shown, the surface growth
effect stabilizes the tensile state. In the simulations we can
perform a 3d virtual laser cut. While a cut leads to a cer-
tain recoil, cells grow faster at the new free surface, closing
the wound (see Fig. 7 and Supplementary Movie S2).

One question that remains unanswered is to what could
be the evolutionary advantage of a tensile homeostatic
state. While we can only speculate, a few ideas suggest
themselves. The combination of surface growth and bulk
death naturally lead to finite sized compartments. The
mechanism described here could be a simple way of size
control. From a mechanics point of view, a tensile tissue
connected to a stiff skeleton seems more capable of sus-
taining its shape and integrity under constantly changing
external forces.
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