000189590 001__ 189590
000189590 005__ 20240709094316.0
000189590 037__ $$aFZJ-2015-02728
000189590 041__ $$aEnglish
000189590 1001_ $$0P:(DE-Juel1)144939$$avan Holt, Désirée$$b0$$eCorresponding author
000189590 1112_ $$aEuroMembrane 2015$$cPrague$$d2015-07-04 - 2015-07-10$$wCzech Republic
000189590 245__ $$aHigh-Temperature Systems for a catalytic CO-Shift Membrane Reactor
000189590 260__ $$c2015
000189590 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1468331144_14482
000189590 3367_ $$033$$2EndNote$$aConference Paper
000189590 3367_ $$2BibTeX$$aINPROCEEDINGS
000189590 3367_ $$2DRIVER$$aconferenceObject
000189590 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000189590 3367_ $$2ORCID$$aOTHER
000189590 520__ $$aHigh-Temperature Systems for a catalytic CO-Shift MembraneReactorDésirée van Holt, Emanuel Forster , Wilhelm A. Meulenberg, Michael Müller, Mariya E.Ivanova, Stefan Baumann, Robert VaßenForschungszentrum Jülich, Institute of Energy and Climate Research, Leo-Brandt-Str., D-52425Juelich, Germanycorresponding author: d.van.holt@fz-juelich.deThe sequestration of CO2 via H2-selective, ceramic membranes in an IGCC-power plantis a highly interesting method, particularly for the high-temperature range of600 °C − 900 °C, due to the low efficiency losses that can be reached. It was shown thateven for this high-temperature range the utilization of a CO-shift catalyst leads to aconsiderable increase of the CO-conversion, at least up to 900 °C compared to anoperation mode without catalyst[1]. However, the harsh conditions of an IGCC-powerplant lead to very challenging operation conditions for the dense H2-selectivemembranes as well as for the CO-shift-catalysts.The present work aimed at the development of thermo-chemically and microstructurallystable, active and compatible membrane-catalyst systems for futurecatalytic CO-shift membrane-reactors. Therefore, the ceramic mixed protonic electronicconductors BaCe0.2Zr0.7Yb0.08Ni0.02O3−d and La5.5WO12−d were combined with ironbased catalysts like Fe/Cr/Cu-spinels. These materials were already studied intensivelyregarding the planned applications and show very good properties [2]. Additionally, formembrane-catalyst systems it is strongly required that the combined components donot influence each other negatively i.e. by diffusion or reaction.Figure: SEM picture of a cross section through a membrane-catalyst system of a 86Fe14Cr-catalyst on atape cast supported La5.5WO12−d-membrane after operation in a membrane reactor at 850 °C.The investigation identified material combinations that seem to be highly applicablefor future catalytic CO-shift membrane reactors in the high-temperature range up to900 °C. As shown in the figure above, the 86Fe14Cr-spinel catalyst and the La5.5WO12−d-membrane show very good compatibility. Additional investigations on membranereactorperformance, long term stability and scale up are necessary.[1] D. van Holt, Keramische Membranen für die H2-Abtrennung in CO-Shift-Reaktoren, DissertationRuhr-Universität Bochum 2014.[2] D. van Holt, E. Forster, M.E. Ivanova, W.A. Meulenberg, M. Müller, S. Baumann, R. Vaßen, Ceramicmaterials for H2 transport membranes applicable for gas separation under coal-gasification-relatedconditions, J. Eur. Ceram. Soc. 34 (2014) 2381 – 2389.
000189590 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000189590 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000189590 7001_ $$0P:(DE-Juel1)145588$$aForster, Emanuel$$b1
000189590 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b2
000189590 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b3
000189590 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b4
000189590 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b5
000189590 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b6$$ufzj
000189590 773__ $$y2015
000189590 909CO $$ooai:juser.fz-juelich.de:189590$$pVDB
000189590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144939$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145588$$aForschungszentrum Jülich$$b1$$kFZJ
000189590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b2$$kFZJ
000189590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b3$$kFZJ
000189590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b4$$kFZJ
000189590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b5$$kFZJ
000189590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b6$$kFZJ
000189590 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000189590 9141_ $$y2016
000189590 920__ $$lyes
000189590 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000189590 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000189590 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x2
000189590 980__ $$aabstract
000189590 980__ $$aVDB
000189590 980__ $$aI:(DE-Juel1)IEK-9-20110218
000189590 980__ $$aI:(DE-Juel1)IEK-1-20101013
000189590 980__ $$aI:(DE-Juel1)IEK-2-20101013
000189590 980__ $$aUNRESTRICTED
000189590 981__ $$aI:(DE-Juel1)IMD-1-20101013
000189590 981__ $$aI:(DE-Juel1)IET-1-20110218
000189590 981__ $$aI:(DE-Juel1)IMD-2-20101013
000189590 981__ $$aI:(DE-Juel1)IEK-1-20101013
000189590 981__ $$aI:(DE-Juel1)IEK-2-20101013