001     189590
005     20240709094316.0
037 _ _ |a FZJ-2015-02728
041 _ _ |a English
100 1 _ |a van Holt, Désirée
|0 P:(DE-Juel1)144939
|b 0
|e Corresponding author
111 2 _ |a EuroMembrane 2015
|c Prague
|d 2015-07-04 - 2015-07-10
|w Czech Republic
245 _ _ |a High-Temperature Systems for a catalytic CO-Shift Membrane Reactor
260 _ _ |c 2015
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1468331144_14482
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a High-Temperature Systems for a catalytic CO-Shift MembraneReactorDésirée van Holt, Emanuel Forster , Wilhelm A. Meulenberg, Michael Müller, Mariya E.Ivanova, Stefan Baumann, Robert VaßenForschungszentrum Jülich, Institute of Energy and Climate Research, Leo-Brandt-Str., D-52425Juelich, Germanycorresponding author: d.van.holt@fz-juelich.deThe sequestration of CO2 via H2-selective, ceramic membranes in an IGCC-power plantis a highly interesting method, particularly for the high-temperature range of600 °C − 900 °C, due to the low efficiency losses that can be reached. It was shown thateven for this high-temperature range the utilization of a CO-shift catalyst leads to aconsiderable increase of the CO-conversion, at least up to 900 °C compared to anoperation mode without catalyst[1]. However, the harsh conditions of an IGCC-powerplant lead to very challenging operation conditions for the dense H2-selectivemembranes as well as for the CO-shift-catalysts.The present work aimed at the development of thermo-chemically and microstructurallystable, active and compatible membrane-catalyst systems for futurecatalytic CO-shift membrane-reactors. Therefore, the ceramic mixed protonic electronicconductors BaCe0.2Zr0.7Yb0.08Ni0.02O3−d and La5.5WO12−d were combined with ironbased catalysts like Fe/Cr/Cu-spinels. These materials were already studied intensivelyregarding the planned applications and show very good properties [2]. Additionally, formembrane-catalyst systems it is strongly required that the combined components donot influence each other negatively i.e. by diffusion or reaction.Figure: SEM picture of a cross section through a membrane-catalyst system of a 86Fe14Cr-catalyst on atape cast supported La5.5WO12−d-membrane after operation in a membrane reactor at 850 °C.The investigation identified material combinations that seem to be highly applicablefor future catalytic CO-shift membrane reactors in the high-temperature range up to900 °C. As shown in the figure above, the 86Fe14Cr-spinel catalyst and the La5.5WO12−d-membrane show very good compatibility. Additional investigations on membranereactorperformance, long term stability and scale up are necessary.[1] D. van Holt, Keramische Membranen für die H2-Abtrennung in CO-Shift-Reaktoren, DissertationRuhr-Universität Bochum 2014.[2] D. van Holt, E. Forster, M.E. Ivanova, W.A. Meulenberg, M. Müller, S. Baumann, R. Vaßen, Ceramicmaterials for H2 transport membranes applicable for gas separation under coal-gasification-relatedconditions, J. Eur. Ceram. Soc. 34 (2014) 2381 – 2389.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Forster, Emanuel
|0 P:(DE-Juel1)145588
|b 1
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 2
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 3
700 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 4
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 5
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 6
|u fzj
773 _ _ |y 2015
909 C O |o oai:juser.fz-juelich.de:189590
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144939
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129765
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21