000189585 001__ 189585
000189585 005__ 20240711085636.0
000189585 0247_ $$2doi$$a10.1088/1468-6996/16/2/025008
000189585 0247_ $$2ISSN$$a1468-6996
000189585 0247_ $$2ISSN$$a1878-5514
000189585 0247_ $$2Handle$$a2128/8522
000189585 0247_ $$2WOS$$aWOS:000353641100019
000189585 037__ $$aFZJ-2015-02725
000189585 082__ $$a690
000189585 1001_ $$0P:(DE-Juel1)162226$$aDargatz, Benjamin$$b0$$eCorresponding Author$$ufzj
000189585 245__ $$aImproved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering
000189585 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000189585 3367_ $$2DRIVER$$aarticle
000189585 3367_ $$2DataCite$$aOutput Types/Journal article
000189585 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1466149072_27120
000189585 3367_ $$2BibTeX$$aARTICLE
000189585 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189585 3367_ $$00$$2EndNote$$aJournal Article
000189585 520__ $$aThe retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.
000189585 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000189585 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189585 7001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b1$$ufzj
000189585 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
000189585 773__ $$0PERI:(DE-600)2027985-1$$a10.1088/1468-6996/16/2/025008$$gVol. 16, no. 2, p. 025008 -$$n2$$p025008$$tScience and technology of advanced materials$$v16$$x1878-5514$$y2015
000189585 8564_ $$uhttp://iopscience.iop.org/1468-6996/16/2/025008/
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/1468-6996_16_2_025008.pdf$$yOpenAccess
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/Dargatz_2015_STAM.pdf$$yOpenAccess
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/1468-6996_16_2_025008.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/Dargatz_2015_STAM.gif?subformat=icon$$xicon$$yOpenAccess
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/Dargatz_2015_STAM.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/Dargatz_2015_STAM.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/Dargatz_2015_STAM.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/Dargatz_2015_STAM.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000189585 8564_ $$uhttps://juser.fz-juelich.de/record/189585/files/Dargatz_2015_STAM.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189585 8767_ $$88035092$$92015-04-30$$d2015-10-14$$eAPC$$jZahlung erfolgt
000189585 909CO $$ooai:juser.fz-juelich.de:189585$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000189585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162226$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000189585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000189585 9130_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000189585 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000189585 9141_ $$y2015
000189585 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000189585 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189585 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189585 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189585 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189585 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189585 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189585 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000189585 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000189585 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189585 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000189585 920__ $$lyes
000189585 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000189585 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000189585 9801_ $$aFullTexts
000189585 980__ $$ajournal
000189585 980__ $$aVDB
000189585 980__ $$aI:(DE-Juel1)IEK-1-20101013
000189585 980__ $$aI:(DE-82)080011_20140620
000189585 980__ $$aUNRESTRICTED
000189585 980__ $$aAPC
000189585 981__ $$aI:(DE-Juel1)IMD-2-20101013