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Abstract

Density functional theory (DFT) is the most widely-used first-principles theory for
analyzing, describing and predicting the properties of solids based on the funda-
mental laws of quantum mechanics. The success of the theory is a consequence of
powerful approximations to the unknown exchange and correlation energy of the
interacting electrons and of sophisticated electronic structure methods that enable
the computation of the density functional equations on a computer. A widely used
electronic structure method is the full-potential linearized augmented plane-wave
(FLAPW) method, that is considered to be one of the most precise methods of its kind
and often referred to as a standard. Challenged by the demand of treating chemically
and structurally increasingly more complex solids, in this thesis this method is revis-
ited and extended along two different directions: (i) precision and (ii) efficiency.
In the full-potential linearized augmented plane-wave method the space of a solid

is partitioned into nearly touching spheres, centered at each atom, and the remaining
interstitial region between the spheres. The Kohn-Sham orbitals, which are used to
construct the electron density, the essential quantity in DFT, are expanded into a lin-
earized augmented plane-wave basis, which consists of plane waves in the interstitial
region and angular momentum dependent radial functions in the spheres.

In this thesis it is shown that for certain types of materials, e.g., materials with
very broad electron bands or large band gaps, or materials that allow the usage of
large space-filling spheres, the variational freedom of the basis in the spheres has to
be extended in order to represent the Kohn-Sham orbitals with high precision over a
large energy spread. Two kinds of additional radial functions confined to the spheres,
so-called local orbitals, are evaluated and found to successfully eliminate this error.
A new efficient basis set is developed, named linearized augmented lattice-adapted

plane-wave ((LA)2PW) basis, that enables substantially faster calculations at con-
trolled precision. The basic idea of this basis is to increase the efficiency of the rep-
resentation in the interstitial region by using linear combinations of plane waves,
instead of single plane waves, adapted to the crystal lattice and potential of the solid.
The starting point for this development is an investigation of the basis-set require-
ments and the changes of the basis set throughout the iterative self-consistency loop
inherent to density functional theory. The results suggest the construction of a ba-
sis that is given by eigenfunctions of the first iteration. The precision and efficiency
of this basis from early eigenfunctions is evaluated on a test set of materials with
different properties and for a wide spectrum of physical quantities.





Zusammenfassung

Dichtefunktionaltheorie (DFT) ist die am häufigsten genutzte first-principles Theo-
rie, um Eigenschaften von Festkörpern auf Basis der fundamentalen Gesetze der
Quantenmechanik zu analysieren, zu beschreiben und vorherzusagen. Der Erfolg
dieser Theorie ist eine Konsequenz leistungsfähiger Näherungen für die unbekannte
Austauch- und Korrelationsenergie der interagierenden Elektronen und fortgeschrit-
tener Elektronenstrukturmethoden, die die Berechnung der Dichtefunktionalglei-
chungen auf Computern ermöglichen. Eine weit verbreitete Elektronenstrukturme-
thode ist die full-potential linearized augmented plane-wave (FLAPW) Methode, die
als eine der präzisesten Methoden ihrer Art gilt und oft als Maßstab genutzt wird.
Herausgefordert durch die Bedürfnisse, chemisch und strukturell immer komplexere
Festkörper zu beschreiben, wird diese Methode in dieser Arbeit in zwei Richtungen
überdacht und erweitert: (i) Genauigkeit und (ii) Effizienz.

In der full-potential linearized augmented plane-wave Methode wird der Raum in
einem Festkörper in sich fast berührende, an den Atomen zentrierte Kugeln und dem
übrigbleibenden Interstitialbereich zwischen den Kugeln aufgeteilt. Die Kohn-Sham
Orbitale, die genutzt werden um die essentielle Größe von DFT, die Elektronen-
dichte, zu erzeugen, werden in eine linearized augmented plane-wave Basis ent-wickelt,
die aus ebenenWellen im Interstitialbereich und drehimpulsabhängigen Radialfunk-
tionen in den Kugeln besteht.

In dieser Arbeit wird gezeigt, dass die variationelle Freiheit der Basis in den Kugeln
für bestimmte Materialien, z.B. Materialien mit sehr breiten Bändern oder großen
Bandlücken oder Materialien, die die Nutzung sehr großer Kugeln ermöglichen, er-
weitert werden muss, um die Kohn-Sham Orbitale über einen weiten Energiebereich
hinweg mit hoher Präzision zu beschreiben. Zur Eliminierung des Fehlers werden
zwei Arten von auf die Kugeln beschränkten zusätzlichen Radialfunktionen, soge-
nannten lokalen Orbitalen, evaluiert und als erfolgreich erkannt.

Es wird eine neue effiziente Basis, benannt als linearized augmented lattice-adapted
plane-wave ((LA)2PW) Basis, die substantiell schnellere Berechnungen mit kontrol-
lierter Präzision ermöglicht, entwickelt. Die zugrundeliegende Idee dieser Basis ist
die Steigerung der Effizienz der Darstellung im Interstitialbereich durch Nutzung
kristallgitter- und potentialangepasster Linearkombinationen ebener Wellen anstatt
einzelner ebener Wellen. Der Startpunkt dieser Entwicklung ist eine Untersuchung
der Basissatzanforderungen und der Änderungen der Basis über die iterative Selbst-
konsistenzschleife der Dichtefunktionaltheorie hinweg. Die Resultate regen eine Kon-
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struktion der Basis anhand der Eigenfunktionen der ersten Iteration an. Die Genau-
igkeit und Effizienz dieser basis from early eigenfunctions wird anhand einer Test-
menge vonMaterialien mit unterschiedlichen Eigenschaften für ein breites Spektrum
physikalischer Größen evaluiert.
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1 Introduction

Today’s technological innovations often rely to a significant extent on the develop-
ment of new materials with unique properties adapted to the respective application.
For example, the properties and usefulness of fuel cells, batteries, integrated circuits,
sensors, actuators, computer memories, solar cells, lasers, and many other modern
devices and applications are strongly influenced by the capabilities of the underly-
ing materials. Research responds to these demands with the design and investigation
of materials involving metals, semiconductors, insulators, alloys, composite materi-
als, heterostructures, quantum dots, multiferroics, metamaterials, porous materials,
transparent conducting oxides, quasicrystals, topological insulators, modern steel,
and various other structures. In many cases, the geometries, chemical compositions,
or magnetic characteristics of these materials are very complex. Thus, one can deduce
that understanding and predicting properties of complex materials is an important
key to the future technological development. The required prediction power of the
involved sciences is achieved by sophisticated numerical approaches that have been
established in the last decades as a consequence of the ongoing revolution in com-
puter technology, which follows a miniaturization trend called Moore’s law [1] that
states that the transistor density in integrated circuits grows exponentially with time.
Indeed, the increase of available computational resources together with the develop-
ment of advanced algorithms and scientific models made simulations an invaluable
tool to investigate materials in new ways besides experiments and classical theoreti-
cal modeling.

An important example for this development is the rise and ever refining devel-
opment of density functional theory [2, 3] (DFT) in the domains of condensed mat-
ter physics, chemistry, and biochemistry. DFT allows us to numerically calculate
the quantum mechanical ground states of condensed matter systems, i.e., crystals,
molecules, thin films, clusters of atoms, and so on. This is a task that is infeasible
without the use of computers as it requires tremendous computing resources. The
growth of the available computing capacity allows us to perform such calculations
for more and more complex materials and to realize DFT with an ever increasing
accuracy.

In detail, DFT is based on the fact that a quantum mechanical system of many in-
teracting electrons is completely defined by its ground state density. This finding by
Hohenberg and Kohn means that every observable can be obtained as a functional of
this density. On the basis of this theorem Kohn and Sham then developed a practical
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iterative calculation scheme to obtain the ground state density by mapping the prob-
lem onto a system of noninteracting electrons that features the same ground state
density as the interacting particle system by construction. Solving the quantum me-
chanical problem for this Kohn-Sham system is considerably less demanding than
approaching the interacting particle system directly.
Calculations performed on the basis of density functional theory can have many

uses. For example, they provide information on quantities that are not accessible
through experiments. As a consequence, DFT simulations are often used as a sup-
plement to experiments in order to better understand the experimental results. On
the other hand, DFT calculations can also be a guide for experiments. Since they
are typically less expensive than experiments, it is feasible to investigate more ma-
terials with this numerical approach than with experimental methods. Performing
DFT simulations on a wide set of systems then allows to pick out the most interest-
ing candidates for materials with certain properties and investigate them in more
detail by experiments. Besides the fruitful interplay between DFT simulations and
experiments, DFT calculations can also be used in combination with more abstract
theoretical approaches by providing high-quality input data.

Indeed, the multifarious applications of DFT together with their ever increasing
number have the consequence that the yearly number of scientific publications re-
lated to this method is steadily growing. For the last decades, figure 1.1 shows the
development of the number of publications mentioning DFT in their title or ab-
stract. Meanwhile, one has produced so many DFT results and DFT calculations
have become inexpensive enough such that one starts to collect these results in large
databases to lift materials design to a new level where it is assisted by data mining
techniques. An excellent example for such an approach is the materials project [4].
Nevertheless, practical realizations of DFT are still computationally demanding

such that the complexity of the investigated materials is limited. At the complex-
ity frontier of materials for which DFT simulations are still feasible, calculations
have to be performed on supercomputers with hundreds of thousands of comput-
ing cores. Of course, these high computational demands entail the development of
approaches to reduce them. As a consequence, many different practical approaches to
DFT have been established of which each one is adapted to a certain class of materials,
e.g., molecules or crystals, and represents a unique tradeoff between computational
demands and accuracy by employing different approximations. The choice of the
method used for a given investigation then depends on the material and the require-
ments on accuracy and computational efficiency. The diversity of modern materials
and properties of interest then yields a research environment in which different in-
vestigations require the strengths of different DFT realizations. Thus, a large variety
of DFT implementations is in use and each approach has a wide range of applications
in which it is superior to other DFT realizations.
One of the most accurate and popular practical approaches to DFT for all types

of crystals, thin films, and one-dimensional structures is the all-electron full-potential
linearized augmented plane-wave (FLAPW) method [6, 7]. Irrespective of the chem-
ical composition of the investigated systems this method is often considered to be
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Figure 1.1.: Number of scientific publications mentioning density functional theory. The fig-
ure shows for each year of the last decades the number of publications that in-
clude the term ’density functional theory’ in their title or abstract. It is based on
a search with the Web of Knowledge [5] in scientific journals.

an accuracy standard. The name of the method sketches the main aspects by which
different DFT realizations deviate. All-electronmeans that where a couple of other ap-
proaches only treat the valence electrons of the quantum mechanical systems within
the DFT scheme, the FLAPW method describes all electrons, also energetically deep
lying core electrons on this footing. The next term in the name states that the method
does not make any approximations to the potential in the given material. Lastly, lin-
earized augmented plane-waves (LAPWs) denote a set of basis functions used to repre-
sent the wave functions of the electrons in the given Kohn-Sham problem. The basis
set is a central part within a DFT program that has huge impacts on the precision of
the approach and the computational demands. In the ideal case one has a basis set
that features a very high description efficiency, i.e., the wave functions are precisely
representable with very few basis functions.

Having its origins in J. C. Slater’s augmented plane-wave (APW) method [8] de-
veloped in 1937, the FLAPW method, which was first formulated in 1975 by O. K.
Andersen without treating the full potential, is a major step forward as it consid-
erably reduces the computational demands of the approach by redesigning the basis
functions. In detail, themethod eliminates a dependency of the basis functions on the
eigenvalues of the Kohn-Sham wave functions. It is based on a partitioning of space
into nearly touching so-called muffin-tin (MT) spheres centered at the atomic nuclei
and the interstitial region between the spheres. In each of these regions it comprises
problem-adapted descriptions of the given system. For example, the LAPW basis
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consists of plane waves in the interstitial region that are augmented with numeri-
cally determined radial functions times spherical harmonics in the MT spheres, i.e.,
the radial functions are linearly combined to match the given plane wave in value and
slope at the MT sphere boundaries. In detail, one uses two types of radial functions.
The first type of functions solve for a predetermined angular momentum dependent
energy parameter the scalar-relativistic approximation to the radial Dirac equation
employing the spherical potential in the given MT sphere. The second type of func-
tions are the energy derivatives of the first functions. This allows a linearized repre-
sentation of wave functions in the vicinity of the predetermined energy parameter.

Though the FLAPW method is considered to be highly accurate and efficient, the
growing demands and popularity of DFT calculations provide a constant pressure
to steadily improve these properties. As a consequence, there have been many de-
velopments based on an FLAPW fundament. Of course, one of the most important
developments in this regard is the progress in the formulation of the basis functions.
Here, most work in the last decades was performed on the description in the MT
spheres. First, the description capabilities were improved by adding local orbitals
(LOs) to the basis set [9, 10, 11, 12]. These are additional basis functions that are
completely confined within a given MT sphere. Next, the quality of the description
has also been evaluated in detail [13]. Furthermore, to improve the efficiency of the
method, a slightly different augmentation scheme, APW+lo, has been proposed that
reduces the required number of basis functions [14, 15]. In the interstitial region
there has been less progress. One notable idea in this context is the augmented dis-
torted plane-wave method that uses structure-adapted coordinates [16].

In this thesis we will investigate the LAPW basis in detail. This means that we
will analyze the precision of the basis set and its properties in comparison to the
wave functions. In order to considerably reduce the computational demands of the
method to make calculations on more complex materials feasible, we will then use
the analysis of the basis as a starting point to develop a new basis set that is even
more problem-adapted. As the shape of a basis function in the LAPW scheme is
mainly given by its interstitial region part and the matching conditions to the MT
spheres, the adaption to the actual crystal especially addresses these properties of
the basis functions. We replace the single plane wave in the interstitial region by a
smart linear combination of plane waves to obtain a highly efficient representation of
the wave functions. Finally, we evaluate this new basis on a test set of materials with
different properties to relate its description efficiency to that of the LAPW basis and
measure the speedup associated with the use of the new basis.

The thesis is organized as follows. In chapter 2 we provide a general introduc-
tion to DFT. This covers the theoretical foundations which are mainly given by the
Hohenberg-Kohn theorem and the reduction of the quantum mechanical interacting
particle problem onto the auxiliary Kohn-Sham system of noninteracting particles.
Furthermore, on the side of practical realizations the DFT introduction provides an
overview on the approximations by which different DFT programs differ. This field
is called electronic structure methods.
In chapter 3 we introduce the FLAPW method in detail. We start this introduction
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with a discussion on the LAPW basis and modifications of it. Next, we describe the
setup of the problem dependent Hamilton and overlap matrices for this basis. Note
that this is a crucial part of the chapter since the setup of these matrices is one of
the most time-consuming steps within FLAPW calculations. It considerably affects
the computational demands. We will also discuss the construction of the electron
density, which is less time consuming, but still important for the overall runtime
of a calculation. Next, we describe how to obtain the total energy of a quantum
mechanical system from an FLAPW calculation. This is the central quantity which
we will use to evaluate the basis sets. Finally, we sketch a couple of developments in
the environment of the FLAPW method.

The analysis of the LAPW basis will be performed in chapter 4. In detail, we will
discuss the so-called linearization error, which is a representation error in the MT
spheres that is due to an incompleteness in the basis set. In clear words, the linearized
description by the two radial functions in the MT spheres is only adequate for a
small energy region around the predetermined energy parameters. In materials that
imply large discrepancies between the energy parameters and the Kohn-Sham wave
functions this description is not enough. The linearization error cannot be eliminated
by converging the basis set in terms of the cutoff parameters used to control the basis
set size and their accuracy. It can, however, be eliminated by adding LOs to the basis.
We evaluate for different types of LOs their capabilities to eliminate the linearization
error. Besides the analysis of the linearization error we will also discuss the matching
conditions of the LAPW basis functions at the MT sphere boundaries in comparison
to those of the wave functions. Furthermore, we investigate the changes of the Kohn
Sham problem, the wave functions, and the basis functions in the different iterations
of the DFT calculation.

Based on the results obtained in chapter 4, in chapter 5 we then propose a differ-
ent analytical form of basis functions that allows the construction of more problem-
adapted basis sets. In detail, we replace the plane waves in the interstitial region
by linear combinations of plane waves and call this new form of basis functions a
linearized augmented lattice-adapted plane-wave (abbreviated as (LA)2PW or LA2PW)
basis. The idea is that one can construct the linear combinations of plane waves such
that they are adapted to the crystal lattice of the given material. We then discuss the
implementation of such a basis into a given FLAPW program1.

The construction of the linear combinations of plane waves in (LA)2PWs is decou-
pled from the general form of the functions. On the basis of the observations made
in chapter 4 we propose a first idea of a construction principle in chapter 6. This
construction principle, which we call the basis from early eigenfunctions (BEE), uses
the FLAPW eigenfunctions of a single FLAPW iteration to construct the (LA)2PWs
which are then used in every other iteration. We then evaluate the description ef-
ficiency of this basis for a test set of materials with different properties to obtain a

1The underlying FLAPW program used for the investigations and developments in this work is the
FLEUR code [17]. However, the results and new approaches are transferable to other FLAPW
implementations as well.
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representative picture. Finally we measure the speedup obtained with these new ba-
sis functions and propose an approximation to make this already very efficient basis
even more efficient.
A conclusion of the thesis and a short outlook is presented in chapter 7. Further-

more, as a small add-on we test the capabilities of atomic orbitals in combination with
conventional LAPWs to be an efficient (LA)2PW basis in appendix A. The results of
these tests provide hints on the required ingredients for a basis set construction be-
yond the BEE-(LA)2PW approach.



2 Density functional theory

Contents
2.1. Theoretical foundations . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1. The Born-Oppenheimer approximation . . . . . . . . . . . . . 18

2.1.2. The Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . 19

2.1.3. The Kohn-Sham system . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4. Spin-polarized DFT . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.5. The exchange-correlation functional . . . . . . . . . . . . . . 24

2.2. Aspects of electronic structure methods . . . . . . . . . . . . . . . 28

2.2.1. From non-relativistic to fully relativistic calculations . . . . . 29

2.2.2. Pseudopotential or all-electron . . . . . . . . . . . . . . . . . . 30

2.2.3. Spherical approximation or full-potential . . . . . . . . . . . 33

2.2.4. Representing the wave functions . . . . . . . . . . . . . . . . . 34

Determining the quantum mechanical ground state of a system of interacting elec-
trons in an external potential, e.g., due to atomic nuclei, is an important task in a
wide range of sciences. All physical properties of the respective system can be de-
rived from this state. Unfortunately, systems with many interacting electrons also
possess many degrees of freedom. This makes solving the problem very difficult. The
advent of density functional theory [2, 3] (DFT) a few decades ago drastically changed
this situation. DFT opened a path to obtain the ground states of systems with many
interacting particles through calculations on auxiliary systems with noninteracting
particles. This drastically reduced the complexity of the task to be solved. As a con-
sequence, performing highly predictive calculations on the electronic ground state of
many-electron systems has become a daily routine.
Density functional theory provides a general concept of how to obtain the elec-

tronic ground state. Based on a couple of introductions to density functional the-
ory [18, 19, 20, 21], we provide a general overview on this concept in section 2.1.
Beyond the theoretical scheme of DFT, realizations of this method in computer pro-
grams are exposed to further challenges to make DFT calculations feasible. The ap-
proximations and design decisions associated with these challenges form the wide
field of electronic structure methods, which we discuss in section 2.2.
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2.1 Theoretical foundations

In this section we provide an overview on the theoretical foundations of density
functional theory. We start by defining the underlying quantum mechanical many-
particle problem in section 2.1.1. Next, we discuss the central statement of DFT, the
Hohenberg-Kohn theorem, in section 2.1.2 and describe the Kohn-Sham procedure to
practically solve the given quantummechanical problemwith the help of an auxiliary
noninteracting particle system in section 2.1.3. The chapter closes with the general-
ization of the theory for spin-polarized materials in section 2.1.4 and an overview
on commonly used approximations to the exchange-correlation potential that simu-
lates the missing exchange and correlation interactions in the Kohn-Sham system in
section 2.1.5.

2.1.1 The Born-Oppenheimer approximation

To obtain an exact description of the electronic ground state of a condensed matter
system, the associated time-independent many-body problem described by

Ĥ
���  
�
= E

���  
�

(2.1)

with the many-body wave function  and the Hamiltonian

Ĥ = �
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(2.2)
has to be solved1, where i and j label the Nelec electrons, � and � are indices for
the Natom atoms, ri and τ � are the positions of the i-th electron and the � -th atomic
nucleus, and m � and Z � are the mass and charge the nucleus of atom � .
We denote the different terms of the Hamiltonian. The kinetic energy operators

for the atomic nuclei and the electrons are T̂i and T̂e, respectively. Furthermore we
name the operator for the Coulomb interactions between the electrons V̂ee, between
the atomic nuclei V̂ii, and between the electrons and the nuclei V̂ei.
Unfortunately it is not feasible to solve the given many-body problem for any but

the simplest systems. Thus, one has to approximate the problem to deal with it.
The first approximation to be performed in this context is the Born-Oppenheimer
approximation [22] that abstracts the problem from the movements of the atomic
nuclei. As the mass of an atomic nucleus is at least three orders of magnitude larger
than the electron mass2, this is a very reasonable approximation: The movements of

1We use atomic units ~ =me = e = 1.
2proton mass mp = 938 : 272 MeV/c2 vs. electron mass me = 0 : 511 MeV/c2
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the electrons and the atomic nuclei take place on completely different time scales,
such that on the time scale for the atomic nuclei, the electrons are always in the
electronic ground state with respect to the positions of the atomic nuclei.

In practice, the Born-Oppenheimer approximation is the neglect of the kinetic en-
ergy operator for the atomic nuclei T̂i in equation (2.2). With this neglect one ends
up with the Born-Oppenheimer Hamiltonian

ĤBO = T̂e + V̂ee + V̂ii + V̂ei = T̂e + V̂ee + V̂ii +

NelecX

i

Vext(ri) ; (2.3)

where Vext(r) denotes the external potential.

The Born Oppenheimer approximation is a large step forward towards solving the
given many-body problem (2.1). However, a ground-state solution to the problem is
a many-body wave function

 (r1 ; r2 ; : : : ; rNelec
) (2.4)

that is defined in a 3Nelec dimensional space. Considering a numerical sampling of a
many-body wave function in each of these dimensions, the storage requirements for
such a function scale exponentially with the number of electrons in the system under
investigation [23]. As the unit cells of modern crystalline materials often contain
hundreds or even thousands of electrons it is clear that the given problem is still
infeasible to solve, even with numerical approaches: No problem with exponentially
scaling storage requirements can be solved for any but the most trivial problem sizes.

Nevertheless, the Born-Oppenheimer Hamiltonian (2.3) gives us the starting point
for a crucial step that can be made to obtain an accurate quantum mechanical ab-
initio description of complex materials. This is density functional theory.

2.1.2 The Hohenberg-Kohn theorem

The non-manageable storage requirements of many-body wave functions can be over-
come by making use of the Hohenberg-Kohn theorem [2] which essentially consists
of two very important statements:
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The Hohenberg-Kohn theorem

1. Up to a constant potential shift, the external potential Vext is a unique func-
tional of the ground-state electron density � 0:

Vext(r) = Vext [� 0(r)] : (2.5)

This implies that the Hamiltonian can be obtained with the ground-state
density � 0 and hence also the wave functions  � and all observables, in par-
ticular the total energy, are functionals of � 0.

2. For a given external potential Vext and a given number of electrons Nelec, the
ground-state electron density � 0 minimizes the total energy E:

E [� ] ≥ E [� 0] = E0 for all � with

Z

� (r)d3r =

Z

� 0(r)d
3r =Nelec : (2.6)

We summarize the original proof of this theorem by Hohenberg and Kohn [2] for
systems with a non-degenerate ground state. The first observation one has to make
in this context is that if a function  is an eigenstate of two different Hamiltonians

Ĥ1 = T̂e + V̂ee + V̂ii +
P Nelec

i V 1
ext(ri) and Ĥ2 = T̂e + V̂ee + V̂ii +

P Nelec
i V 2

ext(ri) then V 1
ext(r)

and V 2
ext(r) may differ only by a constant:

By subtracting Ĥ1|  〉 = E1|  〉 from Ĥ2|  〉 = E2|  〉 it follows that

2
666664

NelecX

i

V 2
ext(ri)−V 1

ext(ri)

3
777775 |  〉 = (E2 −E1) |  〉 (2.7)

for every point in the underlying 3Nelec-dimensional space.
Now assume that  1 and  2 are two differing ground-state wave functions for Ĥ1

and Ĥ2, respectively, that both produce the same ground-state electron density � 0(r).
From the minimal-energy property of the ground state it now follows that

E1 = 〈  1|Ĥ1|  1〉 < 〈  2|Ĥ1|  2〉 = 〈  2|Ĥ2 + V̂ 1
ei − V̂ 2

ei|  2〉 ; (2.8)

E2 = 〈  2|Ĥ2|  2〉 < 〈  1|Ĥ2|  1〉 = 〈  1|Ĥ1 + V̂ 2
ei − V̂ 1

ei|  1〉 (2.9)

if the ground state is non-degenerate. With the density operator

ˆ� (r) =

NelecX

i=1

� (r − ri) (2.10)

we then write V̂ei as

V̂ei =

Z

Vext(r) ˆ� (r)d
3r : (2.11)
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Evaluating the expressions on the right-hand sides of equations (2.8) and (2.9) then
yields

E1 < E2 +

Z h
V 1
ext(r) � V 2

ext(r)
i
� 0(r)d

3r ; (2.12)

E2 < E1 +

Z h
V 2
ext(r) � V 1

ext(r)
i
� 0(r)d

3r : (2.13)

Adding (2.13) to (2.12) finally leads to the contradiction

E2 +E1 < E1 +E2 (2.14)

that completes the proof of the first statement of the Hohenberg-Kohn theorem.
A functional for the total energy is given by

E[ � ] = T [ � ] +Vee[ � ] +Eii +

Z

Vext(r) � (r)d
3r = FHK[ � ] +Eii +

Z

Vext(r) � (r)d
3r ; (2.15)

where T [ � ] is the kinetic energy, Vee[ � ] is the Coulomb interaction energy between
the electrons, and Eii is the Coulomb interaction energy between the nuclei. The first
two of these ingredients are typically combined to obtain the universal functional
FHK[ � ]. The form of this functional does not depend on the investigated system.
The second statement of the Hohenberg-Kohn theorem is that the variational prin-

ciple for the ground-state wave functions also applies to the ground-state electron
density. This can easily be seen by considering that the first statement implies that
the ground-state wave function is a functional of the ground-state density. It follows

E0 = h  0 [ � 0] j Ĥ j  0 [ � 0] i < h  0
0 [ � ] j Ĥ j  0

0 [ � ] i (2.16)

for any � (r) , � 0(r).
Note that various other proofs for the Hohenberg-Kohn theorem have been found.

Here, we explicitly mention the very nice proof by Levy [24]. The statement of
the Hohenberg-Kohn theorem that all properties of a system are functionals of the
ground state density is also true for systems with degenerate ground states [25]. Levy
provides a procedure of how to obtain the wave functions for such a system [26].

The essence of the Hohenberg-Kohn theorem is that the high-dimensional many-
particle wave functions (2.4) can be replaced by the only three-dimensional ground-
state density � 0(r) as central information carrier of the respective system. However,
the question how to calculate the ground-state density � 0(r) is still open. It is an-
swered by Kohn and Sham who introduce an auxiliary independent-particle system
that features the same ground-state density as the associated many-body system of
interacting particles.

2.1.3 The Kohn-Sham system

The approach of Kohn and Sham to develop a practical scheme to obtain the ground
state density of a given system [3] starts by expressing the energy functional E[ � ] as

E[ � ] = Ts[ � ] +EH[ � ] +Eext[ � ] +Exc[ � ] +Eii : (2.17)
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In this expression

EH[ � ] =
1

2

Z
� (r) � (r 0 )

j r � r 0 j
d3rd3r 0 (2.18)

denotes the Hartree energy,

Eext[ � ] =

Z

Vext(r) � (r)d
3r ; (2.19)

the energy due to the external potential, and Eii the already denoted Coulomb inter-
action energy for the nuclei.
The crucial aspect in the expression of the total energy by Kohn and Sham are

the remaining two terms that split the kinetic energy together with the difference
between the Hartree energy and the Coulomb interaction energy for the electrons
into the kinetic energy of a system of Nelec non-interacting electrons

Ts[ � ] = �
1

2

NelecX

� =1

h  � [ � ] j r
2
j  � [ � ] i (2.20)

and a term that covers the exchange and correlation interactions Exc[ � ]. The expres-
sion of the total energy (2.17) is exact. However, an analytical expression for Exc[ � ] is
not known and therefore this term has to be approximated.
The replacement of the many-body system of interacting electrons by an auxiliary

system of non-interacting electrons opens the path to efficiently calculate the ground
state density. For this, one first defines the auxiliary system of Nelec non-interacting
electrons by the external potential to end up with an overall effective potential

Veff(r) = VH(r) +Vext(r) +Vxc(r) (2.21)

with

VH(r) =
� EH[ � ]

� � (r)
=

Z
� (r 0 )

j r � r 0 j
d3r 0 ; (2.22)

Vxc(r) =
� Exc[ � ]

� � (r)
: (2.23)

On the basis of an initial guess for the ground-state density � old(r) Kohn and
Sham [3] propose to calculate Veff(r), solve the Kohn-Sham equations, which are the
single-particle Schrödinger equations for the auxiliary system

�
�
1

2
r
2 +Veff(r)

�
 � (r) = E �  � (r) ; (2.24)

and obtain a new density

� 0(r) =
X

�

! � j  � (r) j
2 (2.25)
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Construct initial density ρnew(r)

ρold(r) ← ρnew(r)

Construct effective potential

Veff(r) with old density ρold(r)

Solve the Kohn-Sham equations
[

−1
2∇2 +Veff(r)

]

ψν(r) = Eνψν(r)

Construct ground-state density

ρ0(r) =
∑

ν
ων |ψν(r)|2

Test convergence of density:

‖ρ0(r) − ρold(r)‖ < γconv?

Calculated electron density

ρ0(r) solves the given problem

Construct new density ρnew(r)

with ρ0(r) and previous densities

not converged

converged

Figure 2.1.: The self-consistency cycle in the Kohn and Sham formalism. An initial guess for
the ground state density is iteratively improved by solving the Kohn-Sham equa-
tions for the associated effective potential and mixing the resulting new density
into the old one until convergence is reached. Here, we check the convergence by
comparing the norm of the difference between the input and output densities of
a given iteration with an arbitrarily chosen small number γconv.

with the occupation numbersων that sum up to the number of electronsNelec. With a
mixture of the old density and the new density this procedure is iteratively repeated
until one ends up with a self-consistent solution.
In conclusion, Hohenberg and Kohn showed that the ground-state electron density

contains all information about a given electron system, such that even the external
potential can be obtained from it. This is the starting point to determine the ground-
state density in a self consistent manner, which Kohn and Sham transform into a
practical calculation scheme that is sketched in figure 2.1.
Note that only the ground state density ρ0 of the Kohn-Sham auxiliary system has

a strict connection to the original many-body system of interacting electrons. On the
other hand, most eigenvalues ǫν and eigenfunctions ψν of the Kohn-Sham system
have no strict physical meaning. However, in practice they are often used to obtain
semiquantitative information about the actual physics in a material [27].

2.1.4 Spin-polarized DFT

Density functional theory, as we have presented it so far, does not consider the elec-
tron spin. To allow descriptions of magnetic materials it is typically extended by
discriminating between the spin-up density ρ↑(r) and the spin-down density ρ↓(r).
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The total charge density then becomes

� (r) = � " (r) + � # (r) (2.26)

and one additionally defines the magnetization density

m(r) = � B( �
" (r) � � # (r)) ; (2.27)

where � B is the Bohr magneton.
The consequence of this extended description in the Hohenberg-Kohn theorem is

that functionals that depend on the ground-state density in the original formulation
now depend on both, the ground-state charge density � 0(r), as well as the ground-
state magnetization density m0(r).

The spin dependence also translates into modified Kohn-Sham equations

�
�
1

2
r
2 +Veff; � (r)

�
 � ; � (r) = E � ; �  � ; � (r) ; (2.28)

where � distinguishes between spin up " ( � = 1= 2) and spin down # ( � = � 1= 2). The
changes in the now spin-dependent effective potential Veff; � (r), however, do not affect
all of its terms. Besides the introduction of a Zeeman term to incorporate an external
B field, the only other source for the spin-dependence of the effective potential is the
now spin-dependent exchange-correlation functional. Neither the Hartree potential
nor the external potential are modified. In detail, the effective potential becomes

Veff; � (r) = VH(r) +Vext(r) + � Bge � B+Vxc ; � (r) ; (2.29)

where ge is the g-factor for the electron.
A derivation of spin-polarized density functional theory in terms of density matri-

ces is given in [28].

2.1.5 The exchange-correlation functional

An exact analytical form of the exchange-correlation (XC) functional is not known.
However, there is a large activity in developing more and more accurate functionals.
In allusion to the Jacob’s ladder from earth to heaven described in the Book of Gen-
esis this process is called Climbing the Jacob’s ladder since an exact XC functional is
recognized as heaven of accuracy. We sketch some milestones of this activity.

2.1.5.1 The local density approximation

The local density approximation (LDA), often formulated in its spin-dependent form
as local spin density approximation (LSDA), is based on the observation that the exact
XC functional for a homogeneous electron gas is local. Although this is not the case
in realistic systems, the approximation assumes such a local relation between the
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charge and XC energy densities in every point in space. In detail, the XC energy is
approximated by

ELSDA
xc

h
� " (r) ; � # (r)

i
=

Z

� (r) � homxc

�
� " (r) ; � # (r)

�
d3r (2.30)

=

Z

� (r)
h
� homx

�
� " (r) ; � # (r)

�
+ � homc

�
� " (r) ; � # (r)

� i
d3r ;

where � homx and � homc are functions of the spin-polarized density that provide the
exchange and correlation energy densities for the homogeneous electron gas. For
� homx the exact expression
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(2.31)

is the ordinary Hartree-Fock exchange for such a system [28]. The correlation energy
density � homc on the other hand is not given by a simple analytical formula but can,
for example, be obtained from Monte Carlo simulations [29].
In practice, a couple of LSDA functionals are in use that differ only in details [28,

30, 31].

2.1.5.2 The generalized gradient approximation

In realistic systems exchange and correlation are not local. As a consequence, in order
to obtain a more accurate approach one has to go beyond local approximations to the
XC functional. A very popular approach is the use of semilocal functionals in terms
of generalized gradient approximations (GGAs). GGAs do not only depend on the
density but also on the magnitude of the density’s gradient and higher derivatives.
In detail, the energy density in a GGA is given by

EGGA
xc

h
� " (r) ; � # (r)

i
=

Z

� (r) � xc
�
� " (r) ; � # (r) ; j r � " (r) j ; j r � # (r) j ; : : :

�
d3r : (2.32)

A first approach in constructing a GGA may be to expand � xc in terms of the density
and the magnitudes of the density’s derivatives [32, 33, 34]. However, it turns out
that such a low-order gradient expansion approximation (GEA) is no improvement
over the LSDA since it breaks important properties of the XC functional [32].

A much more successful development is the construction of GGAs by considering
different behaviors for limits of density gradients and other conditions [35, 36, 37].
Especially the functional by Perdew, Burke, and Ernzerhof (PBE) [37, 38] is very
common in today’s density functional calculations. It provides accurate results for
ground-state properties of many materials.

2.1.5.3 LDA+U

Deficiencies of LDA and GGA often show up in materials with electronic structures
that differ strongly from the homogeneous electron gas. For example, such situations
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appear in materials with strongly localized electrons, i.e., transition metal oxides,
materials including elements with f electrons, and so on. Here, it comes into play
that each electron is exposed to an effective potential that involves contributions from
the respective electron itself. In clear words, the Hartree energy implies an unphys-
ical self-interaction of each electron with itself that cannot be corrected by local or
semilocal functionals. As a consequence, the localized electrons in such materials are
not localized enough. A typical effect of the self-interaction error in such cases is the
prediction of a metal, while the material under investigation actually is an insulator.
Since the inaccuracies in such calculations originate to a large amount from the

mentioned self-interaction error in very few localized electron orbitals they may be
improved with an additional correction term only for these orbitals. This is the ap-
proach of the LDA+U method [39, 40]. In detail, the method adds a Hubbard U [41]
to such orbitals with the effect that the orbitals shift in energy. This can correct for
wrong occupations of the highly localized orbitals and thus may yield an improve-
ment over predictions from LDA or GGA calculations for such materials on a quali-
tative level.
An often criticized drawback of the LDA+U approach is that material dependent

energy parameters U are introduced and the question arises how the U parameters
are determined. Three approaches are to either obtain them by fitting to experiments,
to determine them with constrained DFT calculations, or to extract them from con-
strained random phase approximation (cRPA) calculations [42, 43, 44, 45, 46]. Note
that although the name suggests that LDA+U is only used to extend the LDA func-
tional, in practice the term also covers GGA+U calculations that are very common,
too.

2.1.5.4 Hybrid functionals

Another option to correct the self-interaction error is the use of so-called hybrid func-
tionals. Just like LDA+U this class of functionals uses the Kohn-Sham orbitals as a
starting point, such that it is a density functional only in an indirect sense. It replaces
a part of the exchange energy of the LDA or GGA functional by the same fraction of
the exact exchange (EXX) energy

EEXX
x = �

1

2

X

i ; j ; �

! �
i !

�
j

Z Z  �
i
� (r1)  

�
j
� (r2)  

�
j (r1)  

�
i (r2)

j r1 � r2 j
d3r1d

3r2 ; (2.33)

which is structurally identical to the Hartree-Fock exchange, though in this case one
does not plug in Hartee-Fock but Kohn-Sham orbitals.
A couple of hybrid functionals have been established as commonly used tools. An

early and important development in this sense is the B3LYP functional [47, 48] that
found widespread adoption in the realm of quantum chemistry. In the B3LYP func-
tional, the exchange-correlation energy is given by

EB3LYP
xc = ELSDA

x + aEXX(E
EXX
x � ELSDA

x ) + ax � E
B88
x +EVWN

c + ac(E
LYP
c � EVWN

c ) ; (2.34)
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where ELSDA
x is the exchange energy from the LSDA, EB88

x is a gradient correction for
the exchange energy [35], and EVWN

c and ELYP
c are the correlation energies according

to the VWN [30] and LYP [49] functionals. The coefficients aEXX = 0: 2, ax = 0: 72, and
ac = 0: 81 are empirically determined by fitting to experimental data for a test set of
materials [47].

Due to the nonlocality of the EXX term in space and the long range of the Coulomb
interaction, the B3LYP functional gives rise to considerably increased computational
demands. A solution to this problem is given by the PBE based HSE hybrid func-
tional [50, 51] that screens the Coulomb interaction for the exact exchange such that
this term only contains short range contributions and the long range contributions
are neglected.

In comparison to the LDA+U approach, hybrid functionals do not contain material
dependent parameters. They do, however, contain at least one material independent
parameter that defines the fraction of exact exchange that contributes to the energy
functional.

2.1.5.5 EXX+RPA and beyond

In some materials one observes correlation interactions between the electrons that
are not covered by any of the so far mentioned XC functionals. For example, van der
Waals interactions betweenmolecules are beyond the description capabilities of these
functionals. Thus, one has the desire to take the next step on the Jacob’s ladder and
approximate the XC functional in a more systematic manner that also covers these
correlation interactions.

By adiabatically connecting [52, 53, 54] the Kohn-Sham system of noninteracting
electrons to a fully interacting system one recognizes that a very accurate approx-
imation for the XC energy is obtained by combining the exact exchange (EXX) en-
ergy with a systematic approximation to the correlation energy, which is known as
the random phase approximation (RPA) [55, 56, 57, 58, 59]. Though this technique
is computationally expensive, several research groups follow this route and realize
EXX+RPA in their DFT codes. Due to this popularity several elaborate reviews on
this topic have been published [60, 61].

We limit the discussion on EXX+RPA to the presentation of the RPA correlation
energy that is given by

ERPA
c =

1

2�

1Z

0

Z Z

ln

 

1 �
� (r ; r 0 ; i ! )

j r � r 0 j

!

+
� (r ; r 0 ; i ! )

j r � r 0 j
d3rd3r 0 d! ; (2.35)

where � (r ; r 0 ; i ! ) is the Kohn-Sham response function for the system of noninteract-
ing electrons. Equations (2.33) and (2.35) are then combined to obtain the xc energy
in the EXX+RPA approach

EEXX+RPA
xc = EEXX

x +ERPA
c : (2.36)
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One finds that the RPA provides a very accurate description of long-range corre-
lations, while it has deficiencies in the short range [62]. To overcome this weakness,
people already consider the next steps beyond EXX+RPA. A pragmatic way of ad-
dressing this issue is to mix the RPA with functionals that are more adequate for
short-range correlations. For example, in the RPA+ approach [63, 64] the RPA is
combined with a conventional semilocal GGA functional.
In amore systematic correction of the RPA one can also consider themissing contri-

butions to the XC functional on a more fundamental level. One possible approach in
this direction is to identify the second-order screened exchange [65, 66, 67] (SOSEX)
corrections to be complementary to the RPA, such that it is reasonable to combine
them. Ren et al. also consider renormalized single excitation (rSE) corrections [68]
as another important ingredient for a next generation XC functional and combine
RPA, SOSEX, and rSE in a unifying method that they call renormalized second-order
perturbation theory [69] (r2PT).
In a concluding remark we note that the ever increasing computer power enables

the adoption of more and more accurate XC functionals. While the XC functional
represents only a small contribution to the total energy of a Kohn-Sham system, the
approximation to this term is a critical ingredient when it comes to the accuracy of
predictions from DFT calculations. With the advent of more and more ambitious and
systematic approximations to this functional, the prediction power of DFT reaches an
ever higher level and becomesmore andmore independent of the respective material.

2.2 Aspects of electronic structure methods

When DFT is realized in practice, many design decisions have to be made that lead
to a trade-off between accuracy and required computing resources. The large field
of different approaches in this regard is called electronic structure methods. In this
chapter we provide a short overview on the different options in this context. Fig-
ure 2.2 gives a sketch of these options for the different elements of the Kohn-Sham
equations.
From a theoretical point of view the most fundamental aspect of the Kohn-Sham

equation is the choice of the approximation to the exchange-correlation (XC) func-
tional, that is typically interchangeable in DFT programs. We have already discussed
this issue in section 2.1.5. In this chapter we discuss the realization of the other terms
within the Kohn-Sham equation in computer programs. We start with a discussion
on the different possible degrees of relativity in 2.2.1. One also has to decide if all
electrons are included in the calculations or only the valence electrons since energeti-
cally deep lying core electrons only have a limited influence on the valence structure.
This aspect is covered in section 2.2.2.
The last two sections in this chapter cover representation aspects. First we discuss

the option of abstracting from some features of the potential in section 2.2.3 before
we finally provide an overview on different ways to represent the wave functions in
section 2.2.4. This last aspect is very important with regards to the question which of
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[
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Figure 2.2.: Design choices for electronic structure methods3. The figure illustrates the main
options on the implementations of the different terms of the Kohn-Sham equa-
tions in a DFT program.

the aforementioned approximations have to be performed. Furthermore, the repre-
sentation of the wave functions is also a key component when it comes to the aspect
of the efficiency of a DFT program.

2.2.1 From non-relativistic to fully relativistic

calculations

We presented the basic introduction to DFT in chapter 2.1 in a non-relativistic fash-
ion. However, in many materials relativistic effects are very important. Especially
electrons in the vicinity of heavy atomic nuclei are affected by relativity. Hence, in

3The figure is motivated by similar illustrations in [20, 70].



30 Density functional theory

order to deal with such effects a more adequate description replaces the Kohn-Sham
equations (2.24) by the fully relativistic Kohn-Sham-Dirac equations4 [72, 73]

h
cα � p+ ( � � 1)mec

2 +Veff(r)
i
 i = Ei  i : (2.37)

Here,  i is a 4 component wave function, c is the speed of light, p is the momentum
operator, and � is a 3 element vector of 4 � 4 matrices with

� i =

 
0 � i
� i 0

!

; (2.38)

where � i are the Pauli spin matrices

� 1 =

 
0 1
1 0

!

; � 2 =

 
0 � i
i 0

!

; � 3 =

 
1 0
0 � 1

!

: (2.39)

Finally, � is also a 4 � 4 matrix with

� =

0
BBBBBBBBBBB@

1 0 0 0
0 1 0 0
0 0 � 1 0
0 0 0 � 1

1
CCCCCCCCCCCA

: (2.40)

Unfortunately it is computationally very expensive to deal with 4 component wave
functions and thus one wants to avoid solving the fully relativistic problem, at least
for those electrons that are not strongly affected by relativistic effects.

One reasonable approach is thus to handle electrons in the inner electron shells,
so called core electrons, in terms of a fully relativistic description, while the valence
electron model abstracts from relativistic effects and describes the electrons by a non-
relativistic Kohn-Sham equation. An intermediate approach is the scalar-relativistic
approximation to the Dirac equation [74, 75] in which the spin-orbit coupling is taken
out of the relativistic description but all other relativistic effects remain. By introduc-
ing this approximation the wave function is reduced to two components.

2.2.2 Pseudopotential or all-electron

The effective potential has singularities at the atomic nuclei. As a consequence, in the
vicinity of the nuclei wave functions are often strongly oscillating. The description
of wave functions with such features is expensive. Assuming a Fourier expansion of
the wave functions into plane waves, one can observe a very slow convergence. On

4Note that the here presented Kohn-Sham-Dirac Hamiltonian features a term � 1mec
2 that subtracts

the mass energy of the electron [71]. This is only required to obtain a consistent formulation with
the non-relativistic equations in which the mass energy of the electron is neglected. Often, the
Kohn-Sham-Dirac equations are formulated without this extra term.
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the other hand, sampling the wave functions spatially requires a very fine mesh, es-
pecially in the near of the nuclei. The requirement of such expensive representations
imposes very high computational demands and one has to ask if this can be avoided.

The introduction of pseudopotentials is a very common option to reduce the costs
associated with the representation of the wave functions. Pseudopotentials are based
on the observation that the chemistry is nearly completely determined by the valence
electrons. Since the core electrons are strongly localized around the atomic nuclei, in
a crystal or molecule one does not observe a significant overlap of core electrons from
one atom with those from adjacent atoms. This leads to the fact that the orbitals of
core electrons in crystals are nearly identical to those in isolated atoms. They neither
significantly affect the crystal nor are affected by the crystal. The basic question now
is if a good model can be found that abstracts from the core electrons and yields the
electronic structure of a given material not by an all-electron calculation but by a
calculation that incorporates only the valence electrons. The introduction of a pseu-
dopotential is the answer to this question.

In pseudopotential calculations the description of the core electrons is replaced by
an altered potential around each atom that incorporates the influence of the core elec-
trons on the valence electrons and additionally leads to smooth valence electron wave
functions that possess similar properties in comparison to the valence wave functions
from all-electron calculations. In detail pseudopotentials are often constructed such
that for prototype atom configurations four properties are fulfilled [76]:
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Properties of pseudopotentials

1. The valence wave functions obtained from pseudopotentials are radially
nodeless.

2. Beyond a cutoff radius rcut the pseudopotential wave functions  PP
� (r) are

identical to the corresponding all-electron wave functions above the c core
states  AE

� +c(r)
a:

 PP
� (r) =  AE

� +c(r) ∀r : r > rcut : (2.41)

3. Norm conservation: Pseudopotential and all-electron wave functions give
rise to the same amount of charge:

rcutZ

0

r2|  PP
� (r)|2dr =

rcutZ

0

r2|  AE
� +c(r)|2dr : (2.42)

4. Pseudopotential and all-electron wave functions have the same eigenvalues:

� PP� = � AE� +c : (2.43)

aSome authors mention this property also for the logarithmic derivatives of the first energy
derivatives of the wave functions [77].

The construction of pseudopotentials5 is often angular momentum l dependent
and follows a scheme that starts with the generation of the all-electron valence wave
function  AE

l (r) for the prototype atom configuration. Next, the wave function is re-

placed by the pseudized wave function  PP
l (r) which is identical to  AE

l (r) outside of
the chosen rcut and offers the mentioned properties for r < rcut, e.g., it is radially node-
less and smooth. The actual construction of the pseudopotential is now performed
by inverting the Schrödinger equation. For the given l-channel a screened pseudopo-
tential that includes the contributions from the valence electrons to the Hartree and
exchange-correlation potentials is then obtained as

V PP
scr ; l (r) = � l −

l(l +1)

2r2
+

1

2r  PP
l (r)

d2

dr2

h
r  PP

l (r)
i
: (2.44)

To use the pseudopotential in DFT calculations the screening from the valence
electrons has to be removed. This is easily achieved by subtracting the corresponding
Hartree and exchange-correlation terms. By doing this one obtains the unscreened
ionic pseudopotential

V PP
ion ; l (r) = V PP

scr ; l (r)−V
PP
H (r)−V PP

xc (r): (2.45)

5We follow the construction as it is presented in [76].
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Summing up all l-channels, one finally ends up with the overall ionic pseudopo-
tential

V PP
ion(r) =

X

lm

j Ylm i V
PP
ion ; l (r) h Ylm j : (2.46)

The so-constructed pseudopotentials are local in the radial coordinates and non-
local in the angular coordinates. Unfortunately this semilocal form leads to high
computational demands. To circumvent these demands, Kleinman and Bylander [78]
transform them into a fully nonlocal and separable form that does not suffer from
such limitations. Another important limitation of these norm-conserving pseudopo-
tentials is that they are only efficient in lowering the frequencies of wave functions
that possess radial nodes in all-electron calculations. Wave functions without ra-
dial nodes can only be slightly smoothed by going to a pseudopotential model. This
aspect is addressed by Vanderbilt [79], who removes the norm-conservation require-
ment from the list of properties of the pseudopotentials to obtain so-called ultra-soft
pseudopotentials.

As a final note we point out that pseudopotentials have successfully been used
in the description of many materials. However, one has to keep in mind that the
pseudopotential approximation strongly relies on an assumed negligible influence
coming from the core electrons and that pseudopotentials are created for a prototype
atom configuration that typically does not feature a strong connection to the actual
material under investigation. Therefore, the transferability of the pseudopotentials
always has to be questioned.

2.2.3 Spherical approximation or full-potential

For atoms with nuclear charge Z the effective potential exhibits a � Z= r behavior in
the vicinity of the atomic nucleus. These singularities at the atom positions give rise
to representations of the electronic structure in which the atom positions are special
points. Often they are centers of spheres in which the wave functions, potential and
density are represented by linear combinations of products of radial functions and
spherical harmonics.

Whenever such a representation of the potential is used, a reduction of the compu-
tational demands for constructing the Hamilton and overlapmatrices can be achieved
by applying an approximation to the shape of the potential. In detail, Slater [8] pro-
poses an approximation in which the potential is assumed to be spherical, meaning it
only possesses coefficients for the spherical harmonic with angular momentum l = 0.

Note that such a spherical approximation is justified since the spherical part of the
potential strongly dominates the other parts in the vicinity of the nucleus. Especially
for close-packed materials (fcc, hcp lattices) this approach works very well. However,
it is limited when materials are investigated that involve strongly directed covalent
bonds. Here, the consideration of the full potential is mandatory.
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2.2.4 Representing the wave functions

When it comes to the computational demands of DFT calculations the representation
of the wave functions is one of the most important aspects. Often the Kohn-Sham
eigenvalue problem is transformed into an algebraic problem by expanding the wave
functions into some set of basis functions f � i(r) g . By doing this, the Kohn-Sham
Hamiltonian becomes a matrix

Hij = h � i j Ĥ j � j i (2.47)

and the eigenvalue problem becomes a generalized algebraic eigenvalue problem

X

j

z � jHij = � �

X

j

z � jSij ; (2.48)

where Sij = h � i j � j i is the overlap matrix whose elements are the overlaps between
two basis functions, � � is the � -th eigenvalue, and z � j is the expansion coefficient of
the � -th eigenfunction into the j-th basis function. Note that both, Hij and Sij , are
hermitian matrices.

The computational demands for diagonalizing such a problem scale cubically with
the size of the matrices, i.e., the number of basis functions. In typical DFT programs
this step either dominates the overall runtime required for an iteration of the self-
consistency loop or is at least one of the main time consumers. Another demanding
step may be the setup of the Hamilton and overlap matrices, that may also scale
cubically with the system size, although only quadratically with the number of basis
functions.

As the basis set size drastically affects the computational demands, it is a good idea
to put some effort into problem descriptions that require only small basis sets. For
example, the usage of the aforementioned pseudopotentials is a method to reduce the
demands on the basis sets such that it is easier to describe the wave functions with
basis sets incorporating only very few functions. Another option is the construction
of a sophisticated problem-adapted basis that offers a high description efficiency, i.e.,
the results converge very fast with growing basis set size, even without the usage of
pseudopotentials. More fundamentally, one also wants to have a basis, that can sys-
tematically be extended, such that calculation results can be converged with respect
to the basis set size without missing important features of the wave functions. On the
other hand, it is also a desirable characteristic of basis functions that the matrix ele-
ments are easy to formulate and to compute. These different properties are partially
contradictory to each other and a certain basis is always a tradeoff between them and
may give rise to the demand to introduce further approximations. In the following
we give a short overview on basis sets that are commonly used in the context of elec-
tronic structure calculations.
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2.2.4.1 Linear combination of atomic orbitals (LCAO)

Electron orbitals in a molecule or in a bulk material are often strongly related to a
specific atom and localized around this atom. Considering this fact, a natural ap-
proach for a basis is a set of atomically centered functions. Such basis sets of atomic
orbitals are successfully used in various DFT programs. For the atomically centered
functions one may use Gaussian-type [80] or Slater-type [81] orbitals. Beyond these
analytically determined basis function sets, the use of numerically calculated atomic
orbitals [82, 83, 84] has also become a very successfully and widely used approach.
The numerically determined atomic basis sets have the potential to possess a high

description efficiency. Furthermore, they can also be constructed to be strictly local-
ized, i.e., each basis function is zero outside of some sphere around the associated
atom. This can strongly reduce computational demands and is typically done in
programs using such bases. Nevertheless, LCAO basis sets also have an important
disadvantage: They are typically constructed to perform especially well for a test set
of prototype materials and it is not clear how they can systematically be extended.
One therefore has to hope that the description efficiency of the basis is transfered to
the material under investigation and no important feature of the wave function is
missing in the description. This has to be considered especially when materials are
taken under scrutiny that exhibit physical properties that strongly deviate from the
prototype materials for which the basis sets are optimized. To cover a broad range of
materials, the basis sets are typically constructed with covalent bonds in mind, which
represent a challenge for LCAO basis sets.

2.2.4.2 Plane waves

While LCAO basis sets approach the description from an atom point of view, one may
also start from a crystal point of view in which the basis functions are constructed by
considering the Bloch theorem stating that a wave function in a crystal has the form

 � k(r) = eikru � k(r) ; (2.49)

where k is the Bloch vector and u� k(r) is a periodic function with the periodicity
given by the unit cell of the crystal. Due to the periodicity of u� k(r) it is natural to
expand this function in terms of plane waves. One thus ends up with a description

 � k(r) = eikr
X

G

zG� ke
iGr =

X

G

zG� ke
i(k+G)r ; (2.50)

where the reciprocal lattice vectors G are the wave vectors for the plane waves and
the zG� k are the plane wave expansion coefficients of u� k(r). The restriction to let all
G be reciprocal lattice vectors of course automatically yields the required periodicity
of u� k(r).
Plane waves are a complete set of functions with respect to the lattice periodic

functions u � k(r) and finite sets of plane waves are systematically extendable by incor-
porating plane waves with ever shorter wavelength. As the kinetic energy associated



36 Density functional theory

with a given plane wave scales with j k+G j 2 this is in fact a way of extending the basis
that systematically covers all relevant physics.

However, the oscillations of the wave functions in the near of the atomic nuclei
possess rather high spatial frequencies, such that very large plane wave basis sets are
required to describe them accurately. As a consequence, the size of the required basis
sets makes calculations on most materials infeasible. To overcome this drawback, one
either has to make use of the pseudopotential approximation (see chapter 2.2.2), use
the projector augmented wave (PAW) approach [85], or apply an alternative descrip-
tion of the wave functions in the near of the atomic nuclei. Each of these approaches
is successfully and commonly used.

2.2.4.3 Real-space grid

Dual to a plane wave representation of the wave functions in reciprocal space, one
can also solve the Kohn-Sham equations on a real-space mesh. Considering a perfect
representation of the wave functions on such a mesh, according to the Whittaker-
Shannon interpolation formula this is actually a basis of sinc functions. But as sinc
functions are not very localized one considers simpler interpolation schemes to eval-
uate the kinetic energy of wave functions represented on a real-space grid in terms
of finite differences. With this approach, in a real-space mesh representation the
Kohn-Sham Hamiltonian is local.

A real-space representation has the same drawbacks as a plane wave representa-
tion: The oscillations of the wave functions in the near of the atomic nuclei call for
a very fine mesh. Of course, this problem can be approached again by introducing
pseudopotentials or alternative representations in the near of the atomic nuclei.

2.2.4.4 Non-linear methods

The alternative to the usage of approximations to overcome the challenges associated
with the singularities of the effective potential is the introduction of basis sets whose
analytic form is adapted to the differing demands in different regions within a unit
cell. The first step in such a region-specific description is the definition of the regions.
For this, the augmented plane wave (APW)method [8] uses nonoverlapping so-called
muffin-tin spheres centered at the atom positions and an interstitial region between
the spheres. With the so-defined regions, the singularities of the potential are in the
centers of the spheres, while the interstitial region features a rather flat and slowly
varying potential.

Assuming the spherical approximation (see chapter 2.2.3) one can construct energy-
dependent basis functions ul(r ; Ek � l)Ylm( � ; � ) within the muffin-tin spheres by solv-
ing the corresponding radial Schrödinger equation for an energy parameter Ek � l as
a differential equation from the centers of the spheres outwards to obtain functions
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with regular behavior in the sphere centers. In detail, one solves
"

�
1

2r2
d

dr

 

r2
d

dr

!

+
l(l +1)

2r2
+V

sphr
eff (r) � Ek � l

#

ul(r ; Ek � l) = 0; (2.51)

where r is the radial coordinate relative to the position of the nucleus. The radial
functions u� l(r ; Eknl) can be represented on an exponential mesh that has a very fine
sampling near the atomic nucleus and a coarser sampling in the outer regions of the
sphere. In the interstitial region, the wave functions can be represented by a rapidly
converging plane wave expansion.
The drawback of this method is that the basis itself is specific for each Kohn-Sham

orbital and the energy parameters Ek � l are given as the eigenenergies of the Kohn-
Sham orbitals for the complete system. Since these eigenenergies are not known in
the run-up to the calculation, they have to be determined self-consistently with the
eigenenergies. This makes APW calculations computationally expensive.
In the Korringa-Kohn-Rostocker (KKR) method [86, 87, 88, 89] another partition-

ing of space is used. Here, the space is subdivided into atomic polyhedra. Of course,
this subdivision of space translates into adapted representations of the respective
physical functions. The characteristic function indicating a certain atomic polyhe-
dron can be expanded into products of spherical harmonics and radial functions
around some given atom � . In detail, this shape function is

� � (r) =

(
1 for r 2 Poly�
0 else

=
X

L

� � L(r � )YL(r̂ � ) : (2.52)

Functions like the potential around an atom are then also expressed in terms of prod-
ucts of radial functions and spherical harmonics. To restrict these functions to the
associated polyhedron, they are multiplied with � � (r).

Besides this unique partitioning of space, the specialty of the KKR method is its
development into a multi-scattering Green function method [90, 91]. This means
that in contrast to the so far discussed wave function methods, the central informa-
tion carrier in KKR is the Green function G(r ; r 0 ; E) describing the propagation of an
electron between r and r 0 . It is defined by

�
E +

1

2
r
2
� V (r)

�
G(r ; r 0 ; E) = � (r � r 0 ) : (2.53)

Starting with the Green function G0(r ; r
0 ; E) for the free space, in the KKR method

the crystal Green function is calculated with the Dyson equation

G(r ; r 0 ; E) = G0(r ; r
0 ; E) +

Z

G0(r ; r
0 0 ; E)V (r 0 0 )G(r 0 0 ; r 0 ; E)d3r 0 0 : (2.54)

To connect this approach to DFT one has to express the density in terms of the
Green function. Here, one makes use of the fact that the spatially resolved density
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of states � (r ; E) is given by the imaginary part of the Green function. The density is
then obtained by integrating this quantity over all energies below the Fermi level. In
detail, the density is given by

� (r) =

EFZ

� 1

� (r ; E)dE = �
1

�

EFZ

� 1

Im[G(r ; r ; E)]dE: (2.55)

2.2.4.5 Linearized methods

In the APW method the energy parameter Ek � l and thus also the associated radial
functions ul(r ; Ek � l) are specific to each wave function. Unfortunately, the determi-
nation of these adapted energy parameters yields a very time consumingmethod such
that one wants to have a method which does not require this direct link between the
energy parameters and the wave functions.

To overcome this problem several approaches have been proposed to change the
augmentation of the plane waves in the muffin-tin spheres. One important step in
this regard is the modified APW (MAPW) [92, 93, 94] method. In this method the
plane waves are also extended into the muffin-tin spheres, though for low angular
momentum channels they are replaced by linear combinations of radial functions
unl(r ; Enl) solving equation 2.51 for different energy parameters Enl . In this case the
radial functions neither depend on the k point nor on the wave functions anymore.
Continuity is not enforced for the basis functions but for the wave functions continu-
ity of value and slope is achieved by introducing additional constraints when solving
the eigenvalue problem. Another important variation of the APW approach is the
spline APW (SAPW) [95] method. Here, spline functions are used to augment the
plane waves in the muffin-tin spheres.

A very popular approach that decouples the energy parameters from the wave
functions is the linearized APW (LAPW)method [6]. Here, the idea is that a ul(r ; Ek � l)
at the energy Ek � l of the wave function can approximately be represented by a ra-
dial function ul(r ; El) and the energy derivative of this function @ u l(r ; E) = @ E j E=El =
u̇l(r ; El), where El is in the near of Ek � l .

In contrast to APW, the LAPWmethod replaces the ul(r ; Ek � l) in the MT spheres by
the two radial functions ul(r ; El) and u̇l(r ; El). In detail, one constructs basis functions
in which the plane wave in the interstitial region is matched to a linear combination
of ul(r ; El) and u̇l(r ; El), where the matching is determined by enforcing continuity of
the basis function’s value and slope at the MT sphere boundary. We will discuss this
approach in detail in chapter 3.

The linearized muffin-tin orbitals (LMTO) method [6, 96] also uses the functions
ul(r ; El) and u̇l(r ; El) in MT spheres. However, in contrast to the LAPW method, be-
yond the MT sphere boundary the basis functions are not plane waves but Hankel
functions times spherical harmonics that decay with growing distance to the respec-
tive atom.
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As the LAPW method has its origins in plane wave methods, it is motivated by
the shape of Bloch waves in crystals. The LMTO method, on the other hand has
its origin in methods that use atomic orbitals as basis functions. This more direct
connection to atomic orbitals yields a highly efficient basis set. However, it is not
clear how to extend an LMTO basis in a systematic way. LAPW calculations are more
systematically convergable.





3 The all-electron full-potential lin-
earized augmented plane-wave method

Contents
3.1. The linearized augmented plane-wave basis . . . . . . . . . . . . . 42

3.1.1. Treatment of the core electrons . . . . . . . . . . . . . . . . . . 45

3.1.2. Extending the LAPW basis with local orbitals . . . . . . . . . 47

3.1.3. Determination of the energy parameters . . . . . . . . . . . . 48

3.1.4. The LAPW basis for thin films . . . . . . . . . . . . . . . . . . 50

3.1.5. Other extensions and modifications of the LAPW basis . . . . 51

3.2. Hamilton and Overlap matrices . . . . . . . . . . . . . . . . . . . . 53

3.2.1. Hermiticity of the Hamilton matrix . . . . . . . . . . . . . . . 54

3.2.2. The setup for the interstitial region . . . . . . . . . . . . . . . 55

3.2.3. The setup for the muffin-tin spheres . . . . . . . . . . . . . . . 57

3.2.4. The setup for the vacuum regions . . . . . . . . . . . . . . . . 63

3.3. Constructing the electron density . . . . . . . . . . . . . . . . . . . 64

3.3.1. Representation of the eigenfunctions . . . . . . . . . . . . . . 66

3.3.2. Occupying the eigenstates . . . . . . . . . . . . . . . . . . . . 66

3.3.3. The interstitial density . . . . . . . . . . . . . . . . . . . . . . 67

3.3.4. The density in the MT spheres . . . . . . . . . . . . . . . . . . 68

3.3.5. The density in the vacuum regions . . . . . . . . . . . . . . . 69

3.3.6. Contributions to the density from the core electrons . . . . . 70

3.4. Calculating the total energy . . . . . . . . . . . . . . . . . . . . . . 72

3.5. Developments for the FLAPWmethod . . . . . . . . . . . . . . . . 73

Within the multifarious zoo of electronic structure methods, the all-electron full-
potential linearized augmented plane-wave (FLAPW)method [6, 7] is one of the most
accurate approaches of DFT in practice. As the name already suggests, it features a
full potential treatment and explicitly handles core and valence electrons on an equal
footing. To enable such an accurate treatment it is based on a partitioning of space
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Interstitial
Region
(IR)

Muffin-tin
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Figure 3.1.: Partitioning of space in the FLAPW method. A unit cell comprises nonoverlap-
ping MT spheres centered at the atomic nuclei and the interstitial region between
the spheres.

into so-called muffin-tin (MT) spheres centered at the atom positions and the remain-
ing interstitial region between the spheres. An illustration for such a subdivision of
space is shown in figure 3.1 in terms of a 2D projection of an example unit cell.

The representations of the wave functions, the electron density, and the potential
are adapted to this subdivision of the unit cell. Within the MT spheres these quanti-
ties are represented by products of radial functions and spherical harmonics YL

1 and
in the interstitial region they are represented by plane waves.
Based on several excellent introductions to FLAPW [18, 97, 70, 98], in this chapter

we discuss the FLAPW method in detail. We start in section 3.1 by introducing the
linearized augmented plane wave basis to represent the valence wave functions. In
that section we will also discuss the treatment of the core electrons, as well as several
extensions to the valence electron description. We continue in section 3.2 with a
discussion on the setup of the Hamilton and overlap matrices. In section 3.3 we
describe the construction of the charge density, before we sketch the calculation of the
total energy in section 3.4. Finally, we list a couple of developments for the FLAPW
method in section 3.5.

3.1 The linearized augmented plane-wave
basis

The FLAPWmethod describes the valence electrons in terms of linearized augmented
plane wave (LAPW) basis functions. These are plane waves in the IR and numerically
determined radial functions times spherical harmonics YL in theMT spheres. TheMT
functions are matched in value and slope to the plane wave in the IR. In detail, an
LAPW of Bloch vector k and reciprocal lattice vector G is defined as

� kG(r) =

8
>>><
>>>:

1√


ei(k+G)r for r ∈ IR

P

L

h
aL �
kGu �

l (r � ; E
�
l ) + bL �

kGu̇ �
l (r � ; E

�
l )
i
YL(r̂α) for r ∈MT� ; (3.1)

1L = (l ; m) is a compound index comprising the angular momentum andmagnetic quantum numbers.
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where r is the position vector and 
 is the volume of the unit cell. Within the MT
sphere of atom � the basis functions depend on r � = r � τ � , which is the position
vector relative to the atom position τ � , and on angular momentum dependent en-
ergy parameters E �

l . The radial functions themselves are a linear combination of the

functions u �
l (r � ; E

�
l ) and u̇ �

l (r � ; E
�
l ), where the coefficients aL �

kG and bL �
kG are obtained

through the matching condition that LAPW basis functions are continuous in value
and slope at the MT sphere boundaries. The functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ) are

solutions to the scalar-relativistic approximation [74, 18] (SRA) to the radial Dirac
equation for the spherical part of the potential within the MT sphere and their en-
ergy derivatives. In the SRA wave functions possess two components, a large compo-
nent g �l (r � ; E

�
l ) and a small component f �

l (r � ; E
�
l ). They are obtained by solving the

differential equations
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for the energy parameter E �
l from r � = 0 outwards to obtain solutions with regular

behavior at the nuclei. In this equation system V �
l=0(r � ) is the l = 0 component of the

effective potential and the quantity Ml(r � ; E
�
l ) is an abbreviation for

Ml(r � ; E
�
l ) =me +
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: (3.3)

For the matching at the MT boundaries one only considers the large component and
neglects the small component.

The large and small components of the energy derivative u̇ �
l (r � ; E

�
l ) are obtained

similarly after differentiating the equations with respect to the energy parameter to
obtain
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The idea of LAPW basis functions and their principle form is illustrated in fig-
ure 3.2.
In practice only a limited amount of basis functions can be used. To define these

functions one introduces a reciprocal cutoff radius Kmax, i.e., all LAPWs fulfilling
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Figure 3.2.: Illustration of an LAPW basis function. The strongly oscillating part of the wave
functions inside the MT spheres is described by the functions u �

l (r � ; E
�
l ) and

u̇ �
l (r � ; E

�
l ), while plane waves are used in the interstitial region. Within a given

LAPW basis function one forms a linear combination of the MT functions to ob-
tain an overall continuous value and slope of the basis function at the MT sphere
boundary.

the condition j k +G j = jK j � Kmax are part of the basis set. The definition of the
cutoff in this way enforces a symmetric basis set such that no artificial asymmetries
are injected into the DFT calculations. Additionally one introduces a cutoff for the
maximal angular momentum in each MT sphere. These l �max restrict the L summation
in equation (3.1) to those L with l � l �max. FLAPW calculations can be converged
with respect to both, Kmax and l �max. Within the interstitial region this systematically
enables representations of wave functions on an ever finer scale since basis functions
with higher and higher kinetic energy 1

2(k+G)2 are included. In the MT spheres this
is slightly different. Here, l �max controls themaximum angular momentum considered
in the sphere and calculations can also be converged with respect to this limitation.
Another aspect, however, is the variational freedom in a given l-channel which is
restricted to the two radial functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ).

In the spherical approximation, the functions u �
l (r � ; E

�
l ) provide a perfect MT rep-

resentation of wave functions with the same energy. The inclusion of the energy
derivative u̇ �

l (r � ; E
�
l ) on the other hand enables the freedom to precisely represent

wave functions with energies deviating from the energy parameter E �
l . To assess the

error made in the representation of such a wave function at energy E, one may in a
first approximation write down a Taylor expansion of the wave function

u �
l (r � ; E) = u �

l (r � ; E
�
l ) + (E � E �

l )u̇
�
l (r � ; E

�
l ) +O

(

(E � E �
l )

2
)

(3.5)

to find that the linearized description around the energy parameter E �
l leaves an

error that scales with the square of the energy difference. Note however that this
error estimation is somewhat hand waving since the wave function is determined by
a variational method such that the expansion coefficients of the radial functions have
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the freedom to deviate from those in the Taylor expansion. Another aspect that is
not covered by this estimation is the capability of the radial functions to represent
wave functions if the spherical approximation is not applied and the electrons are
exposed to the full potential. Nevertheless, in practice it turns out that the radial
functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ) enable a precise description of the Kohn-Sham

wave functions within an interval of a few eV around the chosen energy parameter.
In many materials this is sufficient to represent the valence electrons with a single
energy parameter per angular momentum quantum number.

3.1.1 Treatment of the core electrons

In the FLAPW method valence and core electrons are separated from each other,
such that the core electrons are only exposed to the spherical potential around their
associated atomic nucleus and their wave functions are determined for each atom
separately. The valence electrons, on the other hand, are exposed to the full potential
and described by the LAPW basis. This splitting of the treatment is done on the one
hand to reduce the computational demands of the method by decreasing the number
of electrons that have to be described by the LAPW basis and on the other hand to
increase the accuracy of the method as it allows to treat the core electrons in a fully
relativistic fashion. The separation of core and valence electrons is possible if the
LAPW basis is orthogonal to the core states. If this cannot be guaranteed one may
obtain a description of core electron states with the LAPW basis, which may appear
within the window of occupied valence states. As a consequence, such an unphysical
ghost band might become occupied which would yield a completely wrong valence
structure.

The orthogonality between the core states and the LAPW basis can be shown if one
assumes that the LAPW basis functions in the MT spheres were determined by the
nonrelativistic equations
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and that the similarly nonrelativistically determined core states are strictly confined
within the MT sphere. For this, one considers a core wave function u �

l ; c(r � ; E
�
l ; c) deter-

mined on the basis of equation (3.6).

The simple proof starts by multiplying equation (3.6) for the LAPW basis with
r � u

�
l ; c(r � ; E

�
l ; c) and the equivalent equation for the core state with r � u

�
l (r � ; E

�
l ). By
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subtracting these two new equations from each other one obtains
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Integrating both sides of the equation from 0 to RMT � and considering the function
value and derivative of u �

l ; c(r � ; E
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l ; c) at the MT boundary then yields

0 = h u �
l ; c j u

�
l i RMT �

: (3.9)

For u̇ �
l (r � ; E

�
l ) one analogously multiplies equation (3.7) with r � u

�
l ; c(r � ; E

�
l ; c) and the

differential equation for the core wave function with r � u̇
�
l (r � ; E

�
l ). By subtracting

these two equations from each other one obtains

1

2
r � u

�
l ; c(r � ; E

�
l ; c)

@ 2

@ r 2
�

r � u̇
�
l (r � ; E

�
l ) �

1

2
r � u̇

�
l (r � ; E

�
l )

@ 2

@ r 2
�

r � u
�
l ; c(r � ; E

�
l ; c)

� u �
l ; c(r � ; E

�
l ; c)r

2
� u

�
l (r � ; E

�
l ) = (E �

l ; c � E �
l )u̇

�
l (r � ; E

�
l )r

2
� u

�
l ; c(r � ; E

�
l ; c) : (3.10)

After the integration this becomes
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l ; c j u̇
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l i RMT �

: (3.11)

However, the derivation of these orthogonality relations is based on two assumptions
that are only approximately fulfilled. First, the core states are not completely con-
fined within the MT spheres so that the valence basis is not strictly orthogonal to
the core states. Second, a similar derivation of the scalar products between the va-
lence basis functions and the core states with the scalar-relativistic differential equa-
tions (3.2) and (3.4) yields
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where the index c once again denotes quantities associated with the core states. Obvi-
ously the scalar products do not vanish. This means that with the scalar-relativistical-
ly determined radial functions in the LAPW basis, the valence basis is not orthogonal
to equivalently determined core states, even if the core states were completely con-
fined within the MT spheres. However, also here the deviation from perfect orthogo-
nality is small which can quickly be seen by noticing the powers of the speed of light
in the denominators of the integrands. Thus, for all practical reasons these terms
can be neglected and one keeps the approach to treat the core electrons apart from
the valence electrons. Note that the here presented considerations do not cover the
question how large the projection of the fully relativistically determined core states
onto the LAPW basis is.

3.1.2 Extending the LAPW basis with local orbitals

As already mentioned, the assumption that core electron wave functions are com-
pletely confined within a MT sphere is only an approximation. Especially for ener-
getically high-lying core states this approximation breaks down. The orthogonality
approximation between the LAPW basis and such semicore states is inadequate and
depending on the portion of the semicore wave function that is extended beyond the
MT sphere boundary this may cause significant problems. In the worst case one ob-
tains a mediocre description of the state by the LAPW basis. If this is the case the
state may appear as a so-called ghost state within the valence states and may even get
occupied. As a consequence, in such situations the state is doubly occupied, once as
a core state and once as a valence state. One cannot obtain meaningful DFT results
in such cases.
To handle such situations, Singh [9] proposed the extension of the LAPW basis

by so-called local orbitals (LOs). These are additional basis functions that are com-
pletely confined within a MT sphere. For this, Singh introduces a new radial function

u �
l (r � ; E

� ; SC
l ) that is a solution to equations (3.2) for an energy E � ; SC

l in the near of the
semicore state. The 2l +1 local orbitals are then constructed as

� � ; LO
L (r) =

h
a � ; LOl u �

l (r � ; E
�
l ) + b � ; LOl u̇ �

l (r � ; E
�
l ) + c � ; LOl u �

l (r � ; E
� ; SC
l )

i
YL(r̂α) ; (3.14)

where LO is used as an index to address a certain local orbital within atom � . The
coefficients a � ; LOl , b � ; LOl , and c � ; LOl are obtained by enforcing vanishing value and
slope of the LO at the MT sphere boundary, as well as the normalization condition

h �
� (r) ; LO
L j �

� (r) ; LO
L i = 1. Figure 3.3 sketches the idea of a local orbital.

Semicore states form nearly dispersionless bands since their overlap with orbitals

from other atoms is small. Thus, the radial function u �
l (r � ; E

� ; SC
l ) already provides a

highly precise representation of the associated states. An additional energy derivative

at E � ; SC
l is typically not required. With this excellent description, the semicore state

can be treated by the valence framework and is removed from the core electrons.
Note however that the treatment of these states with the valence basis also implies a
transition from a fully relativistic to a scalar-relativistic description.
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Figure 3.3.: Illustration of a local orbital. Local orbitals are additional localized basis func-
tions, mostly used to describe semicore states. They consist of the functions

u �
l (r � ; E

�
l ), u̇

�
l (r � ; E

�
l ), and a third function which is typically a u �

l (r � ; E
� ; SC
l ), eval-

uated at an energy parameter in the near of the semicore state. These functions
are linearly combined such that the resulting LO is normalized and features van-
ishing value and slope at the MT sphere boundaries.

3.1.3 Determination of the energy parameters

The energy parameters E �
l of the LAPW basis functions have to be set in the run-up

of an iteration of the DFT self consistency loop and the question arises how to choose
them in the best way. Here we discuss two automatic and commonly used methods
of determining these parameters.

The first approach, which we denote as energy center of mass (ECM) method, con-
siders in a MT sphere the l projected density of states for the occupied states of the
preceding iteration and sets the parameter to the energy center of mass of these states.
In detail, one defines the k point resolved l-like charge originating from the eigen-
state  �

k as
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k
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k ; l (r)|

2d3r ; (3.15)

where  � ; �
kl is the l-projection of  �

k in the MT sphere around atom � and ! �
k is the

occupation of this state, which also includes a weight for the respective k point.

The determination of the energy parameter is now based on the minimization of
the quadratic error of the mismatch between the eigenstate energies and the energy
parameter, weighted by the occupation of the states. Formally, one demands
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The determination of the energy parameters in this way minimizes the leading rest
term of the Taylor expansion (3.5) under consideration of the occupation of the states.
Thus, it is a highly systematic approach to obtain nearly optimal energy parameters.
Remaining deviations from the optimal energy parameters are associated with higher
order terms in the Taylor expansion. Furthermore, the variational determination of
the wave functions provides the freedom to obtain representations with expansion
coefficients deviating from the Taylor expansion. As these additional degrees of free-
dom are not considered, this is another source for variations from the optimal energy
parameters.
Semicore states, that are described by LOs within the valence framework, are typ-

ically excluded from the states contributing to the determination of the energy pa-

rameters. This is reasonable as one uses a separate radial function u �
l (r � ; E

� ; SC
l ) with

an adapted energy parameter to represent the semicore states. Thus, an inclusion
of the semicore state in the determination of the energy parameters for the valence
states would unnecessarily shift the energy parameters to lower energies and away
from the valence states far above the semicore states.
The second approach, which we denote as atomic energy parameters (AEP) method,

is based on the consideration that the bands in a crystal form out of atomic states
when well separated isolated atoms are moved nearer to each other until they are
in their final positions in the solid. With this premise, the AEP method determines
the eigenenergies of the states of an artificial atomic problem, which consists of the
spherical part of the effective potential in the MT sphere of the associated atom in the
solid and a confining extension of this potential beyond the MT sphere boundary. For
each l the energy parameter is then set to the energy of the atomic eigenstate with the
same l and the same main quantum number which corresponds to the valence elec-
trons of the atom in the solid. If the atom does not possess any valence electrons in a
given l channel, the energy parameter is set to the energy of the lowest atomic eigen-
state with same l above the core states. However, since this energy can be far above
the valence states for high l quantum numbers, this algorithm is only performed for
low l quantum numbers, e.g., for l � 3. For higher l one chooses an energy parameter
in the near of the valence states, e.g., by setting E �

l>3 to E �
l=3.

Note that the ECMmethod depends on the occupations of the Kohn-Sham orbitals.
Due to changes of the eigenenergies between consecutive iterations of the DFT self-
consistency loop, these occupations can change drastically. Especially in materials
with very flat bands near the Fermi level this can yield a problematic oscillatory be-
havior of the energy parameters, which, in the worst case, can impede a convergence
of the charge density. The AEP method is not affected by this problem as it does
not rely on the occupation numbers. Thus, this approach of determining the energy
parameters yields a much more stable convergence behavior. On the other hand the
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Figure 3.4.: Partitioning of space in the FLAPWmethod for film calculations. Additionally to
the setup in Figure 3.1 there are vacuum regions attached to the unit cell at the
boundaries in z direction. The unit cell is periodically continued only in x and y
direction. In the illustration D is the extent of the interstitial region with respect
to the matching at the z boundaries, while D̃ defines the interstitial region for the
definition of the wave vectors. The surface area of the unit cell is denoted by A.

AEP method does not consider states from adjacent atoms that are extended into the
respective MT sphere for which the energy parameter is determined. Such states give
rise to an l-like charge that can be energetically far away from the associated energy
parameter. Hence, atomic energy parameters are less problem adapted than ECM
parameters.

3.1.4 The LAPW basis for thin films

The 3D geometry of bulk materials is not adequate for all materials of interest. Often,
one is interested in the physics of surfaces. Such a configuration may be modeled by a
thin film that is thick enough to possess bulk-like behavior in its central atom layers.
An often followed approach to realize such a system in DFT codes is the usage of
large unit cells that incorporate the thin film and a large region of space without any
atoms in it to simulate a vacuum. In this case the atom-free region has to be large
enough to decouple the thin films from neighboring unit cells. With a non-localized
basis set such setups are inefficient since many basis functions have to be used to
describe the atom-free region. For the FLAPW method another approach has been
established [99].

Thin film calculations with the LAPW basis are performed in a 2D setup in which
the unit cell is periodically continued only in the x and y direction, while additional
vacuum regions (VRs) are attached to the unit cell boundaries in z direction. This
setup is sketched in figure 3.4.

Similarly to the augmentation in the MT spheres the plane waves in the interstitial
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region are augmented by special functions in the VRs. In detail one uses the pro-
jections of the plane waves in the IR onto the plane of the film ei(k k +G k )r k times the
functions uvac

k k G k
(z; Evac) and u̇vac

k k G k
(z; Evac) which are solutions and energy derivatives

to the Schrödinger equation to the planarly averaged effective potential V
avg,vac
eff (z) in

the region VRvac at the energy parameter Evac. Numerically one solves
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where k k is the two-dimensional Bloch vector in the plane of the film and G k is the
projection of the wave vector onto the plane of the film.
Putting the ingredients together one ends up with the LAPW basis for film calcu-

lations in which a given basis function is defined as
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(3.20)

where A is the surface area of the film and the factor 1=
p
A is included for normaliza-

tion purposes. In analogy to the matching at the MT sphere boundaries, the match-
ing coefficients avack k G

and bvack k G
are determined by enforcing continuity of the basis

functions in value and slope at the vacuum boundaries. As shown in figure 3.4 the
interstitial region of the unit cell has a width D. However, for the construction of
the plane waves, this region is extended to cover a width of D̃ to avoid implicit peri-
odic boundary conditions at the vacuum boundaries and to increase the variational
freedom of the basis.
Similarly to the treatment of two-dimensional geometries, the FLAPW method is

also defined and successfully used for one-dimensional structures [100] by introduc-
ing an adequate vacuum region for such cases. However, this aspect is beyond the
scope of this work.

3.1.5 Other extensions and modifications of the

LAPW basis

The LAPW basis is very sophisticated as it offers a high description efficiency, mean-
ing that a very limited number of basis functions is enough to precisely represent
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valence electron wave functions in a full potential and all electron model. However,
over the years a couple of approaches have been proposed to measure and further
strengthen these advantages. Beyond the already discussed extensions, we provide
an overview over these developments whichmostly address theMT part of the LAPW
basis.
To enable precise descriptions of wave functions over a wider energy window,

L. Smrčka [101, 102] proposed the quadratically augmented plane-wave (QAPW)
method in which a third radial function ü �

l (r � ; E
�
l ), which is the second energy deriva-

tive of u �
l (r � ; E

�
l ), is introduced in the MT regions. To incorporate this function

Smrčka does not employ additional matching conditions at the MT sphere bound-
aries but enforces an algebraic relationship between the different radial functions.
Next, E. Krasovskii analyzed the precision of representation of the wave functions

inside the MT spheres [13]. To improve the description he addressed the limited
variational freedom of the basis in the MT spheres by adding pairs of LOs with

u �
l (r � ; E

� ; LO
l ) and u̇ �

l (r � ; E
� ; LO
l ) as third radial functions to the basis to create the ex-

tended LAPW (ELAPW) basis [10, 11, 12]. In this approach the additional energy

parameters E � ; LO
l are typically chosen within the range of the unoccupied bands and

hence also mainly improve the description for these states. However, in his publica-
tions on the ELAPW method Krasovskii was not explicit about the concept how to
choose the energy parameters.

Precise descriptions of unoccupied bands are also required for a couple of tech-
niques going beyond conventional DFT. In the context of EXX-OEP calculations Bet-

zinger et al. [103] proposed to include local orbitals with u �
l (r � ; E

� ; LO
l ) as a third radial

function, where the energy parameters are chosen such that the logarithmic deriva-
tive

D �
l (E) =

u 0 �
l (r � ; E)

u �
l (r � ; E)

������
r � =RMT �

(3.21)

at the MT boundary at RMT � becomes � (l +1) which corresponds to evanescent solu-
tions of the scalar-relativistic Dirac equation for a constant effective potential V �

eff =
E = 0. It is known [6] that radial functions chosen in this way are orthogonal to each
other and to the completely confined core states.

Unoccupied bands also contribute to the GW [104] approximation of many-body
perturbation theory (MBPT), which can be performed on top of LAPW and FLAPW
calculation results [105, 106, 107, 108, 109]. For such calculations, C. Friedrich et
al. [110] showed that it is also possible to precisely describe the unoccupied bands
with LOs created with higher order energy derivatives of u �

l (r � ; E
�
l ) at the valence

energy parameter E �
l . Note that the energy derivatives of u �

l (r � ; E
�
l ) form a set of

linearly independent functions.
To reduce the required basis set size, Sjöstedt et al. [14] relaxed the matching condi-

tions at the MT sphere boundaries such that the requirement for a continuous deriva-
tive is dropped. The radial function u̇ �

l (r � ; E
�
l ) is then included in terms of local or-

bitals that feature vanishing value but finite slope at the MT boundaries. Sjöstedt
et al. named this alternative linearization of the APW method APW+lo, where the
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lower case abbreviation ’lo’ indicates that the local orbitals in this case differ from the
LOs defined by Singh [9] as the derivative of Sjöstedt’s local orbitals does not vanish
at the MT boundaries and only two radial functions are involved in their construc-
tion. To compensate for the kinks in the basis functions at the MT sphere boundaries,
Sjöstedt introduces an additional term in the Hamiltonian that accounts for the as-
sociated drawback in the kinetic energy. While the matching of value and slope at
the MT sphere boundaries makes the conventional LAPW basis a little stiff, the re-
laxed matching conditions in APW+lo to some extent decouple the representation in
the MT spheres from the interstitial representation. As a consequence one obtains
converged calculation results for smaller Kmax and even though one introduces ad-
ditional lo basis functions, the overall required basis set size is often considerably
reduced.
In APW+lo the additional local orbitals are typically only added for low angular

momentum quantum numbers up to about l = 3. Madsen et al. [15] therefore pro-
posed to deal with the matching for the higher l components equivalently to LAPW.
With this approach one obtains the advantages of the APW+lo method while also
guaranteeing continuity of value and slope of the wave functions for the higher l
components. For large basis set cutoffs LAPW and APW+lo calculations in terms of
Madsen’s formulation converge to the same total energy.

The LAPW basis can also be modified in the interstitial region. Since the preci-
sion of the description is systematically convergable in this region, modifications to
the LAPW basis in this context mainly address the required basis set size. For this,
Bultmark et al. [16] introduce the augmented distorted plane wave basis in which
the interstitial part of the basis is defined on structure-adapted coordinates. Another
approach to reduce the basis set size by a more efficient description in the IR was pro-
posed by Kotani et al. [111] who introduced additional LMTO basis functions such
that the Kmax cutoff can be reduced to yield an overall smaller basis set that already
offers a very good description.
An alternative but also common formulation of the LAPW basis, which eliminates

discontinuities due to finite l �max cutoffs, was proposed by Soler and Williams [112].
In this formulation, the l components of the plane waves in the interstitial region
beyond l �max reach into the MT spheres. This is realized by assuming that the plane
waves cover the whole unit cell. In the MT spheres the contributions to the overlap
and Hamilton matrices due to the low l channels of the plane waves are then replaced
by the contributions due to the radial functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ). This formu-

lation of the LAPW basis has less stringent requirements with respect to the angular
momentum cutoffs. In practice, l �max = 3 is often enough to obtain accurate results.
However, the replacement of the MT contributions is computationally expensive.

3.2 Hamilton and Overlap matrices

Due to the region-dependent definitions of the potential and the basis functions and
the locality of the Hamiltonian in real space, the construction of the Hamilton Hk

GG 0
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and overlap Sk
GG 0 matrices can also be subdivided into contributions from the differ-

ent regions. In detail one constructs these matrices as

Hk
GG 0 =Hk ; IR

GG 0 +
X

�

Hk ; �
GG 0 +

X

vac

Hk ; vac
GG 0 (3.22)

and
Sk
GG 0 = Sk ; IR

GG 0 +
X

�

Sk ; �
GG 0 +

X

vac

Sk ; vac
GG 0 ; (3.23)

where the superscript IR is associated to the interstitial contributions, the superscript
� indicates contributions from theMT sphere around atom � , and the superscript vac
gives the contributions from VRvac. We will discuss the calculation of these matrices
in each region of the unit cell in the following.
However, before we go into detail, we first discuss how to obtain a Hermitian

Hamilton matrix. This is a consideration that enters the construction of this matrix
in each region.

3.2.1 Hermiticity of the Hamilton matrix

To obtain real energy eigenvalues of the wave functions, the Hamilton and overlap
matrices have to be Hermitian. However, one can easily show that Hamilton matrices
for the LAPW basis do not obtain this property in a trivial way.
Hermitian Hamilton matrices have the property

Hk
GG 0 �

�
Hk

G 0 G

� �
=
D
� kG

��� Ĥ
��� � kG 0

E
�
� D
� kG 0

��� Ĥ
��� � kG

E � �

=

Z

� �
kG(r)Ĥ � kG 0 (r) � � kG 0 (r)Ĥ � �

kG(r)d3r

= 0: (3.24)

We test if this property is fulfilled with the LAPW basis functions. Considering a
setup of a bulk system the Hamilton matrix becomes a sum of contributions from the

different regions. Thus, the difference between Hk
GG 0 and

�
Hk

G 0 G

� �
is

Hk
GG 0 �

�
Hk

G 0 G

� �
=
D
� IR
kG

��� Ĥ
��� � IR

kG 0

E

IR
�
� D
� IR
kG 0

��� Ĥ
��� � IR

kG

E

IR

� �

+
X

�

D
� �
kG

��� Ĥ
��� � �

kG 0

E

MT � �
� D
� �
kG 0

��� Ĥ
��� � �

kG

E

MT �

� �

= �
1

2

8
>>><
>>>:

Z

IR

�
� IR
kG(r)

� �
r
2 � IR

kG 0 (r) � � IR
kG 0 (r) r

2
�
� IR
kG(r)

� �
d3r

+
X

�

Z

MT �

�
� �
kG(r)

� �
r
2 � �

kG 0 (r) � � �
kG 0 (r) r

2
�
� �
kG(r)

� �
d3r

9
>>>=
>>>;
; (3.25)
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where � IR
kG and � �

kG denote the IR and MT � representations of basis function � kG

and it has been used that the contributions due to the potential cancel each other.
With Green’s theorem these volume integrals can be expressed through surface inte-
grals over the MT sphere boundaries. One obtains

Hk
GG 0 �

�
Hk

G 0 G

� �
= �

1

2

8
>>><
>>>:

X

�

Z

@ MT �

�
h �
� IR
kG(r)

� �
r � IR

kG 0 (r)
i
n+

h
� IR
kG 0 (r) r

�
� IR
kG(r)

� � i
n

+
h �
� �
kG(r)

� �
r � �

kG 0 (r)
i
n �

h
� �
kG 0 (r) r

�
� �
kG(r)

� � i
ndS

9
>>>=
>>>;
; (3.26)

where n is a normal vector on the respective MT boundary pointing out of the MT
and dS a surface element. The derived expression vanishes if the IR and MT� rep-
resentations � IR

kG and � �
kG posses identical values and gradients on the MT sphere

boundaries.
However, this is not the case for LAPW basis functions since the angular momen-

tum cutoff implies deviations for higher l quantum numbers. Furthermore, the de-
termination of the basis functions in the MT spheres with the SRA to the radial Dirac
equation implies a two-component basis function in this region, while the IR part of
the basis function consists of a single component. The matching at the MT sphere
boundaries only considers the large component of the MT function, which implies
further deviations between the two representations.

In conclusion, constructing the Hamilton matrix in a naive way yields a matrix
that is not Hermitian. To overcome this problem one considers in each region the
application of the kinetic energy operator to the left as well as to the right basis
function and averages over the two resulting matrix contributions. One can show
that in this way not only the Hamilton matrix over the whole unit cell, but also the
Hamilton matrices for each region become Hermitian.

3.2.2 The setup for the interstitial region

In the interstitial region the FLAPWmethod is based on a nonrelativistic description
of the electrons. This is justified as the kinetic energy is small in comparison to the
regions around the atomic nuclei where the singularities of the potential and the
angular momentum barrier lead to high kinetic energy contributions.
The contributions to the Hamilton and overlap matrices in the IR are given by the

matrix elements

Hk ; IR
GG 0 =

D
� kG

��� Ĥ
��� � kG 0

E

IR

=
1




Z

IR

e � i(k+G)r
�
�
1

2
∇

2 +V (r)
�
ei(k+G

0 )rd3r (3.27)
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for the Hamiltonian and

Sk ; IR
GG 0 =



� kG

��� � kG 0

�
IR

=
1




Z

IR

e � i(k+G)rei(k+G
0 )rd3r (3.28)

for the overlap.
Unfortunately it is cumbersome to calculate integrals over the IR directly. To eval-

uate the integrals in an elegant way one first applies the kinetic energy operator and
then introduces a step function

� (r) =

(
1 for r 2 IR
0 for r 2 MT � (3.29)

to cut out the MT spheres from the unit cell and transform the integrals over the IR
into integrals over the whole unit cell. With this step function and a replacement of
the LAPW basis functions � kG with their interstitial representation extended over
the whole unit cell ˜� kG equations (3.27) and (3.28) become

Hk ; IR
GG 0 =

�
˜� kG

����� V (r) � (r) �
1

2
� (r) r 2

�����
˜� kG 0

�




=
1




Z




e � i(G � G 0 )rV (r) � (r)d3r +
(k+G 0 )2

2


Z




e � i(G � G 0 )r � (r)d3r (3.30)

and

Sk ; IR
GG 0 =

D
˜� kG

��� � (r)
��� ˜� kG 0

E




=
1




Z




e � i(G � G 0 )r � (r)d3r : (3.31)

In real space it is still problematic to solve these integrals. However, the reciprocal
cutoff for the wave vectors G and G 0 makes a computation of the integrals in recip-
rocal space reasonable. For this, the step function is analytically expressed in terms
of the Fourier expansion

� (G) = � G ; 0 �

X

�

e � iGτ �
4� (RMT � )3




j1(GRMT � )

GRMT �
; (3.32)

where j1 is the spherical Bessel function for l = 1.
To calculate the contributions to the Hamilton matrix, also the Fourier coefficients

of the product of the potential V (r) and the step function � (r) have to be obtained.
For this, the analytically determined reciprocal representation of the step function
is numerically transformed onto the real space grid again, employing a Fast Fourier
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Transform (FFT). Here, it is pointwise multiplied with V (r). The product (V � ) (r) is
then backtransformed to reciprocal space to obtain its Fourier expansion (V � ) (G).
In the next step of the calculation of the matrix elements it is now exploited that

different plane waves are orthogonal to each other. Thus, all but a single Fourier
coefficient of � (G) and (V � ) (G) lead to vanishing contributions to the matrices. In
the end one obtains

Hk ; IR
GG 0 = (V � ) (G � G 0 ) +

(k+G 0 )2

2
� (G � G 0 ) (3.33)

and

Sk ; IR
GG 0 = � (G � G 0 ) : (3.34)

Note that due to the reciprocal cutoff Kmax for the basis functions and the single
required Fourier coefficient G � G 0 of � (G) and (V � ) (G), the Fourier expansions of
these functions are also only needed up to a limited cutoff that is twice as large as
the maximal wave vector found in the basis. The calculation of (V � ) (G) however
may require a higher cutoff, depending on the convergence behavior of the reciprocal
representation of the potential V (G).
Finally, the hermiticity of the Hamilton matrix is established by averaging over the

application of the kinetic energy operator to the left and to the right basis function.
With this the IR contributions become

Hk ; IR
GG 0 = (V � ) (G � G 0 ) +

(k+G)2 + (k+G 0 )2

4
� (G � G 0 ) : (3.35)

3.2.3 The setup for the muffin-tin spheres

Within theMT spheres the contributions to thematrices are subdivided into spherical
contributions and contributions to the Hamilton matrix due to the nonspherical part
of the potential. In detail for the MT sphere around an atom � one calculates

Hk ; �
GG 0 =H

k ; � ; sphr
GG 0 +H

k ; � ; nsphr
GG 0

=
D
� kG

��� Ĥ � ; sphr
��� � kG 0

E

MT � +
D
� kG

��� Ĥ � ; nsphr
��� � kG 0

E

MT �

=

Z

MT �

� �
kG(r)

h
T̂ +V �

l=0(r � )Y0 ; 0(r̂ � )
i
� kG 0 (r)d3r

|                                                      { z                                                      }
spherical part

+

Z

MT �

� �
kG(r)

2
6666664

l �maxX

l 0 0 =1

l 0 0X

m 0 0 = � l 0 0

V �
L 0 0 (r � )YL 0 0 (r̂ � )

3
7777775
� kG 0 (r)d3r

|                                                              { z                                                              }
nonspherical contributions

(3.36)
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for the Hamilton matrix and

Sk ; �
GG 0 =



� kG

��� � kG 0

�
MT �

=

Z

MT �

� �
kG(r) � kG 0 (r)d3r (3.37)

for the overlap matrix. We discuss the computation of these integrals in detail in the
following sections.

3.2.3.1 Determination of the matching coefficients

In the MT spheres the LAPW basis consists of the radial functions u �
l (r � ; E

�
l ) and

u̇ �
l (r � ; E

�
l ) and the matching coefficients aL �

kG and bL �
kG. To obtain the matching coeffi-

cients for the MT sphere around atom � one performs the Rayleigh expansion

1
p


eiKr =

4�
p


eiKτα

X

L

ilY �
L(K̂)jl(Kr � )YL(r̂ � )

�������
r � =RMT �

(3.38)

of the plane wave with K = k +G in the IR into spherical harmonics YL(r̂ � ) and
spherical Bessel functions jl(Kr � ) at the MT sphere boundaries2.
The matching conditions now state that the basis functions and their slopes are

continuous at the MT boundaries. One obtains these conditions for each (l ; m) chan-
nel separately by calculating the aL �

kG and bL �
kG with the equations

aL �
kGu �

l (r � ; E
�
l ) + bL �

kGu̇ �
l (r � ; E

�
l )
���
r � =RMT �

=
4�
p


eiKταilY �

L(K̂)jl(Kr � )YL(r̂ � )

������
r � =RMT �

(3.39)
and

aL �
kGu 0 �

l (r � ; E
�
l ) + bL �

kGu̇ 0 �
l (r � ; E

�
l )
���
r � =RMT �

=
4�
p


eiKταilY �

L(K̂)j 0l (Kr � )YL(r̂ � )

������
r � =RMT �

(3.40)
in which 0 denotes the derivative with respect to r � . Solving this system of linear
equations analytically then leads to

aL �
kG =

4�
p


eiKτα

1

W
Y �
L(K̂)

h
u̇ �
l (RMT � ; E �

l )j
0
l (KRMT � ) � u̇ 0 �

l (RMT � ; E �
l )jl(KRMT � )

i

= cL �
kGal �kG (3.41)

2Note that in order to reduce computational demands FLAPW codes typically exploit symmetry
relations to group symmetry equivalent atoms. In this case the local coordinate system in a MT
sphere also has to comply with the associated symmetry operation S̄ � , which maps an atom of the
equivalence class to the representative of the class. As a consequence the argument of the spherical

harmonic Y �
L(K̂) in the Rayleigh expansion has to be modified and one obtains Y �

L(
[S̄ � K).
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and

bL �
kG =

4�
p


eiKτα

1

W
Y �
L(K̂)

h
u 0 �
l (RMT � ; E �

l )jl(KRMT � ) � u �
l (RMT � ; E �

l )j
0
l (KRMT � )

i

= cL �
kGbl �kG (3.42)

where the Wronskian W is given by

W = u̇ �
l (RMT � ; E �

l )u
0 �
l (RMT � ; E �

l ) � u �
l (RMT � ; E �

l )u̇
0 �
l (RMT � ; E �

l ) (3.43)

=
2

R2
MT �

: (3.44)

Note that the matching coefficients (3.41) and (3.42) are given as a product of an l
and m dependent quantity

cL �
kG =

4�
p


eiKτα

1

W
Y �
L(K̂) =

2� R2
MT �

p



eiKταY �
L(K̂) (3.45)

identical for both, the aL �
kG and the bL �

kG coefficient, and solely l dependent parts al �kG
and bl �kG.

3.2.3.2 Spherical contributions to the Hamilton and Overlap
matrices

In the MT spheres the LAPW basis functions are a linear combination of the func-
tions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ), and partially additional radial functions in local or-

bitals. These functions are explicitly constructed to fulfill certain relations with the
spherical part of the Hamiltonian Ĥ � ; sphr. First of all, the radial function u �

l (r � ; E
�
l ) is

the normalized solution to this part of the Hamiltonian with regular behavior at the
nucleus. Thus, it fulfills

Ĥ � ; sphr
j u �

l i = El j u
�
l i (3.46)

together with the normalization h u �
l j u

�
l i MT � = 1. The radial function u̇ �

l (r � ; E
�
l ), on

the other hand, is the energy derivative of u �
l (r � ; E

�
l ) and therefore fulfills

Ĥ � ; sphr
j u̇ �

l i +
˙̂H � ; sphr

j u �
l i = El j u̇

�
l i + j u �

l i : (3.47)

Furthermore, one adds multiples of u �
l (r � ; E

�
l ) to u̇ �

l (r � ; E
�
l ) to ensure that the orthog-

onality h u �
l j u̇

�
l i MT � = 0 holds. The term ˙̂H � ; sphr j u �

l i only appears in the SRA to the
radial Dirac equation and vanishes in a nonrelativistic consideration. It is typically
neglected since it is small in comparison to the other terms in equation (3.47). With
this, one approximates

Ĥ � ; sphr
j u̇ �

l i � El j u̇
�
l i + j u �

l i : (3.48)
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With these simple expressions the spherical contributions to the matrices can be cal-
culated in an elegant and efficient way, which starts by expressing the matrix ele-
ments in terms of the matching coefficients aL �

kG and bL �
kG. For the contributions to the

Hamilton matrix this leads to

H
k ; � ; sphr
GG 0 =

l �maxX

l=0

lX

m= � l

El

h �
aL �
kG

� �
aL �
kG 0 + h u̇ �

l j u̇
�
l i MT �

�
bL �
kG

� �
bL �
kG 0

i
+
�
aL �
kG

� �
bL �
kG 0 : (3.49)

By plugging in the expressions for the matching coefficients (3.41) and (3.42) one
obtains for the first term

l �maxX

l=0

lX

m= � l

El

�
aL �
kG

� �
aL �
kG 0 =

l �maxX

l=0

El

�
al �kG

� �
al �kG 0

lX

m= � l

�
cL �
kG

� �
cL �
kG 0 ; (3.50)

where the summation over the m quantum number can be performed analytically by
applying the addition theorem for spherical harmonics

lX

m= � l

4�

2l +1
Y �
L(K̂)YL(K̂

0 ) = Pl

 
KK 0

jKK 0 j

!

(3.51)

to obtain

lX

m= � l

�
cL �
kG

� �
cL �
kG 0 =

4� 2R4
MT �



ei(K

0 � K)τ �

lX

m= � l

Y �
L(K̂)YL(K̂

0 )

=
(2l +1) � R4

MT �



ei(K

0 � K)τ � Pl

 
KK 0

jKK 0 j

!

: (3.52)

By combining equations (3.50) and (3.52) one obtains

l �maxX

l=0

lX

m= � l

El

�
aL �
kG

� �
aL �
kG 0 =

l �maxX

l=0

El

�
al �kG

� �
al �kG 0

(2l +1) � R4
MT �



ei(K

0 � K)τ � Pl

 
KK 0

jKK 0 j

!

: (3.53)

Similarly, the summation over the magnetic quantum number can also be performed
analytically for the second and third term of the spherical contributions to the Hamil-
tonian (3.49). By doing this one ends up with

H
k ; � ; sphr
GG 0 =

l �maxX

l=0

(2l +1) � R4
MT �



ei(K

0 � K)τ � Pl

 
KK 0

jKK 0 j

!

�
n
El

h �
al �kG

� �
al �kG 0 + h u̇ �

l j u̇
�
l i MT �

�
bl �kG

� �
bl �kG 0

i
+
�
al �kG

� �
bl �kG 0

o
: (3.54)

Finally, one also has to ensure the hermiticity of the matrix by averaging over the
results of applying the Hamiltonian to the right and to the left basis functions. By
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doing this one obtains the final expression
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Note that calculating the spherical contributions to the Hamiltonmatrix in terms of

a Hermitian version of equation (3.49) gives a scaling of O
�
(lmax +1)2NatomN

2
LAPW

�
,

where Natom is the number of atoms, NLAPW is the number of LAPW basis func-
tions, and lmax is a representative for the actually atom dependent l �max cutoffs, e.g.,
lmax = sup f l �max g . If the summation over m is performed analytically as it is done in

equation (3.55) this scaling is reduced to O
�
(lmax +1)NatomN

2
LAPW

�
, which effectively

yields a material dependent speedup of a factor of about 10.
In analogy to equation (3.49) one can also write down the MT contributions to the

overlap matrix as
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By performing the same steps as for the Hamilton matrix one ends up with
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Note that this expression is indeed very similar to the corresponding contributions
to the Hamilton matrix (3.54). In practice these similarities between the equations
for the Hamilton matrix and the corresponding expressions for the overlap matrix
lead to a computation of the Hamilton matrix that provides the overlap matrix as a
byproduct. We mention in passing that this statement not only applies to the MT
spheres but also to the other regions within the unit cell (IR, VRvac).

3.2.3.3 Contributions due to the nonspherical potential

The contributions to the Hamilton matrix due to the nonspherical potential within
the MT sphere around atom � ,

H
k ; � ; nsphr
GG 0 =

Z

MT �

� �
kG(r)

2
6666664

l �maxX

l 0 0 =1

l 0 0X
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V �
L 0 0 (r � )YL 0 0 (r̂ � )

3
7777775
� kG 0 (r)d3r ; (3.58)
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are also expressed in terms of the MT part of the LAPW basis as

H
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To calculate this expression one first makes use of the fact that the integral over the
product of three spherical harmonics gives a gaunt coefficient
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With this, one precalculates the four integrals
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where [ � ] and [ � ] either denote u or u̇, respectively. Note that the t
� [ � ][ � ]
LL 0 integrals

are independent of the LAPW basis functions as they do not depend on the matching
coefficients aL �

kG and bL �
kG, whichmake the difference in theMT part of different LAPW

basis functions. As a consequence the basis function independent precalculation of
these expensive integrals saves a lot of time.

The final expression for the calculation of the nonspherical contributions is derived
by combining equations (3.59) and (3.61) to obtain
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where the last expression also shows that the sums over L 0 are independent of the
basis functions on the left side, which allows to calculate them independently of the
left hand basis functions to save some more time.
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To further speed up the calculation of these contributions to the Hamilton matrix

one typically reduces the l �max cutoffs applied to the sums over L and L 0 . This l
� ; nsphr
max

is typically on the order of l �max � 2 or l �max � 4. In conclusion, this part of the matrix

setup features a scaling behavior of O
�
(l
nsphr
max +1)2NatomN

2
LAPW

�
, where l

nsphr
max is a rep-

resentative for the atom dependent l
� ; nsphr
max . For typical LAPW calculations this is a

major part of a DFT iteration. Dependent on the investigated material it takes about
40% of the overall iteration runtime. This is about the same fraction of time which is
required for solving the generalized eigenvalue problem.

3.2.4 The setup for the vacuum regions

Similar to the MT spheres, the LAPW basis in the vacuum regions also consists of
functions that solve the actual problem for an averaged potential at a predetermined
energy parameter and energy derivatives to these functions. In consequence, the
matrix setup in the vacuum regions is performed in analogy to the setup in the MT
spheres.

We start the introduction to this setup by expressing the potential in a vacuum
region as

V vac(r) =
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k

V vac
G 0 0

k

(z)e
iG 0 0

k
r k ; (3.64)

where V
vac,avg
eff (z) = V vac

G 0 0
k
=0
(z) is the two-dimensional average of the effective potential.

The other components are the deviations from this average in the plane of the film.

Next, one subdivides the contributions to the Hamilton matrix into contributions

due to the average potential H
k ; vac ; avg
GG 0 and contributions due to deviations from this

averaged potential Hk ; vac ; dev
GG 0 . So, in a formal notation one constructs the contribu-

tions due to the vacuum vac as
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GG 0 : (3.65)

Analogously to the construction of the u �
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with h uvac
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k k G k

i vac = 1 and
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with h u̇vac
k k G k

j uvac
k k G k

i vac = 0.
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As a consequence the contributions due to the averaged potential are
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where we already averaged over the application of the Hamiltonian to the left and to
the right basis functions to make the matrix explicitly hermitian.
The contributions to the overlap matrix can also be constructed in analogy to the

MT part of the overlap matrix. One obtains
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Finally, the contributions due to the deviations from the averaged effective poten-
tial,
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are computed by precalculating the four integrals
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to finally obtain
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3.3 Constructing the electron density

In analogy to the LAPW basis functions, the electron density � (r) is represented
piecewise: In the interstitial region it is represented in terms of plane waves, whereas
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in the MT spheres it consists of radial functions � �L (r � ) times spherical harmonics and
in the vacuum regions it is given by decaying functions perpendicular to the plane of
the film times two-dimensional plane waves. In detail its analytical form is3

� (r) =

8
>>>>>>><
>>>>>>>:
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� GeiGr for r 2 IR
P

�

P

L
� �L (r � )YL(r̂α) for r 2 MT �

P

vac

P

G k

� vacG k
(z)eiG k r k for r 2 VRvac

: (3.73)

Note that the density is obtained from a linear combination of squares of absolute
values of eigenfunctions,

� (r) = 2
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= 2
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where BZ denotes the Brillouin zone and ! �
k is the occupation of the � -th eigenfunc-

tion  � �
k (r). The factor of 2 is due to spin-degeneracy in the case of calculations that

do not consider magnetism. In the case of magnetism aware calculations, this fac-
tor is replaced by a sum over the two spins and the occupation numbers and wave
functions become spin-dependent.

Due to the squares in equation (3.74) the plane wave cutoff for the density has to
be at least twice as large as the corresponding cutoff for the basis functions. Anal-
ogous conclusions can also be drawn for the angular momentum cutoffs in the MT
spheres. However, here we keep the l �max from the basis functions also for the density
representation.

The partitioning of the unit cell implies that the density can be calculated as a
sum of different terms originating from the different regions. Here, we discuss the
construction of the density as

� (r) = � IR(r) +
X

�

� � (r) +
X

vac

� vac(r) ; (3.75)

where � IR(r) is the interstitial density, � � (r) is the density in the MT sphere around
atom � , and � vac(r) is the density in vacuum region vac. However, the first step in
the construction of the density is the representation of the eigenfunctions and the
determination of the occupation of these eigenfunctions.

3To reduce the computational demands and the storage demands for the density, in FLAPW pro-
grams one actually uses a more compact representation in which expansion coefficients of crystal
symmetry related plane waves and spherical harmonics are grouped in so-called stars and lattice
harmonics, respectively [98, 18]. For the sake of simplicity we abstract from this detail.
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3.3.1 Representation of the eigenfunctions

After solving the generalized eigenvalue problem, the valence wave functions  �
k(r)

for a given spin channel are given by an expansion in terms of LAPW basis functions

 �
k(r) =

X

G

z �kG � kG(r) ; (3.76)

where the z �kG are the expansion coefficients for the � -th wave function. With this,
the interstitial representation of the wave functions is given by an expansion in plane
waves, while the matching coefficients at the boundaries to the other regions are ob-
tained in terms of the matching to this linear combination of plane waves. In detail,
the eigenfunctions are represented as

 �
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3.3.2 Occupying the eigenstates

To construct the electron density, one has to consider the occupation of the eigen-
states. This is done by filling the states from the energetically lowest state upwards
until all electrons in the material are assigned to a state. Furthermore one considers
a temperature smearing with a Fermi-Dirac distribution

f (E) =
1

e(E � EF) = kBT +1
; (3.82)

where EF is the Fermi energy and T is an artificial energy parameter. Although one
is interested in the electronic ground state, which implies no occupation of excited
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states, this temperature smearing is important in practice to enable a stable conver-
gence behavior for metals. Within the DFT self-consistency cycle one can observe that
the energies of the eigenstates slightly shift throughout the iterations. It also happens
that bands reorder. If something like this happens near the Fermi energy it can lead
to strongly changing occupations from one iteration to the next, resulting in a very
problematic convergence behavior or no convergence at all. The finite temperature
smearing considerably suppresses this effect since it involves fractional occupations,
even for states that are located slightly above the Fermi level. One obtains a continu-
ous occupation behavior in dependence of the energy of an eigenstate.

Beyond the temperature parameter the Fermi energy EF is another parameter in
the Fermi-Dirac distribution. Of course, this parameter cannot be manually set but
is from the condition

Nelec = 2
X

k

X

�

! (k)
1

e( �
�
k
� EF) = kBT +1

; (3.83)

where Nelec is the number of electrons in the unit cell, ! (k) is the weight for a given
k point in the irreducible wedge of the Brillouin zone (IBZ), and � �k is the energy
of the eigenstate  �

k(r). The factor of 2 in equation (3.83) once again is due to spin-
degeneracy and is replaced by a sum over spins in the case of calculations onmagnetic
materials. In the latter case the eigenvalues also become spin-dependent.
Finally, the occupation ! �

k of a state  �
k(r) is given by

! �
k = ! (k)

1

e( �
�
k
� EF) = kBT +1

: (3.84)

3.3.3 The interstitial density

The plane wave expansion of the interstitial valence density is given by reciprocal
space convolutions of eigenfunctions with themselves. For a given plane wave coeffi-
cient � G one obtains

� G = 2
X

k

X

�

! �
k

X

G′

X

G 0 0

G 0 0 � G 0 =G

�
z �
kG′
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z �
kG′′

�
: (3.85)

However, the calculation of the interstitial density by explicitly performing the
convolution is very time-consuming as it scales with O(NoccN

2
LAPW), whereNocc is the

number of occupied bands. Since Nocc and NLAPW both scale linearly with the size
of the unit cell, this is a cubic scaling behavior with respect to the system size, the
same scaling as for the setup of the matrices and the diagonalization. Fortunately, the
well-known convolution theorem tells us that a convolution in reciprocal space can be
replaced by a pointwise product in real space. Together with the fact that the transfor-
mation between real and reciprocal space can be performed in O (Nmesh � log(Nmesh))

4

4Nmesh is the number of points on the real space mesh, as well as on the reciprocal space mesh.
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Reciprocal space Real space
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k
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Figure 3.5.: Sketch of the calculation of the interstitial contributions to the density. A real
space representation of the functions ψ̃ν

k
is obtained by Fourier transforming

their original reciprocal representations. The interstitial density ρ̃IR is then cal-
culated in real space and finally transformed back to reciprocal space to obtain
the plane wave expansion coefficients.

by the Fast Fourier Transform (FFT) algorithm, this gives us a recipe to obtain the
interstitial density in a more efficient way.

In detail, one removes the augmentation from the eigenfunctions by defining the
functions

ψ̃ν
k
(r) =

∑

G

zν
kG

1√
Ω

ei(k+G)r (3.86)

in which the plane wave expansion of the eigenfunctions covers the whole space.
Next, one transforms the reciprocal space representation of these functions with a
FFT onto a real space grid5. At each point of this grid one computes the square of
the absolute value of these functions and performs a ων

k
weighted sum over these

squares to obtain a real space representation of the interstitial density ρ̃IR(r), which
covers the whole unit cell. Finally, one performs the backtransformation to reciprocal
space to get access to the plane wave coefficients ρG = ρ̃IR(G). Figure 3.5 sketches
this procedure. Note that one has to perform these operations on a mesh that is fine
enough to represent the interstitial density. With this requirement Nmesh is eight
times larger than NLAPW.

Computing the interstitial contributions to the density in this way yields a scaling
behavior of O (NoccNmesh · log(Nmesh) +NoccNmesh), which is considerably better than
the cubic scaling of the naive approach.

3.3.4 The density in the MT spheres

The valence electron density in the MT sphere around atom α is

ρα(r) = 2
∑

L

ραL (rα)YL(r̂α) (3.87)

5Actually one abstracts from the Bloch factor eikr by performing this step. However, this is not prob-
lematic since the Bloch factor cancels with its conjugate complex when the square of the absolute
value is computed in real space.
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To save time in the computation of this sum, one exploits that the radial functions
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With a time complexity of O(NatomNocc) the calculation of the MT parts of the va-
lence density is not a dominant part in the time requirements of an FLAPW iteration.
Note however that the radial dependence of the MT density implies a large prefac-
tor to this system size dependent scaling: There are typically several hundred radial
mesh points on which r � is sampled.

3.3.5 The density in the vacuum regions

The valence electron density in one of the vacuum regions is

� vac(r) = 2
X

G k

� vacG k
(z)eiG k r k (3.90)
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In the actual calculation of this quantity one eliminates the sum over G 0 0
k
by ex-

ploiting the conditionG 0 0
k
� G 0
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=G k to directly calculate the singleG 0 0

k
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requirement is met, G 0 0
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Since the number of LAPW basis functions scales cubically with the volume of
the unit cell and the number of projections of plane waves onto the plane of the
film scales quadratically, the calculation of the vacuum contributions to the vacuum

density from allG k scales withO(NoccN
4 = 3
LAPW). Note that this is more efficient than the

cubic scaling behavior that dominates the time requirements of an FLAPW iteration.

3.3.6 Contributions to the density from the core

electrons

Within a MT sphere the core electron states of the associated atom form a completely
spherical charge density that is, to a large extent, confined within the sphere. How-
ever, for a precise representation of the density one goes beyond this approximation
and also considers the tail of the core electron density that leaps out of theMT sphere.
In fact, one assumes that the density due to the core states from the different atoms
covers the whole unit cell. It is therefore given as

� c(r) =

8
>>>>>>><
>>>>>>>:

P

G

� cGeiGr for r 2 IR
P

�

P

L
� �cL(r � )YL(r̂α) for r 2 MT �

P

vac

P

G k

� vaccG k
(z)eiG k r k for r 2 VRvac

: (3.93)

To obtain the IR part of the core density one has to expand the core tails into plane
waves. In practice this is done by Fourier transforming the whole core electron den-
sity originating from a given atom, including theMT part. Unfortunately theMT part
of the core density features a very slow convergence in this expansion. Therefore, one
replaces this part by a smooth function that ensures a fast convergence of the plane
wave expansion.
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In detail, one uses a spherical pseudo density ˜� �c (r � )Yl=0 ; m=0(r̂ � ) with

˜� �c (r � ) =

(
a � e

� b � r
2
� for r � < RMT �

� �c (r � ) for r � � RMT �
; (3.94)

where � �c (r � ) is the spherical core electron density originating from the atom. The
coefficients a � and b � are obtained by enforcing continuity of value and slope of the
density at the MT sphere boundary.
The plane wave expansion coefficients � �cG for the IR density originating from the

given atom are then calculated by a Fourier transformation as

� �cG =

r
4�



eiGτ �

1Z

0

˜� �c (r � )j0(Gr � )r
2
� dr � : (3.95)

Finally, summing over the coefficients for each atom results in

� cG =
X

�

� �cG : (3.96)

All in all, the calculation of the core electron density contribution to the IR density
scales quadratically with the system size as O(NatomN � -PW), where N � -PW is the num-
ber of plane waves used to represent the density in the IR.
To obtain the expansion of the core tails in the different MT spheres, one has to

expand � cGeiGr in terms of a Rayleigh expansion into products of spherical harmon-
ics and Bessel functions, centered at the respective atom. This external tail charge
density is

� � ; extcL (r � ) =
4�
p



X

G

� cGileiGτ � jl(Gr � )Y
�
L(Ĝ) : (3.97)

The calculation of this part of the density inside the MT spheres of all atoms again
scales quadratically with the system size as O(NatomN � -PW). Note, however, that it
also includes the onsite contribution which we have to subtract again to obtain the
core electron density in the MT spheres as

� �cL(r � ) =
h
� �c (r � ) � a � e

� b � r
2
�

i
Yl=0 ; m=0(r̂ � ) +

X

L

� � ; extcL (r � )YL(r̂ � ) : (3.98)

Finally, one also has to determine the vacuum region part of the core electron den-
sity. For this, one approximates the potential in the vacuum region to have a constant
value. The consequence is that each wave function decays exponentially into the vac-
uum region, where the decay constant depends on the energy difference between the
potential in the vacuum and the eigenvalue of the function. This also translates into
an exponential decay of the associated contribution to the density.

For the different wave functions contributing to the core tails one now assumes an
effective energy such that the whole core tail density can be approximated to possess



72 The all-electron full-potential linearized augmented plane-wave method

an exponential decay in the vacuum region. This is a reasonable approximation as the
core tails reaching into the vacuum originate from wave functions in a small energy
window far below the vacuum potential, i.e., they are about 1 Htr below the potential.
Wave functions with higher energies would be treated within the valence framework,
while core states with far lower energies are well confined within the MT spheres
such that they do not contribute to the core density in the vacuum regions.

In conclusion, one makes the approximate approach

� vaccG k
(z) = � vaccG k

(zvac)e
� zvac

j zvac j
� vac
G k

(z � zvac)
; (3.99)

where zvac is the z coordinate of the vacuum boundary and � vac
G k

is the G k dependent

decay constant for vacuum region vac. The parameters � vaccG k
(zvac) and � vac

G k
are deter-

mined by demanding continuity of value and slope of the core density at the vacuum
boundary.

3.4 Calculating the total energy

The total energy of the electronic ground state of a given structural and magnetic
configuration of a material is a basic quantity calculatable with DFT. This quantity
can be used to compare different structural and magnetic configurations of a mate-
rial to determine the energetically most favorable one. For example, the equilibrium
lattice constant of a material can be calculated by determining the lattice constant ex-
hibiting the lowest total energy with respect to a set of configurations with different
test lattice constants. Weinert et al. [113] demonstrate a numerically well-behaved
method of calculating the total energy within the FLAPW method. We abstract from
the details of such a method and just provide a short sketch on the total energy cal-
culation.
In principle the total energy of a Kohn-Sham system is given by

Etotal[ �
" ; � # ] = Ts[ �

" ; � # ] +EH[ � ] +Eext[ � ] +Exc[ �
" ; � # ] +Eii ; (3.100)

where Eii is the Madelung term

Eii =
1

2

NatomX

�

X

�
� ,�

Z � Z �

j τ � � τ � j
(3.101)

that covers the Coulomb interaction energy between the Natom atomic nuclei � in the
unit cell 
 and all nuclei � in the whole space.
The kinetic energy Ts[ �

" ; � # ] can be obtained from the Kohn Sham orbitals. How-
ever, one wants to avoid applying the kinetic energy operator explicitly as the appli-
cation of this operator is numerically problematic and, on the other hand, the kinetic
energy can also be expressed in terms of quantities that are a byproduct of the DFT
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calculation. In detail, one expresses the total energy by rearranging the Kohn-Sham
equations with respect to the kinetic energy operator applied to the Kohn Sham or-
bital. This gives us

�
1

2
r
2
j  � ; � i =

�
E � ; � � Veff; � (r)

�
j  � ; � i : (3.102)

By projecting this equation onto h  � ; � j and summing up the resulting kinetic energy
contributions over all occupied states, one obtains
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Plugging this expression into equation (3.100) and inserting also the expressions for
the other energy terms finally yields
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where Exc[ �
" ; � # ] is evaluated according to the used XC functional.

3.5 Developments for the FLAPW method

Beyond the basic calculation scheme of the FLAPWmethod presented in this chapter,
there have been many developments within this approach to extend the area of ap-
plication with respect to the types of materials and quantities that can be described.
We list a few of these developments.

First of all, to make FLAPW ever more accurate, a couple of advanced XC func-
tional have been implemented in the method. This includes LDA+U [114], the hybrid
functionals PBE0 [115] and HSE [116], and the realization of exact exchange [103].
Next, one can realize that on the basis of DFT calculation results, a couple of quan-

tities can be expressed as derivatives of a directly accessible quantity with respect to
another quantity. For example, the force on an atom � is the negative of the energy
derivative with respect to the atom position,

F � = �
� E

� τ �
: (3.105)
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The calculation of forces has been realized within the FLAPWmethod by identifying
and implementing the method specific force terms [117, 118, 119] in addition to the
well-known Hellman-Feynman forces. This allows efficient structural relaxations of
atom positions in complex unit cells.

Another derived quantity is the response function, which is the functional deriva-
tive of the charge density with respect to the effective potential,

� (r ; r 0 ) =
� � (r)

� Veff(r 0 )
: (3.106)

In the context of the EXX-OEP approach, the efficient calculation of this quantity in
FLAPW has been realized by Betzinger et al. [120, 121]. This involves the consider-
ation of the incompleteness of the used LAPW basis sets and a resulting correction
that makes such calculations feasible with small basis sets. Besides the realization
of several advanced XC functionals, the response function can also be used to calcu-
late a couple of other quantities. As examples we name phonon dispersion relations,
magnons, and susceptibilities.
The description of materials by the FLAPW method has especially been refined

in the context of magnetic materials. Here, we first note that in a classical FLAPW
calculation the description of the valence electrons in the MT spheres follows the
scalar-relativistic approximation, while the description in the IR is nonrelativistic.
Of course, there are many materials that require a higher level of relativity in the
description. For this, the missing spin orbit interaction has also been implemented
within the FLAPW method [122, 123]. Spin orbit coupling (SoC) is the main driv-
ing interaction leading to magnetocrystalline anisotropy and especially important in
materials with heavy elements. Also, the description of Dzyaloshinskii-Moriya in-
teractions relies on the inclusion of SoC. Besides the inclusion of SoC and in order
to describe complex spin structures, one has also realized the description of non-
collinear magnetism within the FLAPWmethod [124] on the basis of the generalized
Bloch theorem.
Beyond the extension of the FLAPWmethod there have also been a couple of devel-

opments on top of FLAPW calculation results. For example, the GW approximation
to MBPT [104] is an approach beyond DFT, but has been realized on an FLAPW basis,
such that FLAPW calculation results are used as an input [105, 106, 107, 108, 109].
Furthermore, there has been a development to project wave functions obtained by
the FLAPW method onto maximally localized Wannier functions [125]. Such a rep-
resentation of the wave functions can, for example, be used as an input for further
calculations based on model Hamiltonians. For example, calculations on the ballistic
transport through one-dimensional junctions have been realized on this basis [126].
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As the analytical form of the LAPW basis is adapted to each region of space to
provide precise representations of the wave functions with very few basis functions
per atom, it can be considered to be highly sophisticated and efficient. In this chapter
we take a closer look at the properties of the LAPW basis and evaluate its limitations.

In detail, we analyze the limitations of the linearized description of the wave func-
tions in the MT spheres in section 4.1. Whenever this description is not sufficient, it
can be improved by adding local orbitals to the LAPW basis. Therefore, in section 4.1
we also evaluate what type of local orbitals is best suited to eliminate the remaining
linearization error and investigate the impact of these additional local orbitals on
the required basis set size1. The chapter continues with an investigation and a com-
parison of some general properties of the basis functions and the wave functions in
section 4.2. In detail, we investigate the matching conditions to the MT spheres, the

1Note that we have already published the contents of section 4.1 in the journal Computer Physics
Communications [127].
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changes of the potential in the MT spheres over the self-consistency iterations and its
consequences on the basis functions, and the changes of the wave functions in the IR,
also over the iterations of the self-consistency cycle.

4.1 The linearization error

The MT part of the LAPW basis consists of the angular momentum dependent radial
functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ), evaluated at predetermined energy parameters

E �
l . We already mentioned that the usage of these two types of radial functions en-

ables precise representations of wave functions with energy eigenvalues in the vicin-
ity of the energy parameters. However, as Singh pointed out [9], the description of
semicore states within the valence band requires additional local orbitals (LOs) con-

structed with a u �
l (r � ; E

� ; SC
l ) for an energy parameter E � ; SC

l near the energy of the
semicore state. It was also shown that additional LOs are required to describe high-
lying unoccupied states [110, 103], whenever they are needed for advanced methods
on top of self-consistent FLAPW calculations.

Of course, the energy eigenvalues of semicore states on the one hand and high-lying
unoccupied states on the other hand strongly deviate from the energy parameters
typically chosen to describe the valence states. Since even the number of nodes of the
required radial functions deviates between these energies, it is clear that the valence
band radial functions cannot provide a precise representation in such a large energy
interval. However, these observations bring us to the question to what extent the
linearized description around E �

l yields precise descriptions of wave functions within
the valence band. We already mentioned (cf. Eq. (3.5)) that in a first approximation
in terms of a Taylor expansion,

u �
l (r � ; E) = u �

l (r � ; E
�
l ) + (E � E �

l )u̇
�
l (r � ; E

�
l ) +O

�
(E � E �

l )
2
�
; (4.1)

the error due to the linearization should depend quadratically on the energy differ-
ence E � E �

l between the energy E of a state and the energy parameter E �
l . Here, we

analyze this error in detail and evaluate different types of LOs to eliminate it.
We start this analysis with the definition of additional LOs and a first discussion on

the energy dependence of solutions to the scalar-relativistic approximation (SRA) to
the radial Dirac equation in section 4.1.1. Next, we provide a broad overview on the
investigated materials and the parametrization of the calculations in section 4.1.2. In
the succeeding step we discuss the linearization error in terms of an abstract repre-
sentation error in section 4.1.3. Of course, this discussion involves the evaluation of
the different LO extended basis sets on this level of abstraction. A discussion of the er-
ror and the different basis sets in terms of ground state properties, e.g. total energies
and equilibrium lattice constants, of the materials is then provided in section 4.1.4.
Finally, we also discuss the influence of the error on the Kohn-Sham band gap in sec-
tion 4.1.5 and evaluate the impact of the basis set extensions on the required basis set
size in section 4.1.6 before we conclude the discussion on the linearization error in
section 4.1.7.
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4.1.1 LO extensions and energy dependence of radial

solutions

To eliminate the linearization error we consider extensions of the conventional LAPW
basis with two different types of sets of LOs for the s, p, d, and f channels2. In the first
variant [110], which we denote higher derivative local orbitals (HDLOs), the third
radial function in the LOs is a higher order energy derivative of u �

l (r � ; E
�
l ). However,

in the context of the elimination of the linearization error we restrict ourselves to a
single additional set of LOs, constructed with the second energy derivative ü �

l (r � ; E
�
l ).

We denote this extension as HDLO � 1. Note that the addition of ü �
l (r � ; E

�
l ) to the

radial functions within a MT sphere effectively enables a representation of the second
order term in the Taylor expansion (4.1), such that the error in the representation of

a wave function is reduced to the order O
�
(E � E �

l )
3
�
.

The second variant of LOs [103], already described in chapter 3.1.5, is constructed

with solutions to the SRA to the radial Dirac equation u �
l (r � ; E

� ; LO
l ), evaluated for

energy parameters within the unoccupied bands, E � ; LO
l > E �

l . To choose these energy
parameters, we consider the logarithmic derivative

D �
l (E) =

u 0 �
l (r � ; E)

u �
l (r � ; E)

������
r � =RMT �

(4.2)

and enforce the condition D �
l (E) = � (l + 1). We denote these local orbitals as higher

energy local orbitals (HELOs). Starting with the branch of the logarithmic derivative
directly above the valence branch, for each additional set of HELOs we increase the

number of nodes of u �
l (r � ; E

� ; LO
l ) by one. The radial functions chosen in this way are

orthogonal to each other and we consider adding one (HELO � 1) or two (HELO � 2)
sets of local orbitals constructed in this way. The orthogonality ensures that the
addition of more and more sets of HELOs do not yield a linearly dependent basis,
but efficiently enables precise descriptions in broader and broader energy intervals.
However, this aspect only gets important if many sets of LOs are used to describe
very high lying unoccupied states. To describe the valence states the choice of other

criteria for the energies of the HELOs may also be reasonable. In the limit E � ; LO
l ! E �

l
the extension of the basis by HELOs becomes equivalent to the extension by HDLOs,
although numerical problems may preclude this way of realizing HDLOs.

Figure 4.1 sketches the behavior of the logarithmic derivative and the choice of
the HELO energy parameters for the d-channel of fcc Ce. These curves can easily
be understood since the radial solutions get more and more nodes when going from
lower to higher energies. At some energy, a node enters theMT sphere at its boundary.
Here, the value of the radial solution is zero, while it also has a finite slope. Thus,
the logarithmic derivative at this energy is infinite. By going upwards in energy, one

2The extension by one set of LOs for s, p, d, and f yields 16 additional basis functions for the associ-
ated atom.
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Figure 4.1.: Energy dependence of the logarithmic derivative and of the solutions u �
l (r � ; E)

of the SRA to the radial Dirac equation for the d channel in fcc Ce. (a) Log-
arithmic derivative. The highlighted points mark the logarithmic derivative of
the 5d valence band energy parameter E5d , as well as the energies fulfilling the
D �
l (E) = −(l +1) = −3 criterion for the construction of the HELO × 1 and HELO × 2

extensions to the LAPW basis. (b) Solutions u �
l (r � ; E) for different energies, sam-

pled every 0 : 2 Htr between E−E5d = −0 : 4 Htr and E−E5d = 1 : 4 Htr. The solutions
are scaled such that the first maximum of the curves coincides.
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passes through a region where value and slope at the MT boundary have an identical
sign, such that the logarithmic derivative is positive. Then, one reaches a point where
the slope is zero, while the value of the radial solution at the MT boundary is finite.
At this energy the logarithmic derivative becomes zero. Beyond this energy, value
and slope of u �

l (r � ; E) at the MT boundary have opposite signs, such that one obtains
a negative logarithmic derivative until another node enters the MT sphere.
We also observe another remarkable behavior in the energy dependence of u �

l (r � ; E).
Near the atomic nucleus the qualitative behavior of the radial solutions does not de-
pend on the energy. In figure 4.1(b) it is shown that the radial solutions can be scaled
such that up to a distance of 0: 5 a0 nearly no difference can be seen between the so-
lutions, although they cover a broad energy interval of 1: 8 Htr. The main difference
in this region comes through the norm of the solutions, which is strongly affected
by the behavior in the outer parts of the MT sphere. The qualitative energy inde-
pendence in the inner part of the sphere can be understood by recognizing that the
behavior of the radial solutions in this region is strongly determined by the singu-
larities of the effective potential and the angular momentum barrier at the atomic
nucleus. A strong energy dependence, on the other hand, can be expected in regions
where changes in the potential occur at an energy that is comparable to the energy of
the radial solution. This is the case in the outer parts of the MT sphere.

4.1.2 Investigated materials and calculation

parametrization

We investigate the linearization error and evaluate the different basis sets for a test
set of materials for which we expect to see a significant impact of the error on cal-
culated physical quantities. Under consideration of the observations on the energy
dependence of radial solutions u �

l (r � ; E) in the previous section, we select materials
with large MT radii to obtain a large region in the MT spheres in which the function’s
behavior is not dominated by the singularities at the atomic nucleus. In numbers, this
means that we are interested in materials with MT radii of about 3 a0. Furthermore,
we consider materials that give rise to large deviations between the energy parame-
ters and the eigenenergies of states affecting the investigated quantities. For exam-
ple, the calculation of large Kohn-Sham band gaps implies a large difference between
the valence band energy parameters and the lowest unoccupied state, which is also
relevant for the calculation. Materials with very broad valence bands are another ex-
ample for large discrepancies between the energy parameters and the eigenenergies
of relevant states.
Furthermore, the materials are chosen such that their properties yield an increased

sensitivity of the investigated quantities on imprecisions in the representation of the
wave functions. For example, we investigate the impact of the linearization error on
the equilibrium lattice constant for materials with a small bulk modulus.
Unless otherwise stated, the calculational parameters for the different materials are

chosen such that the calculations with the conventional LAPW basis are converged
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Table 4.1.: Calculational parameters for the materials considered for the analysis of the lin-
earization error. The table first lists the applied exchange-correlation functional
and the basic structural parameters, i.e., the crystal structures and the experimen-
tal lattice constants used for the calculations. In the middle section it lists the
manually determined MT radii (RMT), plane wave cutoffs as KmaxRMT and result-
ing k point averaged number of LAPW basis functions per atom, angular momen-
tum cutoffs l �max for each atom, number of k points in the IBZ, and the included
semicore LOs. The last section of the table covers the self-consistently determined
atomic energy parameters relative to the Fermi level El � EF for the conventional
LAPW basis. For l > 3 the energy parameters are set to El=3.

parameter Ce KCl Ar V
(K, Cl)

xc functional PZ-LDA3 PZ-LDA PZ-LDA PZ-LDA
crystal structure fcc rock-salt fcc bcc
lattice constant (a0)

4 9: 05 11 : 89 9: 93 5: 73
RMT (a0) 3: 14 2: 8, 2: 8 3: 15 2: 41
KmaxRMT 13 13 13 10.845
LAPWs / atom 222 355 295 145
l �max 12 12, 12 10 10
k points in IBZ 182 60 60 190
semicore LOs 5s,5p 3s,3p (K)

atomic energy parameters (eV)
El=0 � EF � 1.18 6.14, 11.95 � 14.43 � 3.34
El=1 � EF 1.81 8.97, � 0.39 � 0.49 � 0.22
El=2 � EF 0.88 9.27, 10.88 14.78 0.05
El � 3 � EF 0.73 15.63, 16.08 20.56 2.05

with respect to these parameters. Furthermore the MT radii are chosen such that the
MT spheres nearly touch and the energy parameters are obtained with the atomic
energy parameter (AEP) method. In detail, table 4.1 lists the parameters for the dif-
ferent materials.

The first investigated material is fcc cerium, which we primarily chose to compare
to existing APW+lo calculations on this material [14]. However, Ce allows the usage
of very large MT spheres and features a small bulk modulus. Thus, we expect to ob-
serve a significant linearization error with an impact on the calculated equilibrium
lattice constant. For a first evaluation of the automatically determined energy param-
eters, figure 4.2 shows these parameters together with the Ce band structure along
the high-symmetry lines K � � � L and the density of states (DOS) for this material.

The lower valence band edge for this material is of s character and about 3 eV

3PZ-LDA denotes the Perdew-Zunger parametrization of the local density approximation [31].
4The experimental lattice constants for Ce, KCl, Ar, and V were taken from [14], [128], [129], and
[130], respectively.
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Figure 4.2.: Energy parameters for fcc Ce, obtained from a conventional LAPW calculation.
The figure shows the energy parameters (right panel) together with the corre-
sponding band structure along the high-symmetry lines K− � −L (left panel) and
the density of states, projected onto the different l-channels up to l = 3 (center
panel).

below the Fermi energy EF . The values of the atomic energy parameters are well-
chosen as these parameters all lie near the center of the associated bands with the
same l character and within a range of a few eV of the occupied valence states.

KCl is the second material to be taken under scrutiny. It also allows the usage of
large MT radii, which, for the sake of simplicity, we choose to be equal for K and
Cl. KCl also has a small bulk modulus such that we expect to see an impact of the
linearization error on the equilibrium lattice constant. Another quantity which we
will investigate for this material is its large band gap of about 5 eV. Figure 4.3 shows
the atomic energy parameters obtained for this material, together with its density of
states. The band structure is discussed in detail in chapter 4.1.5. For the valence
states, which are of Cl 3p character we again observe that the corresponding energy
parameter is well-chosen. However, these states extend beyond the Cl MT sphere
boundary into the MT sphere of K, where they give rise to DOS contributions of
different d and f character. Such a situation is not covered by the construction of
the AEPs and as a consequence, the K energy parameters required to describe the
extension of these states into K are energetically far away.

The third material is Ar. Beyond the possibility to use large MT spheres, this ma-
terial is of interest since it possesses a very large band gap and we expect to observe
a significant impact of the large energy discrepancy between the energy parameters
for the valence band and the lowest unoccupied state in this material. Figure 4.4
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Figure 4.3.: Energy parameters for KCl in rock salt structure, obtained from a conventional
LAPW calculation. The figure shows the energy parameters (right panel) together
with the density of states, projected onto the different l-channels up to l = 3 (left
panel).

shows the AEPs for this material together with its density of states. The band struc-
ture is discussed in detail in chapter 4.1.5. Similar to KCl, we observe that E3p is very
well-chosen to describe the 3p valence states. However, the lower band edge of the
conduction band in this material is of 4s character, which is far away from the energy
parameter for the s states at E−EF = −14 : 43 eV, used to describe the 3s valence states.
For the last material, bcc V, we do not provide a detailed discussion on the choice

of the energy parameters, since we will primarily use this material to demonstrate
the projection of semicore states onto the different basis sets.

4.1.3 The linearization error as a representation error

Before we evaluate the consequences of the linearization error on calculated physical
quantities, we discuss the error as an abstract representation error together with the
capabilities of the different basis set extensions to eliminate the error on this abstrac-
tion level. We define the representation error for a normalized solution u �

l (r � ; E) of
the SRA to the radial Dirac equation as

� l(E) = ‖ ul − ũl ‖ =

 Z

r2
h
u �
l (r � ; E)− ũl(r � ; E)

i 2
dr

! 1
2

; (4.3)

where ũl(r � ; E) is the best representation of u �
l (r � ; E) by the radial functions of the

considered basis set. It is obtained by projecting u �
l (r � ; E) onto the radial functions
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Figure 4.4.: Energy parameters for fcc Ar, obtained from a conventional LAPW calculation.
The figure shows the energy parameters (right panel) together with the density
of states, projected onto the different l-channels up to l = 3 (left panel).

of the basis. If u �
l (r � ; E) can be represented pointwise by the basis, the error � l(E)

becomes 0. On the other hand, if u �
l (r � ; E) is orthogonal to the function space spanned

by the radial functions within the basis set, the error becomes 1.

Note that the error (4.3) is only defined for the MT part of the basis. This is rea-
sonable since the IR part of the basis can systematically be extended by plane waves
with ever higher kinetic energy, such that the representation in this region can be
converged within the concept of the conventional LAPW basis. Depending on the
investigated material and the considered Kohn-Sham orbital, the fraction of the wave
function that is affected by the representation error varies. For example, valence d
and f states are typically localized around the associated atom. As a consequence, a
very large part of the wave function of such a state is within the MT sphere and only
a small fraction is extended beyond the MT sphere boundary. On the other hand,
in the limit of very high lying unoccupied states the form of the wave function is
largely determined by the kinetic energy, while the potential only has a small effect.
In an approximation the potential can be considered as constant for such states. The
result is that in this limit the fraction of the wave functions within the MT spheres
approaches the volume fraction of the MT spheres with respect to the whole unit cell.
This fraction is typically between 30 percent in open structures like the zinc blende
structure and 70 percent in closed structures like fcc oder hcp lattices with a single
atom in the unit cell.

The representation error (4.3) also abstracts from the matching conditions at the
MT sphere boundaries, which reduce the flexibility of the basis by limiting the pos-
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orthogonal to the evaluated basis sets since it is completely confined inside the
MT sphere. The inset provides a detailed view on the behavior of the represen-
tation error for energies within a range of 0 : 3 Htr to the energy parameter E5d .
Note that the inset uses a logarithmic scale for the ordinate.

sible combinations of the radial functions used to represent u �
l (r � ; E). Due to the

neglection of these conditions, the here defined representation error can be consid-
ered as a lower bound for the representations within the MT spheres by the complete
LAPW basis and the here discussed extended basis sets. Note however that the Kohn-
Sham wave functions are variationally determined. As a consequence, in practice the
restrictions due to the matching are relaxed by allowing a part of the imprecision
within the MT spheres to couple into the IR.

We discuss the energy dependence of the representation error � l(E) for the d chan-
nel of fcc Ce. On the basis of a self-consistent solution for this material obtained
with the conventional LAPW basis, we take the effective potential from this system
and evaluate � l=2(E) for the different basis sets in the vicinity of the atomic energy
parameter for this channel E5d . Figure 4.5 shows the representation errors with this
setup for the different basis sets.

The valence states are typically within a range of a few eV around the energy pa-
rameters. With an energy interval of ± 0: 3 Htr ≈ ± 8 eV around the energy parameter
this range is covered by the inset of figure 4.5. We observe that the maximal error
for the conventional LAPW basis in this interval is 1: 5 · 10−2. Extending the basis
with LOs considerably reduces this error. Adding a single set of HELOs to the basis
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yields a maximal error of 3: 3 � 10 � 3. Using two sets of these LOs gives us an even
smaller maximal error of 1: 1 � 10 � 3. The best result, however, is obtained with the
LAPW+HDLO � 1 basis which features a maximal error of 3: 8 � 10� 4. Compared to the
conventional LAPW basis this is a reduction of the maximal error in this energy range
by a factor of 40. Furthermore, the representation error for the HDLO extended basis
exhibits a better scaling behavior in the vicinity of E5d . Here, the error scales with
O( j E � E5d j

2) for the conventional LAPW basis, while it scales with O( j E � E5d j
3) for

the LAPW+HDLO � 1 basis.
On the larger energy scale we observe that for high-lying unoccupied states, the

representation error for the conventional LAPW basis quickly raises to values near 1.
The HDLO extension slows this raise of the error. However, we can best control the
error on this scale with the HELO extensions. Each set of HELOs makes additional
radial functions u �

l (r � ; E
� ; LO
l ) with ever higher energy parameters E � ; LO

l available in
the MT sphere. As a consequence, the representation error for the LAPW+HELO � 1
and LAPW+HELO � 2 basis sets vanishes at the energies of these parameters. For
the d channel in the here discussed example these energy parameters are located at
E � E5d = 2: 23 Htr for the first set of HELOs, and at E � E5d = 5: 50 Htr for the second
set of HELOs. The representation error between the energy parameters of a HELO
extended basis is typically rather small, such that we obtain a precise description
of the valence states and the unoccupied states up to the highest energy parameter.
Note that the quality of the description in this interval can further be controlled by
adding more HELOs at energies that don’t fulfill the here used logarithmic derivative
criterion for the determination of the energy parameters. However, we remark that
such HELOs are not orthogonal to each other.
In figure 4.5 we also observe a sharp peak of the representation error at E � E5d =

� 3: 87 Htr. This peak is due to the 4d core state which is completely confined within
the MT sphere and therefore orthogonal to the function space spanned by the radial
functions of the evaluated basis sets. We recall that the orthogonality of the core
states to the valence basis is an important condition for the separate treatment of the
core states in a fully relativistic framework. The sharp peak of the representation
error for such states is therefore a desirable property.

Figure 4.6 shows the representation error for the p channel in bcc V. Here, the 3p
semicore state at E � E4p = � 1: 7 Htr is extended beyond the MT sphere boundary and
therefore not orthogonal to the valence basis sets. The direct consequence is that this
state does not yield a sharp, but only a shallow peak in the energy dependence of the
representation error. In fact, the feature can be considered to be merely a shoulder.
The representation of the semicore state by the different basis sets can be described
as mediocre. For each of the considered basis sets the representation error is well
below 1. On the other hand, in each case it is still significant and too large to obtain
a precise description of the state by the tested basis sets within the valence electron
framework.
Mediocre descriptions of semicore states are problematic since they may result in

an appearance of the state as a ghost band somewhere in the energy range of the
occupied valance states. For the tested basis sets, this problem only arises for the



86 Analysis of the linearized augmented plane-wave basis

-5 -2.5 0 2.5 5 7.5 10 12.5 15
E-E

4p
 (Htr)

0

0.2

0.4

0.6

0.8

1

∆
l=

1
(E

)

LAPW
LAPW+HDLOx1
LAPW+HELOx1
LAPW+HELOx2

Figure 4.6.: Representation error � l=1(E) for the p channel in bcc V. The 3p semicore state
located at E − E4p = −1 : 7 Htr is extended beyond the MT sphere boundary. As
a consequence it is not orthogonal to the evaluated valence basis sets and the
representation errors for this state by the different basis sets are considerably
smaller than 1.

LAPW+HDLO× 1 basis, where it precludes a successful self-consistent DFT calcula-
tion. For the other basis sets a self-consistent solution can be obtained. However,
we note that the missing orthogonality of the valence states to the 3p state may af-
fect the form and energy eigenvalues of the Kohn-Sham orbitals, such that one has
to be cautious in the interpretation of the quantities obtained from such calculation.
The solution to the problems arising from mediocre descriptions of semicore states
is the extension of the basis by classical semicore LOs as proposed by Singh [9]. This
provides a precise description of the semicore state by the valence basis. Neverthe-
less, we also mention that such a precise description can also be obtained by adding
more and more HDLOs with ever increasing order of the energy derivative to the
basis. Since more and more HDLOs systematically broaden the interval around the
valence energy parameter in which precise descriptions of wave functions are ob-
tained, at some point a precise description of the semicore state is also covered by
this approach. However, this is a less efficient way of dealing with semicore states
than the usage of classical LOs.

Beyond the appearance of a semicore state, the energy dependence of the repre-
sentation error in figure 4.6 is qualitatively similar to the corresponding curves in
figure 4.5. This demonstrates that the qualitative statements made for these curves
are in fact independent of the respective material.
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So far we have discussed the energy dependence of the representation error. This
addresses the issue of the choice of the energy parameters, since different energy
parameters yield different deviations from the Kohn-Sham valence eigenstates. Of
course, energy parameters are determined self-consistently together with the ground
state density. The MT radius is another parameter that also affects the representation
error. However, this parameter cannot be automatically adapted between different
FLAPW iterations, but has to be set in the run-up to the calculation.
Typically, one chooses the radii of the non-overlapping MT spheres to be as large

as possible to reduce the volume of the IR such that only a small plane wave cutoff
Kmax is required. By doing this, one also reduces problems caused by semicore states
reaching out of the MT sphere. However, in heterogeneous materials with more than
one chemical element the choice of the MT radii is less straightforward. Here, the
possible sizes of MT spheres from different atoms compete with each other and there
is a tradeoff between the optimal MT spheres for the different atoms. For example,
enlarging a MT sphere for one atom to ensure a high level of confinement of the core
states may conflict with the confinement of core states in the MT sphere of another
atom. The reduction of the IR volume is another objective that may be considered in
such situations. One often used method to choose the MT spheres automatically is to
determine their relative sizes according to tabulated atomic radii and expand them
with this constraint until they are as large as possible. Nevertheless, such a choice of
the MT radii is typically not optimal and one often has to modify the MT radii man-
ually afterwards to ensure a well-behaved convergence of the FLAPW calculation.
Due to the different objectives in the choice of theMT radii it is desirable that calcu-

lation results are independent of these parameters. However, the linearization error
in the MT spheres may preclude this behavior as it surely depends on the MT radii.
We evaluate the MT radius dependence of the representation error for the different
basis sets in figure 4.7 for the example of 5d states in fcc Ce at a fixed energy 0: 1 Htr
below the E5d energy parameter. The effective potential used for these calculations
was obtained through self-consistent calculations with the conventional LAPW basis
for each MT radius. The plane wave cutoff Kmax was adapted to each calculation to
keep the product KmaxRMT fixed to 13. In each calculation the energy parameters
were chosen with the AEP method. All other numerical parameters are identical to
those from the previous calculations on Ce.
Independent of the chosen basis, we observe that a reduction of the MT radius goes

hand in hand with a reduction of the representation error. This is comprehensible as
we have seen in figure 4.1(b) that the energy dependence of solutions of the SRA to
the radial Dirac equation u �

l (r � ; E) is mainly localized in the outer parts of the MT
sphere. In going from the largest to the smallest tested MT radius, the representa-
tion error for the conventional LAPW basis is reduced from 1: 3 � 10� 3 to 2: 5 � 10� 4.
Of course, the HELO and HDLO extended basis sets generally suppress the repre-
sentation error. As a consequence the dependence of the error on the MT radii takes
place on a considerably lower level. The best result is once again obtained with the
LAPW+HDLO � 1 basis, for which the dependence of the error on the MT radii is
reduced by two orders of magnitude in comparison to the conventional LAPW basis.
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Figure 4.7.: Dependence of the representation error � l=2(E5d −0 : 1 Htr) at a fixed energy E5d −

0 : 1 Htr on the MT radius in fcc Ce. The inset shows the same dependence on a
logarithmic plot.

4.1.4 The linearization error and physical properties

After discussing the linearization error as an abstract representation error in the pre-
vious section, we now turn to the evaluation of physical properties obtained from
self-consistent FLAPW calculations with the different basis sets. In detail, we discuss
the total energy Etotal, as well as the equilibrium lattice constant a, which is obtained
by fitting the Murnaghan equation of states [131] to a set of total energies calculated
for different test lattice constants ã. To assess the impact of the representation er-
ror on these calculated quantities, we explicitly investigate their dependence on the
applied MT radii. If the linearization error is negligible for the calculation of these
quantities, the results for the different basis sets and for the different MT radii should
be almost identical. We also discuss the dependence of the total energy on the choice
of the energy parameters, which also have a large influence on the linearization error.

In going from an isolated investigation on the linearization error for the spherical
part of the effective potential in a MT sphere to the investigation of quantities ob-
tained from self-consistent calculations, the demands on the basis set rise. As the
self-consistent calculations are sensitive to the full LAPW basis and not only to the
MT part, they are influenced by the reduction of the basis set flexibility imposed by
the matching conditions at the MT sphere boundaries. Furthermore, the MT part of
the basis has to represent the wave functions obtained for the full potential, although
it is adapted solely to the spherical potential.

We start the discussion on the impact of the linearization error on physical quanti-
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Figure 4.8.: Total energy of fcc Ce as a function of the El=2 energy parameter. The total energy
is given relative to the minimal total energy Emin

total obtained for this set of calcula-
tions, while the energy parameter is given relative to the Fermi level EF. The en-
ergy parameters for the conventional LAPW basis as obtained automatically from
the ECM and AEPmethods are marked in the plot. The inset gives a detailed view
for the two best performing basis sets, LAPW+HELO × 2 and LAPW+HDLO × 1.
Note that the extended basis sets only include additional LOs for the d channel,
such that the linearization error in the other l channels is not taken into account.

ties by investigating the dependence of the total energy on the choice of the d energy
parameter in fcc Ce in figure 4.8. Beyond the energy parameter for the d channel
all other numerical parameters in the underlying self-consistent calculations comply
with the parameters in table 4.1. Furthermore, and as an exception for these calcu-
lations, the extended basis sets do not contribute full sets of LOs for l = 0; : : : ; 3, but
only LOs for the d channel. Thus, the shown results abstract from the linearization
error in the other l channels.

In the calculations the energy parameter is varied between −0: 29 and 0: 08 Htr ( ≈
between −7: 9 and 2: 2 eV) relative to the Fermi energy. Within this interval we ob-
serve that the conventional LAPW basis yields a strong dependence of the total en-
ergy on the choice of the energy parameter of about 0: 5 mHtr. This dependence can
be reduced by several orders of magnitude by using an extended basis set. Here,
the LAPW+HDLO× 1 basis again offers the most favorable behavior with a variation
of the total energy that is more than 2 orders of magnitude smaller than with the
conventional LAPW basis.

Within the tested range of energy parameters we also observe an optimal energy
parameter, which yields the minimal total energy for the respective basis. The posi-
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in this set of calculations. The inset provides a detailed view on the behavior of
the LO extended basis sets. The best result is obtained for the LAPW+HDLO × 1
basis, which nearly completely eliminates the here shown dependence.

tion of this optimal energy parameter only slightly depends on the basis set and is
located at E5d − EF = −0: 16 Htr. This is about 1: 3 eV below the lower valence band
edge. Note that for the conventional LAPW basis, this optimal energy parameter still
yields energies which are more than 0: 15 mHtr higher than the energies obtained
with the LAPW+HDLO× 1 basis. Thus, an optimization of the energy parameters for
the conventional LAPW basis does not eliminate the consequences of the lineariza-
tion error completely. Furthermore, neither the determination of the energy parame-
ter with the ECMmethod (EECM

5d −EF = −0: 04 Htr) nor the determination with the AEP

method (EAEP
5d −EF = 0: 04 Htr) yields this optimal parameter. Both methods give rise

to a significant increase of the linearization error, where the ECM method provides
a slightly better parameter than the AEP method. In the case of the ECM method
one may argue that the suboptimal choice of the energy parameter is due to the ne-
glection of the semicore states which also contribute to the DOS of the considered l
channel in MT spheres of atoms adjacent to the atom associated with the semicore
state. However, this is not true. Comparative calculations show that the ECM energy
parameter is shifted by only 0: 01 Htr if the semicore states are included.

Beyond the dependence on the energy parameter, we already observed in chap-
ter 4.1.3 that the linearization error strongly depends on the MT radii. Of course, the
reduction of the MT radii is an option to reduce the linearization error. However, as
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Figure 4.10.: Dependence of the ground state total energy of rock salt KCl on the MT radii
for different basis sets. For simplicity the MT radii of K and Cl are chosen to be
equal. All energies are given relative to the minimal total energy Emin

total in this
set of calculations. The inset provides a detailed view on the behavior of the LO
extended basis sets. The best result is obtained for the LAPW+HDLO × 1 basis,
which nearly completely eliminates the here shown dependence.

already discussed, this approach involves an increase of the plane wave cutoff and
thus the usage of considerably more LAPW basis functions. Here, we show that the
dependence of the abstract representation error on theMT radii translates to a depen-
dence of calculated physical quantities on this parameter. We perform calculations
for fcc Ce and for KCl in rock salt structure. For both systems we vary the used MT
radii while keeping the product KmaxRMT constant. The energy parameters are au-
tomatically chosen with the AEP method. All other parameters are in accordance to
table 4.1. Note that the representation of the 3s and 3p semicore states in K with clas-
sic semicore LOs together with a sophisticated elimination of the linearization error
for the valence states by HELOs or HDLOs may cause problems when the MT radii
are reduced. Especially in the case of HDLOs the basis becomes nearly linearly de-
pendent for small MT radii. To avoid these problems we abstain from adding HELOs
or HDLOs in the s and p channels of K.
Figures 4.9 and 4.10 show the dependence of the total energy on the MT radii for

Ce and KCl, respectively. We observe that the conventional LAPW basis exhibits a
strong dependence of this basic ground state property on the MT radii, while the LO
extended basis sets suppress the dependence. The best result is once again obtained
for the LAPW+HDLO× 1 basis. For the largest MT sphere the conventional LAPW ba-
sis shows a deviation from theminimal total energy of more than 2: 5mHtr (0 : 7mHtr)
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Figure 4.11.: Equilibrium lattice constant of Ce calculated with the different basis sets and
plotted as a function of the MT radius. Each data point is obtained from a Mur-
naghan fit to the total energies of 15 test lattice constants ã between 0 : 938 aexp
and 0 : 966 aexp. The inset shows a detailed view on the best results.

for Ce (KCl). This is reduced to about 0: 12 mHtr (0 : 01 mHtr) by going to the smallest
MT radii. For the LAPW+HDLO× 1 basis the maximal deviation from the minimal
value is less than 0: 05 mHtr (0: 03 mHtr), even for the largest MT radii. In the case of
Ce we also observe that for very small MT radii the total energies obtained from the
LO extended basis sets begin to rise again. This is due to the 4d core states that begin
to reach out of the MT sphere.
Calculations on the equilibrium lattice constant do not rely on the total energy but

on differences between total energies obtained for different test lattice constants ã.
Thus, one may argue that the consequences of the linearization error on the ground
state total energy do not necessarily translate to imprecisions in the determination of
the equilibrium lattice constant. In the optimal case the errors in the total energies
will cancel each other. On the other hand one may also argue that a reduction of the
test lattice constant ã goes hand in hand with an increase of the overlap of atomic
states. As a consequence the band width increases and the description of the valence
electrons has to cover a broader energy interval, such that the linearization error
becomes larger. It is difficult to estimate the scale of these two effects and relate it to
the precision required for calculations on the equilibrium lattice constant.

To obtain a more direct answer to the question to what extent the linearization
error affects this derived quantity, we show the dependence of the equilibrium lat-
tice constant on the MT radii in figures 4.11 and 4.12 for Ce and KCl, respectively.
With a strong dependence for the conventional LAPW basis and nearly a complete



4.1 The linearization error 93

xx
xx

x

xx
xx

xx
xx

x

xx
xx

x
x

xx
xx

xx
xx

xxxxxxxxxx

xx

x
x

xx
xx

xx
x
x

xxxxx
xx

x
x

xxxxxxxxxx

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
R

MT
 (a

0
)

0.966

0.967

0.968

0.969

0.97

0.971

equ
il

ib
ri

u
m

 l
at

ti
ce

 c
o
n
st

an
t 
a

 /
 a

ex
p

LAPWxxxx

LAPW+HDLOx1
xx
xx
x
x

LAPW+HELOx1xxxx
LAPW+HELOx2

xx
xx
xx
xxxx

x
x

xx
x xx

xx

x
x

xxx
xx
xx

x
x

xx
xx

x
x

xx

x
x

xx

x
xx

x
x

xxx

xx
xx

x
xx

xxxx
xx
xx

x
x

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
0.966

0.9662

0.9664

0.9666

0.9668

0.967

Figure 4.12.: Equilibrium lattice constant of KCl calculated with the different basis sets and
plotted as a function of the MT radii. Each data point is obtained from a Mur-
naghan fit to the total energies of 9 test lattice constants ã between 0 : 958 aexp
and 0 : 974 aexp. The inset shows a detailed view on the best results.

elimination of this dependence with the HDLO× 1 extended basis, these plots paint
a similar picture as the previous observations. In detail, for the conventional LAPW
basis the result for the largest MT radii deviates by more than 1: 6 % (0 : 4 %) for Ce
(KCl) from the best result obtained with the LAPW+HDLO× 1 basis. When going
to the smallest MT radii this deviation is reduced to about 0: 1 % (0 : 01 %). With
the LAPW+HDLO× 1 basis the change of the calculated equilibrium lattice constant
when moving from large to small MT radii are about 0: 06 % (0 : 01 %). Note that the
imprecisions of about 1% obtained with the conventional LAPW basis are in the same
ballpark as the inaccuracies due to the limitations of commonly used exchange corre-
lation functionals. Thus, with the rise of more sophisticated functionals in the future,
the elimination of the linearization error will become more and more important.

We learn from the observations on the equilibrium lattice constant that a possible
error cancellation of the linearization error between different structural configura-
tions does not eliminate the need to carefully converge the MT sphere representation
of the basis functions. Beyond the lattice relaxation performed here, this result for
calculated total energies is also applicable for the optimization of atom positions in a
given unit cell with fixed volume.

To put the elimination of the linearization error by using LO extended basis sets
in context to a possible elimination by a reduction of the MT radii, we note that each
set of LOs for l = 0; : : : ; 3 contains 16 additional basis functions. On the other hand,
for the conventional LAPW basis, a reduction of the MT radii from 3: 15 a0 (2 : 8 a0) to



94 Analysis of the linearized augmented plane-wave basis

2: 4 a0 (2 : 1 a0) in the here performed total energy calculations increases the number
of LAPW basis functions per atom averaged over all k points from 220 (354) to 499
(841) for Ce (KCl). Note however that these generally high numbers are due to the
choice of very high KmaxRMT of 13 (13) to ensure well converged representations in
the IR. On the other hand the proportion between the number of basis functions for
the different MT radii depends on K3

max. Thus, a reduction of the MT radii implies
a cubic growth of the number of basis functions. In the here used examples this
more than doubles the number of basis functions when going from the largest to the
smallest MT radii, irrespective of the concrete KmaxRMT. Assuming a typical basis set
size of about 80 LAPWs per atom for large MT radii, it is clear that an elimination
of the linearization error with LO extended basis sets is much more efficient than a
reduction of the MT radii.

4.1.5 The linearization error and the Kohn-Sham

band gap

For semiconductors and insulators an often investigated quantity is the Kohn-Sham
band gap. Since this quantity is calculated as the difference between the energies of
the lowest unoccupied and the highest occupied band, the basis functions have to
represent not only the bands required to obtain a precise ground state density, but
also the lowest unoccupied bands. With respect to the construction of the LAPWs this
is a fundamental difference. The energy parameters are typically chosen such that a
precise representation of the occupied states is enabled. This does not guarantee a
precise representation of the lowest unoccupied states. In fact, the states in these
different energy intervals may differ in fundamental properties like, for example, the
main quantum number.
To evaluate the conventional and extended basis sets for the lowest unoccupied

states we calculate the band structures of rock salt KCl and crystalline Ar along the
high symmetry lines K � � � L. The parametrization of these calculations is given in
table 4.1. For the conventional LAPW basis, as well as for LAPW+HDLO � 1, fig-
ures 4.13 and 4.14 show the band structures of KCl and Ar, respectively. Note that
the LAPW+HELO � 1 and LAPW+HELO � 2 basis sets yield band structures that lie on
top of the LAPW+HDLO � 1 result, at least in the energy interval and on the energy
scale of the figures. When going to very high unoccupied states, extending the ba-
sis with HELOs is a more efficient means of obtaining precise eigenenergies than the
extension with HDLOs.
However, we are especially interested in the energy interval shown in the figures.

On the shown energy scale we note that the eigenenergies of the occupied states cal-
culated with the conventional LAPW basis lie on top of the energies obtained with
the HDLO � 1 extended basis. Contrary to this nice agreement, the eigenenergies of
the unoccupied states partially strongly differ between the two basis sets. Depend-
ing on the l character of the respective unoccupied band and the value of the energy
parameter for this l, the two basis sets either agree or disagree on the eigenenergies.
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are indistinguishable from the LAPW+HDLO × 1 result.
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Figure 4.14.: Band structure of Ar for the conventional LAPW basis, as well as for the
LAPW+HDLO × 1 basis as a representative of an LO extended basis. In the
shown energy interval and with the energy resolution of this graph, the band
structures obtained with the LAPW+HELO × 1 and LAPW+HELO × 2 basis sets
are indistinguishable from the LAPW+HDLO × 1 result.
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Both materials, KCl and Ar, possess a direct band gap at the � point. We evaluate
the precision of the calculations on this band gap. For the conventional LAPW basis
these band gaps are 4: 93 eV (10 : 07 eV) for KCl (Ar). By extending the basis with
HDLOs the better representation of the lowest unoccupied bands causes a lowering
of their eigenenergies. As a consequence the band gaps shrink by 0: 19 eV (1 : 87 eV)
to 4: 74 eV (8 : 20 eV). This is a reduction of the band gaps of 4% (19%). Thus, the
effects of the linearization error on this quantity are even larger than the effects on
the equilibrium lattice constant. Note also that in going to even higher energies, the
representation of the unoccupied states by the conventional LAPW basis gets worse
and worse. Hence, the very common extension of the LAPW basis by LOs in the
context of methods that rely on the unoccupied bands, e.g., in the optimized-effective
potential method [103] or in the GW approximation [132], is very reasonable.

4.1.6 Basis set size convergence for the different

basis sets

The matching of values and slopes of the LAPW basis functions at the MT sphere
boundaries couple the shapes of the basis functions in the different regions of the
unit cell strongly to each other. The result is a reduced flexibility of the basis. As
a consequence, to fully cover the function space spanned by the radial functions in
the MT spheres, large plane wave cutoffs Kmax have to be applied. The introduc-
tion of the APW+lo method by Sjöstedt et al. [14] relaxed the matching at the MT
sphere boundaries by dropping the condition for the basis function’s slope and us-
ing only the radial functions u �

l (r � ; E
�
l ) for the matching. For low l the u̇ �

l (r � ; E
�
l )

were included in terms of a new type of local orbitals constructed with u �
l (r � ; E

�
l ) and

u̇ �
l (r � ; E

�
l ) and featuring zero value but also a finite slope at the MT boundaries. The

resulting kinks in the basis functions were compensated by introducing an additional
term in the construction of the Hamilton matrix, which quantifies the disadvantage
of these kinks in the kinetic energy.
The decoupling of the different regions by a relaxation of the matching conditions

is highly efficient. Nevertheless, one may ask if the extension of the conventional
LAPW basis with LOs yields a similar effect. After all, the additionally used ra-
dial functions for the HELOs and HDLOs not only widen the energy interval of pre-
cisely representable wave functions. They are also not orthogonal to u �

l (r � ; E
�
l ) and

u̇ �
l (r � ; E

�
l ), so that they provide an alternative way of representing wave function fea-

tures that are also representable with u �
l (r � ; E

�
l ) and u̇ �

l (r � ; E
�
l ). In this section we test

the hypothesis that the LO extended basis sets provide a similar decoupling of the
different unit cell regions as APW+lo for the example of fcc Ce.
To compare the different basis sets with respect to this aspect, figure 4.15 shows

the respective convergence of the total energy of fcc Ce with respect to the plane
wave cutoff Kmax given by the product KmaxRMT, where RMT = 3: 14 a0. Beyond the
already well-known conventional LAPW basis set and the LO extended basis sets,
we also provide results for APW+lo and a HELO � 1 extended version of this basis.
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Figure 4.15.: Convergence of the total energy of fcc Ce with respect to KmaxRMT for different
basis sets. All total energy results are given relative to the minimal total en-
ergy Emin

total in this set of calculations. The upper abscissa provides the k point
averaged number of LAPW basis functions beyond any type of local orbitals. To
obtain the complete number of basis functions the number of semicore LOs (4)
has to be added. Furthermore the local orbital extended basis sets increase the
number of basis functions by 16 (LAPW+HELO × 1, LAPW+HDLO × 1, APW+lo)
or 32 (LAPW+HELO × 2, APW+lo+HELO × 1).

Note however that the here used realization of APW+lo deviates from the original
idea as we follow the approach of Madsen et al. [15] to perform a conventional LAPW
matching for l quantum numbers beyond the maximal l = 3 of the applied APW+lo
style local orbitals.

In interpreting the results from the figure we first note that for very high KmaxRMT

the LAPW and APW+lo basis sets converge to the same total energy since they span
the same function space in this limit. An equivalent statement can also be made for
the LAPW+HELO× 1 and the associated APW+lo+HELO× 1 basis sets. However, at
the cost of an additional set of local orbitals, the APW+lo type basis sets offer a much
more efficient convergence behavior in comparison to their LAPW counterparts.

Nevertheless, both, the conventional LAPW and APW+lo basis sets, exhibit a sig-
nificant linearization error, such that the elimination of this error with additional
LOs is mandatory. As already seen in different tests, the LAPW+HDLO× 1 basis ex-
hibits the lowest and most precise total energies. We also observe that the addition
of LOs to the conventional LAPW basis yields a more friendly convergence behavior
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in the sense that the respective converged total energy is approached faster when ris-
ing KmaxRMT. This is very similar to the more efficient convergence behavior of the
APW+lo basis, although the reduction of the required KmaxRMT is larger for APW+lo.
Within the set of LO extended LAPW basis sets, the best convergence behavior is
obtained with the LAPW+HDLO � 1 basis. When comparing the APW+lo+HELO � 1
basis to the APW+lo basis we also observe that APW+lo does not profit from the ad-
ditional LOs in the same way as LAPW. While the linearization error is also reduced
for APW+lo, the already very good decoupling of the different regions in the unit cell
is not increased in a comparable way. In fact, for the shown example, the curves for
APW+lo and APW+lo+HELO � 1 are only shifted by a constant energy with respect to
each other.

To complete the discussion on the convergence behaviors, we mention in passing
that the permission of a kink in APW+lo basis functions also transfers to a kink in the
wave functions, although to a far lesser extent. A kinkless wave function possesses
exactly the same matching between the radial functions and the linear combination
of plane waves at the MT boundaries that is also obtained in terms of LAPWs. Thus,
every kinkless wave function that is given by plane waves in the interstitial and the
given radial functions in the MT spheres, is pointwise representable by LAPWs. As
a consequence, whenever an APW+lo calculation yields a lower total energy than an
LAPW calculation with the same plane wave cutoff parameter, a kink is retained in
the wave functions. From a physical point of view this is unsatisfying as it implies a
singular kinetic energy density at the MT sphere boundaries.

4.1.7 Concluding remarks on the linearization error

The here presented discussion shows that there are materials for which conventional
FLAPW calculations suffer from the linearization error, which is due to the restriction
to the radial functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ) in the MT spheres. We demonstrated

that the consequences of this error can be in the same ballpark as inaccuracies due
to the approximation to the exchange correlation functional. To eliminate the lin-
earization error we evaluated two ways of extending the conventional LAPW basis

with LOs. The first type of local orbitals, HELOs, are constructed with u �
l (r � ; E

� ; LO
l ),

evaluated at energies within the unoccupied bands. Of course, this type of LOs is
very efficient in eliminating the linearization error for the unoccupied states. As a
consequence, it is often used in the context of methods that rely on a precise repre-
sentation of these states. Beyond this, we saw that HELOs also effectively reduce the
linearization error for the valence states. The second type of evaluated LOs, HDLOs,
are constructed with the second energy derivative ü �

l (r � ; E
�
l ). These LOs performed

even more efficient in eliminating the linearization error. In comparison to the con-
ventional LAPW basis the addition of these LOs reduced the representation error by
several orders of magnitude. The very desirable outcome of this improvement is that
calculations become much more precise and also stable with respect to numerical
parameters like MT radii or energy parameters.
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The inclusion of additional LOs might not always be necessary. Nevertheless,
the present results show that LOs can be an important ingredient when converg-
ing FLAPW calculations with respect to the basis set. Thus, the elimination of the
linearization error through the extension of the LAPW basis with LOs should by part
of this calculation parametrization routine. Especially in foresight of new challenges
arising due to calculations with more sophisticated exchange correlation functionals
on ever more complex materials this is an important statement. Furthermore, the
gain in calculation stability with respect to the parametrization ensures comparabil-
ity between different calculations.
Beyond the elimination of the linearization error, additional LOs also contribute

to the decoupling of the wave function representation in the different regions of the
unit cell. Thus, they imply a reduction of the required plane wave cutoff Kmax, which
yields a lower number of conventional LAPWs. So, as a side aspect the elimination of
the linearization error with LOs may also reduce the required basis set size. Never-
theless, we remark that an even better decoupling of the different regions is obtained
with the APW+lo method, although without addressing the linearization error.

4.2 General properties of the basis
functions and the wave functions

After analyzing the linearization error that originates in the MT spheres, we proceed
by taking a closer look at the properties of the LAPW basis functions in the whole
unit cell and compare them to the properties of wave functions. In section 4.2.1 we
are especially interested in the matching conditions at the MT sphere boundaries,
which are given by the interstitial part of the functions. A comparison between the
matching conditions for the two sets of functions is important since the shape of the
basis functions in the MT spheres is strongly influenced by these conditions. An
efficient basis set should provide exactly those interstitial features and MT matching
conditions, which are also required by the wave functions. Systematic deviations
between the shapes of the basis functions from the wave functions manifest in a large
number of basis functions that are required to compensate for unphysical properties
of single basis functions.
The chapter continues with an investigation on the changes of the effective po-

tential and the basis functions in the MT spheres throughout the iterations of the
self-consistency cycle in section 4.2.2. Of course, the changes of the MT part of the
basis functions strongly depend on the changes of the potential in that region. Small
changes in potential and basis functions may open the path to speed up the calcula-
tions by precalculating certain quantities. Furthermore, small changes in the poten-
tial also result in small changes of the wave functions throughout the self-consistency
cycle. To analyze the changes of the wave functions in more detail, we explicitly mea-
sure and evaluate these changes in the interstitial region in section 4.2.3.
We investigate the mentioned properties of the functions for a test set of materials,
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Table 4.2.: Calculational parameters for the materials considered for the analysis of the dif-
ferent basis function and wave function properties. The table first lists the applied
exchange-correlation functional and the basic structural parameters, i.e., the crys-
tal structures and the experimental lattice constants used for the calculations. In
the middle section it lists the manually determined MT radii (RMT), plane wave
cutoffs Kmax and resulting k point averaged number of LAPW basis functions per
atom, angular momentum cutoffs l �max for each atom, as well as the reduced cutoffs

l
� ; nsphr
max , number of k points in the IBZ, and the included semicore LOs. The last
section of the table covers the self-consistently determined atomic energy param-
eters relative to the Fermi level El � EF. For l > 3 the energy parameters are set to
El=3.

parameter Cu SiC NaCl
(Si, C) (Na, Cl)

XC functional PBE-GGA5 PBE-GGA PBE-GGA
crystal structure fcc zinc blende rock-salt
lattice constant (a0)

6 6: 831 8: 238 10 : 620
RMT (a0) 2: 35 2: 22, 1: 25 2: 52, 2: 52
Kmax (a

� 1
0 ) 4: 5 5: 5 4: 0

LAPWs / atom 123 196 162
l �max 8 10, 8 8, 8

l
� ; nsphr
max 6 6, 4 6, 6
k points in IBZ 182 220 28
semicore LOs 2s,2p (Na)

atomic energy parameters (eV)
El=0 � EF � 3.75 � 9.22, � 20.36 6.06, � 12.41
El=1 � EF 0.36 � 4.28, � 15.31 9.36, � 0.93
El=2 � EF � 2.61 0.96, � 9.95 13.27, 9.86
El � 3 � EF 9.26 5.52, � 5.61 17.77, 14.94

which provide different properties of the wave functions in the IR and thus different
demands on the basis set. In detail we look at the metallically bonded fcc Cu, zinc
blende SiC as a material with covalent bonds, and NaCl as an ionically bonded ma-
terial. Table 4.2 shows the parametrization of the underlying calculations on these
materials.

5PBE-GGA denotes the Perdew-Burke-Ernzerhof parametrization of the generalized gradient ap-
proximation [37].

6The experimental lattice constants for Cu, SiC, and NaCl were taken from [133], [134], and [135],
respectively.
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4.2.1 MT matching conditions

We start the discussion on the matching conditions by reminding that the values of
the basis functions at the MT sphere boundaries are given by Rayleigh expansions
(cf. equation (3.38))

1
p


eiKr =

4�
p


eiKτα

X

L

ilY �
L(K̂)jl(Kr � )YL(r̂ � )

�������
r � =RMT �

; (4.4)

where K = j k+G j . One immediately sees that the L = (l ; m) decomposed values of the
functions are mainly determined by the behavior of the spherical Bessel functions
jl(Kr � ) at r � = RMT � . Of course, the same observation can be made for the radial
derivatives of the basis functions at this boundary.

For a first estimation of the values of the LAPW basis functions in the different l
channels at the MT boundaries, we show the spherical Bessel functions for l � 8 in
figure 4.16. We see that for small Kr the spherical Bessel functions exhibit the well
known behavior jl(Kr) / (Kr)l . In consequence, for small Kr the values for high l
nearly vanish. This drastically changes for higher Kr > 2. With growing Kr the spher-
ical Bessel functions of more and more l channels possess values which substantially
deviate from zero. Together with the oscillatory form of the jl(Kr) this quickly breaks
the dominance of the lower l channels (l � 3).

This behavior can also be seen in the matching conditions of LAPW basis functions
in fcc Cu, illustrated in figure 4.17. The figures show that for both, the absolute
values j � kG(r � = RMT) j and the absolute values of the radial derivatives j � 0

kG(r � =
RMT) j , the magnitude is mainly determined by the angular momentum l and hence
by the spherical Bessel function jl(KRMT). On the other hand, the magnetic quantum
number m gives smaller deviations from this general magnitude.

Comparing the matching behavior of the different LAPW basis functions, we ob-
serve that for very small K only the l channels for small l make significant contri-
butions to the values and radial derivatives of the functions. However, this changes
quickly whenK gets larger. Even for the verymoderateK = 2: 57 a � 10 the dominance of
the small l is completely broken. This is especially of importance if one considers the
number of LAPW basis functions within some K interval. As the number of LAPW
basis functions scales cubically with Kmax, only very few LAPWs provide a clear dom-
inance of the lower l channels. On the other hand, most of the basis functions feature
significant contributions from all l channels considered in this discussion.

We compare this behavior of the LAPWmatching conditions in the different l chan-
nels to the corresponding behavior of the lowest valence wave functions. For an ar-
bitrary k point, figure 4.18 shows the matching conditions of the occupied valence
wave functions in fcc Cu. Of these wave functions,  1

k to  5
k have 3d character, while

 6
k has 4s character. Of course, we consider a crystal with a single atom in the unit

cell such that this character cannot be directly observed. For example, the 3d states
are extended into neighboring unit cells and give contributions to the matching in
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Figure 4.16.: Spherical Bessel functions jl(Kr) for l ≤ 8 in the range 0 < Kr < 12. The figure
highlights the values of the different jl(Kr) for a radius of r = 2 : 35 a0 and a set of
different K . The choice of the highlighted values is motivated by the matching
to the MT sphere in fcc Cu (cf. figure 4.17).

different l channels at the MT boundaries in those cells. Thus, one obtains a super-
position of matching conditions for equivalent atoms within a small neighborhood of
unit cells. Nevertheless, we observe that the contributions to the matching conditions
are clearly dominated by the low l channels. Higher l are suppressed. We note that
this behavior of the matching conditions of the wave functions clearly deviates from
the corresponding conditions of the majority of the LAPW basis functions.

One may wonder to what extend this observation is transferable to materials with
other interstitial properties. We answer this question by providing the matching con-
ditions of the lowest valence wave functions in SiC and NaCl. For SiC figure 4.19
shows the matching conditions of the lowest wave functions above the core states at
the Si MT boundary, while figure 4.20 shows the matching at the MT boundary of C.
Just like the trend observed in fcc Cu, also the MT matching of the wave functions
in SiC is dominated by the lower l channels. This behavior is especially visible in C,
although we have to keep in mind that this is also influenced by the very small MT
sphere of C with RMT = 1: 25 a0. Of course, a comparison with the spherical Bessel
functions (cf. figure 4.16) shows that small MT radii also yield matching conditions
that are dominated by low l channels for LAPW basis functions with larger K .

For NaCl figure 4.21 shows the MT matching for Na and figure 4.22 the match-
ing for Cl. Due to the ionic bonding in this material the wave function matching at
the MT spheres is much more l channel specific than in the previously investigated
materials. This can easily be seen when associating the different considered wave



4.2 General properties of the basis functions and the wave functions 103

(a)

xx
xx
x

xx

x

xx
xx

x
x
x

xx
xx
x
x

xx
xxx
xx
xxx
xx
x
xx

x
x

xx
xx
x
x
xx
xx
x
x
xx
xx
x
x
xx
xxx
x

xx
xx

x
x
xx
xx
x
x
xxx
x
xxx
x
xx
xx
x
xxx
xx

x
xxxxx
xx

x
xx
xx

x
xx
xx

x
xx
xx
xxx
xx

x
x

xx
xx
x
xx

x

xx

x
x

xx

x
x

xx

x

xx
xxx
xxx
x

xx
xx
x
xx
x

xx
xx

x

xx

x

xx

x

xx

x

xx
xx

x
xx
xxx
xx

xxxxx
xx
x
xx
x

x

x
x
x
xx
x
xx
xx
x
x
xx
xxx
xx

x
x
xxx

xx

x

xx

xxx

x
x

xx
x
xxx

x
xxxxx

x

xx
x
x

xx

x
x
xx
xxx
xx
xx

x
xxx
xx

x

xx
xx

x
xx
xx
x
x

x
x

x

x
x
xx
xx

x

xx
xx

x
xxx
xx

x
xxx
xx

x

xx
xxx
xx

x

xx
xx
x
xxx
xx
x
x

xx
xxx
x
xx
x
xxx
xx
x
x
xx
xx

x
x

xx
xx

xx

xxx
xx
x

xx
xxx
x
xxx
xx

x
xxx
xx
xxx
xx

x
x

xx
xx
x

xx
xx
x
x
xx
xxx
xx
xx
x
x
xx
xxx
xx
xx

x
x

xx
xx
x
x
xxx

xx

x

xx

xxx

x
x

xx
xx

x

xx
xxx
xxx
xxx
xx
x
x
xx
xx
x
xx
x
x

xx
xx

xx

x
x
xx
xx
x
xx
x
x

xx
xx

x

xx
xx

x

xx
xx

x
xxx
x

xx
xx

x
x

xx
xx

x
xx
xxx
x
xx
xx

x
xxx
xx
xxx
x
xx
xx
x
x

xx
xx

x

xx
xx

xx
xx
xxxxxxx

x

x
x
xx
xx
x
xxx
x

xx

x

xx

x
x
xx

xxx
xx

x
xx
x
xxx
x
xx
xx
x

xx
x
xx
xx
xxx
xx

x
xx
xx
xxx
xxx
xx
x
xx
x
x

xx
xx
x
x

xx

x
x

xx

x
x

xx
xx
x
xxx
xx
x
xxx
xx
x
x

xx
xx

x
x

xx
x
xx
xxx
xx
x
x

xx
xx

x
x
xx
xx

x
x

xx
xx
xxx

x
xx
xx
x
x

xx
xxx
x

xx
x
x

xx
xxx
x
xx
xx

x

xxx

xx
xxxx

x
xx
x
xx
xx
xx
xx

x
xxx
xx
x
x

xx
xx
x
x

xx

x
x

xx

x
x
xx
xx

x
x
xx
xx

x

xx
xx

x

xx
xx

x

xx
xx
x
x
xx
xxx

xx
xx
x
x

xx
xxx
xx
xxx
x

xx
xx

x
xx
xx

xxx
xx

x
xxx
xx
xxx
xx
xxxxx
x
xx
xx
xx

x
xx
xxxx
x

xx
xx
x
x

xx
xx

x
x

xx
xx
x
x
xxx
xx
xxx
xxx
x

xx
xx
x
xx

x
x

xx

x
x

xx

x
x

xx

x
x

xx
xxx
xxx
x

xx
xx

0 10 20 30 40 50 60 70 80
L  = (l, m )

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

|φ
k
G

(r
α
 =

 R
M

T
)|

K = 0.64 a
0

-1

x
x
xx
xx

K = 1.61 a
0

-1
xxx

K = 2.57 a
0

-1

x
x
xx
xx

K = 3.56 a
0

-1
xxx

K = 4.49 a
0

-1

xxx

l = 2
l = 3

l = 4

l = 5

l = 6

l = 7

l = 8

(b)

xx
xx

x

xx
xx

xxx

x
xx
x

xx
xx
x

xx
xx

x
xxx
x
xxx
x
xxx
xx

x
x

xx
xx
x
x
xx
xx
x
x
xx
xx
x
x
xx
xxx
x

xx
xxxx
xx
xxx
xx
xxxxxx

xx

x
xxxxx
xx

x
xx
xx

x
xx
xx

x
xx
xx
xxx
xx

x
x
xx
x
xxx

x
x
xx

x

xx

x

xx

x
x
xx
x
xxxx
x

xx
x
x
xxx
x

xx
xx
x
x

xx

x
x

xx

x
x

xx

x
x

xx
xx
x
x
xxx
xxx

xx
xxxxxx

x
xx
x

x

x
x

x
x
xx
x
x

xx
xx
x
x
xx
xxx
x

xxx
xx
xx
x
x

xx
xx

x
x

xx
xx

x
x
xx
xx

x
xx
x
xxx

x
xx
xx
xxx
xx

x

xx
x
x

xx

x

xxx
x
xx
x
xx

x
x

xx
x
xx
x
x

x

x

x
x
xx
xx

x

xx
xx

x
xxx
xx

x
xxx
xx

x

xx
xxx
xx

x

xx
x
xxx
xxx

xx
xxx
xx

x
xx
xx

x
xx
xx
x
xx

x
xx
xx

x
x

xx

xx

x
xx
x

xx
x
x

x
xxx
xx

x
xx
xx
xxx

x
x

xxx

xx
xx

x
x
xx
xxx
xxx
x
xx
x
xx
xx

x
x
xx

x
xxx

xx
xx

x

xx
xx

xxx
x

xxx

xx
x
xxx
xxxx
x
xxx
xx
x
x

xx

xx
x

xx
x
xxx
xx
x

xx
xx

x

xx
xx

x

xx
xx

xxx
xx

x
x

xx

x

xx
xx
x
x
xx
xxx
xx

xxx
xxx
xx
x
xx
xx
x
xx
xx
x
xx

x
x

xx
xx

xx
xx
x
x
xx
xx
x
xxxx

x

xxx

xx
xxx

xx

x

xx

x
xx
xx

xxx
xx

x
xx
x
xxx
x
xx
xx
x
xx
xxx
xx
xx
x
xx

x
x
xx
xxx
xxx
xx
xx

x
xxx
xx
x

xx

x

xx
xx

x

xx
xx

x

xx

xxx
xx

xx
xx
x
xxx

xx

x
x

xx
xxx
x
xxx
x

xx
xxx
x

xx

xxx
xxx
xx
xxx

x
x
xx
xx
x
xx
xxx
x

xx
x
x

xx
xxxxx
xx

x
x

xxx

xx
xxxx

xx
x
xx
x

xx
xx
xx
xxx
xxx

xxx

xx

x

xx

xxx
xxx
xx

x

xx
xx

x

xx
xx

x

xx
xx
x
xx
xxx

xx
x
x
xxx
x
xxx
x

xx

x
xx
xx
xxx
xx

xxx
xx
x
x
xx
x
xxx
x
xx
xx
x
xx
xx
xx
x
xxx
xxxx
x

xx
x
x

xx

x
x

xx
x
x
xxx
xx
x
x

xx
xxx
x

xx
xx
x
xx

x

xx

x

xx

x

xx

x

xx
xxx
xxx
x

xx
xx

0 10 20 30 40 50 60 70 80
L  = (l, m )

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

|φ
’ k
G

(r
α
 =

 R
M

T
)|

K = 0.64 a
0

-1

x
x
xx
xx

K = 1.61 a
0

-1
xxx

K = 2.57 a
0

-1

x
x
xx
xx

K = 3.56 a
0

-1
xxx

K = 4.49 a
0

-1

xxx

l = 2

l = 3

l = 4

l = 5

l = 6

l = 7

l = 8

Figure 4.17.:Matching conditions at the MT boundary for a test set of LAPW basis functions
in fcc Cu. Figure (a) shows the values of the functions, while (b) shows the radial
derivatives. The chosen LAPW basis functions for an arbitrary k point give an
impression on the whole range of K < Kmax. The index on the abscissa is given
by L = l2 + l +m. For each l the associated values are marked in the figures,
although for l = 0 and l = 1 the denotation has not been done explicitly.
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Figure 4.18.:Matching conditions at the MT boundary for the lowest wave functions above
the core states in fcc Cu. Figure (a) shows the values of the functions, while (b)
shows the radial derivatives. The displayed matching conditions cover the occu-
pied valence states for an arbitrarily chosen k point. The index on the abscissa is
given by L = l2+ l+m. For each l the associated values are marked in the figures,
although for l = 0 and l = 1 the denotation has not been done explicitly.
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Figure 4.19.:Matching conditions at the Si MT boundary for the lowest wave functions above
the core states in SiC. Figure (a) shows the values of the functions, while (b)
shows the radial derivatives. The displayed matching conditions cover the oc-
cupied valence states and the lowest unoccupied state for an arbitrarily chosen
k point. The index on the abscissa is given by L = l2+ l+m. For each l the associ-
ated values are marked in the figures, although for l = 0 and l = 1 the denotation
has not been done explicitly.
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Figure 4.20.:Matching conditions at the C MT boundary for the lowest wave functions above
the core states in SiC. Figure (a) shows the values of the functions, while (b)
shows the radial derivatives. The displayed matching conditions cover the oc-
cupied valence states and the lowest unoccupied state for an arbitrarily chosen
k point. The index on the abscissa is given by L = l2+ l+m. For each l the associ-
ated values are marked in the figures, although for l = 0 and l = 1 the denotation
has not been done explicitly.
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Figure 4.21.:Matching conditions at the Na MT boundary for the lowest wave functions
above the core states in NaCl. Figure (a) shows the values of the functions,
while (b) shows the radial derivatives. The displayed matching conditions cover
the occupied valence states for an arbitrarily chosen k point. The first 4 wave
functions are the 2s and 2p semicore states of Na. The index on the abscissa is
given by L = l2+ l+m. For each l the associated values are marked in the figures,
although for l = 0 and l = 1 the denotation has not been done explicitly.
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Figure 4.22.:Matching conditions at the Cl MT boundary for the lowest wave functions above
the core states in NaCl. Figure (a) shows the values of the functions, while (b)
shows the radial derivatives. The displayed matching conditions cover the occu-
pied valence states for an arbitrarily chosen k point. The first 4 wave functions
are the 2s and 2p semicore states of Na. The index on the abscissa is given by
L = l2+l+m. For each l the associated values are marked in the figures, although
for l = 0 and l = 1 the denotation has not been done explicitly.
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functions with the corresponding character of the state. We first identify the semi-
core states in Na by noting that  1

k is the 2s state and  2
k to  4

k are the 2p states. It
is clearly visible in figure 4.21 that the matching is strongly dominated by the corre-
sponding l channels l = 0 and l = 1. All other l channels provide contributions that
are 2 or more orders of magnitude smaller. On the other hand the matching of these
functions to the Cl MT sphere is not dominated by a single l channel. Here, a cou-
ple of channels make relevant contributions, although at a considerably lower level
than the dominating matching for Na. For the higher wave functions we identify
 5
k as Cl 3s state and  6

k to  8
k as Cl 3p states. The contributions of the associated l

channels clearly dominate the matching to the Cl MT sphere in figure 4.22. Again, all
other l channels make considerably smaller contributions. Also the matching of these
functions to the Na MT sphere does not show such a clear dominance of a specific l
channel.
We conclude these observations by noting that the plane waves that are the IR part

of LAPWs are obviously not designed to directly reflect the shapes of the electronic
states in a solid. Especially localized states and directed covalent bondings possess
properties at the MT sphere boundaries that deviate from the general properties of
plane waves. We believe that these deviations are an opportunity to design a basis set
that offers an even higher description efficiency than the LAPW basis. Nevertheless,
we remark that the LAPW basis already is rather efficient. Though the plane waves
in the IR are not directly adapted to the given problem, they solve the Schrödinger
equation for a constant potential. As the potential in the IR is smooth, this approach
is generally a good starting point.

4.2.2 Changes of the MT potential and the basis

functions throughout the self-consistency loop

To better understand the aspects that have to be included in the construction of a
more efficient basis, we investigate the changes of the problem throughout the dif-
ferent iterations of the self-consistency loop. We start by having a closer look at the
changes of the potential in the MT spheres and plot the radial behavior of the differ-
ent lm channels of the potential,

V (r) = Vlm(r � )Ylm(r̂ � ) ; (4.5)

in the MT spheres in the first iteration and for the self-consistent solution.
For Cu, the changes of the potential are visualized in figure 4.23. Inspecting this

figure, we first note that only very few lm channels contribute to the potential. The
largest contribution comes from the spherical part Vl=0 ; m=0. Of course, this part of
the potential features a / � Z � = (r � � Yl=0 ; m=0) behavior

7 near the atomic nucleus, where
the other lm channels vanish. However, even at the MT boundary RMT the spher-
ical potential is still the dominant contribution to the potential. Nevertheless, the

7Z � is the core charge of atom � , Yl=0 ; m=0 =
1p
4 �

.
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Figure 4.23.: Changes of the MT potential in fcc Cu throughout the self-consistency loop. The
figure shows the potential of the first iteration in comparison to the potential for
the self-consistent solution in the 20th iteration. Displayed are only those lm

channels with l ≤ 6 that feature finite contributions to the potential. The inset
shows the spherical potential, which is on another energy scale. Symbols mark
the different curves every 51 mesh points of the logarithmic radial mesh.

nonspherical contributions become more important in the near of the MT boundary,
where, dependent on the lm channel, they nearly reach a similar order of magnitude
in comparison to the spherical potential.

The differences between the potential in the first iteration and the one of the self-
consistent solution are small. Especially for the spherical part the associated curves
lie nearly on top of each other and no significant difference is observable on the en-
ergy scale of the figure. For the nonspherical contributions we observe that the qual-
itative behavior of the potential is only exposed to marginal changes. The curves stay
at the same order of magnitude, although the concrete values and especially the cur-
vatures in the outer part of the MT sphere change. We realize that the potential in the
first iteration, which is obtained on the basis of a superposition of atomic densities,
is already a very good approximation to the actual potential in the crystal.

To check whether this statement can also be made for materials with other bond-
ing mechanisms we provide equivalent figures also for SiC and for NaCl. For SiC
figure 4.24 shows the development of the potential in the MT sphere of Si and fig-
ure 4.25 shows it in the C sphere. Both figures support the statement that the su-
perposition of atomic densities already is an excellent basis that provides a potential
which comes very near to the potential in the solid. This is surprising since the cova-
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Figure 4.24.: Changes of the Si MT potential in SiC throughout the self-consistency loop, sim-
ilar to figure 4.23.
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Figure 4.25.: Changes of the CMT potential in SiC throughout the self-consistency loop, sim-
ilar to figure 4.23.
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Figure 4.26.: Changes of the Na MT potential in NaCl throughout the self-consistency loop,
similar to figure 4.23.
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Figure 4.27.: Changes of the Cl MT potential in NaCl throughout the self-consistency loop,
similar to figure 4.23.
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lent bonds in this material strongly deviate from the states in isolated atoms.
For NaCl figures 4.26 and 4.27 display the changes in the MT potentials of Na

and Cl, respectively. Here, the changes in the Cl MT sphere are similar to those
already observed in the previous materials. However, the changes in the Na sphere
are slightly larger. As a consequence of the charge transfer from Na to Cl in the first
iterations of the self-consistency loop we observe that features of the nonspherical
part of the potential strongly change, although on a small absolute scale.

Regardless of the material, the changes of the spherical potential over the different
iterations of the self-consistency loop are small. As the MT parts of the basis func-
tions are constructed on the basis of the spherical potential we conjecture that the
associated changes of the basis functions should also be small, as long as the changes
in the energy parameters are also small. This should especially apply to the u �

l (r � ; E
�
l )

and u̇ �
l (r � ; E

�
l ) for high l quantum numbers since with growing l the angular momen-

tum barrier becomes more andmore the dominating term in the construction of these
functions and the potential becomes less important.

With the usage of the AEP method for the determination of the energy parameters,
small changes in the spherical potential should translate to only small changes in the
energy parameters. Thus, with this method we expect to observe only small changes
in u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ) throughout the self-consistency loop.

For Cu, the changes in the radial functions of the LAPW basis are displayed in
figure 4.28. We first compare u �

l (r � ; E
�
l ) to u̇ �

l (r � ; E
�
l ) and see that, as expected from

figure 4.1(b), near the nucleus the u̇ �
l (r � ; E

�
l ) are proportional to the respective corre-

sponding u �
l (r � ; E

�
l ). On the other hand, in the outer parts of theMT sphere u �

l (r � ; E
�
l )

and u̇ �
l (r � ; E

�
l ) deviate from each other to a larger extent. This is in agreement with

the observation that the energy dependence of u �
l (r � ; E

�
l ) near the nucleus mainly

affects the norm of the function, while there are larger dependences near the MT
boundary.
As expected from the small changes in the potential, the changes in the radial

functions u �
l (r � ; E

�
l ) and u̇ �

l (r � ; E
�
l ) are also very small. For most l channels the ra-

dial functions in the first iteration lie on top of those for the self-consistent solution.
This is especially true for l channels with l � 3. The largest changes in the radial
functions throughout the iterations are observable for l = 2. These changes can be
understood by comparing the changes in the energy parameters to those in the spher-
ical potential. For the spherical potential Vl=0 ; m=0, the value at the MT boundary
shifts by 0: 0211 Htr from � 0: 2378 to � 0: 2167 Htr. Including the spherical harmonic
Yl=0 ; m=0 this is a shift of 0: 0060 Htr. The energy parameters also shift. El=0 shifts by
0: 0031 Htr from 0: 1653 to 0: 1684 Htr relative to the zero of the potential. For the p
channel El=1 shifts by 0: 0047 Htr from 0: 3149 to 0: 3196 Htr, for the d channel El=2

shifts by � 0: 0528 Htr from 0: 2633 to 0: 2105 Htr, and for higher l the energy param-
eter shifts by 0: 0059 Htr from 0: 6408 to 0: 6467 Htr. Thus, we observe the largest
changes in the energy parameter of the d channel, which even feature the opposite
sign of the changes of the MT boundary value of the spherical potential. Neverthe-
less, we remark that the changes in all energy parameters are very small. This is in
agreement with the expectations.
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Figure 4.28.: Changes of the radial functions over the self consistency cycle for fcc Cu. The
plots display the radial functions up to l = 5 in the 1st iteration and for the self
consistent solution in iteration 20. The solutions to the SRA to the radial Dirac
equation are given in (a), while their energy derivatives are shown in (b). The
inset in (b) provides a detailed view on u̇ �

l (r � ; E
�
l ) for l = 3 ; 4 ; 5.
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Figure 4.29.: Changes of the radial functions over the self consistency cycle in the Si MT
sphere in SiC. The plots display the radial functions up to l = 5 in the 1st itera-
tion and for the self consistent solution in iteration 20. The solutions to the SRA
to the radial Dirac equation are given in (a), while their energy derivatives are
shown in (b).
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Figure 4.30.: Changes of the radial functions over the self consistency cycle in the C MT
sphere in SiC. The plots display the radial functions up to l = 5 in the 1st it-
eration and for the self consistent solution in iteration 20. The solutions to the
SRA to the radial Dirac equation are given in (a), while their energy derivatives
are shown in (b).



4.2 General properties of the basis functions and the wave functions 117

(a)

x
x

xx

xx
xx

x
x

x
x

xx
xx

xx
xxxxxxxxxxxxxx
xx
xx
xxxxxx
xx
xx

xx
xx

xx
xx

x
x
xx
xx

xx
xx

x
x

x

xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xxxxxxx

xx
xx
xx x

x x
x

xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
x
x
xx
xx xx x

x x
x

xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
x
x
xx
xx

xx
xx x x

x

xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
x
x
xx
xx

xx
xx x x

x

xx
xx

0 0.5 1 1.5 2 2.5
r

α
 (a

0
)

-1

-0.5

0

0.5

1

1.5

2

u
l (
r α

, 
E
lα
)

u
l
 in iteration   1

xx
xx

xx
xx

u
l
 in iteration 20

u
l=0

u
l=1

u
l=2

u
l=3

u
l=4

u
l=5

(b)

xx

xx
xx

x
x

x
x

xx
xx

xxxxxxxxxx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx

xx
xx

x
x

xx
xx

xx
xx

x
x

x
x

xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxx
xx
x
xxx
xx

xx
xx

x
x

x
x

xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx
xx x

x

xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx x
x x

x

xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx x x

x

xx
xx

0 0.5 1 1.5 2 2.5
r

α
 (a

0
)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

. u
l (
r α

, 
E
lα
)

.

u
l
 in iteration   1

x
x

x
x

.

u
l
 in iteration 20

.

u
l=0

.

u
l=1

.

u
l=2

.

u
l=3

.

u
l=4

.

u
l=5

Figure 4.31.: Changes of the radial functions over the self consistency cycle in the Na MT
sphere in NaCl. The plots display the radial functions up to l = 5 in the 1st
iteration and for the self consistent solution in iteration 20. The solutions to the
SRA to the radial Dirac equation are given in (a), while their energy derivatives
are shown in (b).
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Figure 4.32.: Changes of the radial functions over the self consistency cycle in the Cl MT
sphere in NaCl. The plots display the radial functions up to l = 5 in the 1st
iteration and for the self consistent solution in iteration 20. The solutions to the
SRA to the radial Dirac equation are given in (a), while their energy derivatives
are shown in (b). The inset in (b) provides a detailed view on u̇ �

l (r � ; E
�
l ) for

l = 3 ; 4 ; 5.
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For SiC figures 4.29 and 4.30 display the changes of the radial functions for Si
and C, respectively. We remember (cf. figure 4.24) that for Si the spherical potential
shows nearly no changes over the iterations. Of course, this translates to nearly no
changes in the energy parameters, which are exposed to shifts between the first and
last iterations between 0: 0052 Htr and 0: 0087 Htr only, depending on the l channel.
As a consequence, the respective radial functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ) are also

nearly identical in these two iterations. For the C atom we observed a slight shift of
the spherical potential in the outer part of the MT sphere (cf. figure 4.25). For the
value of the potential on the MT boundary Vl=0 ; m=0 shifts by 0: 3892 Htr. Including
the spherical harmonic Yl=0 ; m=0 this is a shift of 0: 1098 Htr. However, the shifts in
the energy parameters of 0: 1138, 0: 1114, 0: 1098, and 0: 1098 Htr for l = 0; 1; 2 and
l � 3 largely compensate the shift of the spherical potential in the outer part of the
MT sphere. In consequence, we again observe nearly no changes between the ra-
dial functions of the first iteration and the respective functions of the self-consistent
solution.
The last material to be investigated in this context is NaCl. For this material fig-

ures 4.31 and 4.32 show the changes of the radial functions in Na and Cl, respectively.
We remark that due to the charge transfer in this material the spherical potential in
Na exhibits changes that especially manifest very near to the MT boundary. Includ-
ing the spherical harmonic Yl=0 ; m=0 the spherical potential at the MT boundary shifts
by 0: 0330 Htr. This shift translates into a corresponding shift in the energy param-
eters of 0: 0262, 0: 0294, 0: 0314, and 0: 0328 Htr for l = 0; 1; 2 and l � 3. Especially
for higher l this nearly completely compensates the shift of the potential in the outer
part of the MT sphere. We note however, that the charge transfer yields rather larger
deviations of the radial function u̇ �

l=1(r � ; E
�
l=1) between the first and last iterations. In

the MT sphere of Cl we observed a slight shift of the spherical potential which is of
the size of 0: 0127 Htr (including the Yl=0 ; m=0 factor) at the MT boundary. The energy
parameters, on the other hand, shift by 0: 0572, 0: 0463, 0: 0182, and 0: 0130 Htr for
l = 0; 1; 2 and l � 3. To understand these different shifts better, we remark that the
changes of the spherical potential slightly inside the MT sphere are much larger. For
example at r � = 2: 0 a0 we observe a shift of 0: 0410 Htr. Depending on the value of
the energy parameter and the l channel the shifts in the energy parameters are sensi-
tive to changes of the spherical potential in different regions. Lastly we note that the
changes of the radial functions in the Cl MT sphere are small. This is in agreement
to the other examples discussed here.
Beyond the very small changes of the radial functions, we observed for all materi-

als that the energy parameters for l = 3 cancel the changes of the spherical potential
in the outer part of the MT sphere with high precision. This is easily understandable.
For this l channel the angular momentum barrier, which is independent of the energy,
is already the dominant term determining the form of the radial function to a large
extent. Only in the outer parts of the MT sphere the angular momentum barrier be-
comes small enough such that the shape of the radial function is mainly determined
by the potential in this region. Beyond the MT sphere boundary the changes of the
value of the spherical potential at the MT boundary directly translates into a constant
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shift of the confining potential used to determine the energy parameters in the AEP
method. Putting these ingredients together we conclude that for high l channels the
changes of the radial functions are negligible. Iteration dependent variations of the
spherical potential in the outer part of the MT sphere are compensated by an associ-
ated shift in the energy parameters. Beyond this, the radial functions for high l are
mainly given by the angular momentum barrier.

4.2.3 Changes of the wave functions in the interstitial

region throughout the self-consistency loop

After investigating the changes of the basis functions in the MT spheres we turn to
the interstitial region. Here, the basis functions do not vary over the iterations. On
the other hand, the wave functions vary as the density and hence also the potential
change over the iterations. Here, we check to what extent the wave functions in the
interstitial region change over the iterations.

In detail, we determine for the three test materials to what extent a wave func-
tion obtained in the first iteration  �

k ; iter=1 already represents the corresponding wave
function obtained in a later iteration. For this we calculate the best representation of
the wave function  �

k ; iter=n in an iteration n by the associated wave function of the
first iteration,  �

k ; iter=1. This is done by projecting  �
k ; iter=n onto  �

k ; iter=1 with

˜ �
k ; iter=n =

j  �
k ; iter=1 i h  

�
k ; iter=1 j  

�
k ; iter=n i IR

h  �
k ; iter=1 j  

�
k ; iter=1 i IR

: (4.6)

Next, we define the iteration dependent representation error � �
k ; IR(iter) as the norm

of that part of  �
k ; iter=n that is orthogonal to ˜ �

k ; iter=n, in relation to the norm of
 �
k ; iter=n. This gives

� �
k ; IR(n) =

s
h ˜ �

k ; iter=n �  �
k ; iter=n j

˜ �
k ; iter=n �  �

k ; iter=n i IR

h  �
k ; iter=n j  

�
k ; iter=n i IR

: (4.7)

For each iteration, the IR representation errors of the lowest wave functions above
the core states for a representation in terms of the associated wave functions from
the first iteration are plotted in figures 4.33, 4.34, and 4.35 for Cu, SiC, and NaCl,
respectively.
For Cu we observe that, regardless of the concrete wave function within the set

of considered functions, more than 70% of a given wave function of the self consis-
tent solution can already be represented by the associated wave function in the first
iteration. For SiC and NaCl this ratio is even higher, while it reaches 75% for SiC,
NaCl exhibits only very small changes in the wave functions and we can describe at
least 92% of a given wave function in the last iteration by the associated wave func-
tion in the first iteration. We remark that similar results have also been found in an
investigation by E. Di Napoli [136].



4.2 General properties of the basis functions and the wave functions 121

xx
xxxx
xx

xx
xx

xx

xx
xx
xx
xxxxxx x x x x x x x x xxxxxxxx

xx
xx

xx
xx

xx
xx

xx

xx
xx
xx

xx x
x

x
x
x
x

x
x
x
x

x
x

x
x
x
x

x
x

x
x

xx
xx
xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx
xxxx

xxxx x x x x x x x x xxxxxxxx

xx
xx
xx

xx

xx
xx

xx
xx
xxxxxx x x x x x x x x xxxxxxxx

xx
xx

xx
xx

xx
xx

xx

xx
xx
xxxxxx x x x x x x x x xxxxxxxx

2 4 6 8 10 12 14 16 18 20
iteration

0

0.05

0.1

0.15

0.2

0.25

0.3

∆
ν k

,I
R

ψ
k

1
xxx

ψ
k

2

xx
xx

x
x

ψ
k

3
xxx

ψ
k

4

xx
xx

x
x

ψ
k

5
xxx

ψ
k

6

Figure 4.33.: Changes in the IR part of the wave functions throughout the iterations in fcc Cu.
The figure shows for the lowest wave functions above the core states the error
in the IR representation � �

k ; IR(n) of a wave function  �
k ; iter=n in iteration n by the

associated wave function in the first iteration  �
k ; iter=1.
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Figure 4.34.: Changes in the IR part of the wave functions throughout the iterations in zinc
blende SiC. The figure shows for the lowest wave functions above the core states
the error in the IR representation � �

k ; IR(n) of a wave function  �
k ; iter=n in iteration

n by the associated wave function in the first iteration  �
k ; iter=1.
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Figure 4.35.: Changes in the IR part of the wave functions throughout the iterations in rock
salt NaCl. The figure shows for the lowest wave functions above the core states
the error in the IR representation � �

k ; IR(n) of a wave function  �
k ; iter=n in iteration

n by the associated wave function in the first iteration  �
k ; iter=1. Note that  1

k ; to

 4
k ; are the interstitial parts of the 2s and 2p semicore states.
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The investigations in chapter 4.2.1 showed that the MT matching conditions of the
LAPW basis functions do not fit to those of the wave functions. Especially the LAPW
basis functions with large reciprocal lattice vectors contribute to lm channels that are
strongly suppressed in the wave functions. We assume that a more efficient conver-
gence with respect to the basis set size may be achieved if the basis functions were
better adapted to the properties of the wave functions in the periodic crystal lattice.
However, though the adaption to the crystal is the central idea of such a basis, we
abstract its name slightly from this term and denote it as a lattice-adapted basis. This
notion suits better to the already elaborate naming of the LAPW basis, which is the
fundament for the detailed formulation of the new concept. In this chapter we pro-
pose a linearized augmented lattice-adapted plane-wave basis (abbreviated as (LA)2PW
or LA2PW basis) in which the plane waves in the interstitial region are replaced by
smart linear combinations of plane waves that feature the desired properties.

Just like LAPWs, the new (LA)2PWs are based on the partitioning of space into
MT spheres, the interstitial region, and vacuum regions. This implies a setup of the
Hamilton and overlap matrices in analogy to the conventional FLAPW method. In
detail, the matrices are given as

Sk
ij = Sk ; IR

ij +
X

�

Sk ; �
ij +

X

vac

Sk ; vac
ij (5.1)

for the overlap matrix and

Hk
ij =Hk ; IR

ij +
X

�

Hk ; �
ij +

X

vac

Hk ; vac
ij (5.2)
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for the Hamilton matrix, where i and j denote the two (LA)2PW basis functions as-
sociated with a certain matrix element. We discuss the matrix contributions coming
from each region of space in detail and also present a recipe of how to deal with parts
of the calculation succeeding the diagonalization.
Overall, the chapter is organized as follows. In section 5.1 we define the analytic

form of the new basis and sketch first aspects of an efficient implementation. This
includes the precalculation of certain quantities. Next, we discuss the setup of the
Hamilton and overlap matrices in detail. In section 5.2 we discuss the contributions
coming from the interstitial region, in section 5.3 we then deal with the MT con-
tributions, and in section 5.4 we describe how to efficiently calculate the vacuum
contributions. Finally, we discuss in section 5.5 how to come back to an LAPW repre-
sentation of the eigenfunctions after solving the generalized eigenvalue problem and
how to construct the valence density.

5.1 Analytic form of the basis functions and
first implementation aspects

In an (LA)2PW basis the j-th basis function has the form

� kj(r) =

8
>>><
>>>:

1p



P

G

oGkje
i(k+G)r for r 2 IR

P

L

h
aL �
kj u

�
l (r � ; E

�
l ) + bL �

kj u̇
�
l (r � ; E

�
l )
i
YL(r̂α) for r 2 MT � ; (5.3)

where the oGkj are theNPW plane wave expansion coefficients of the j-th basis function

in the interstitial region. The radial functions in the MT spheres are not matched to
single plane waves in the IR, but to the linear combination of plane waves that defines
an (LA)2PW basis function. The associated matching coefficients are defined by the
corresponding linear combination of matching coefficients of LAPW basis functions
as

aL �
kj =

X

G

oGkja
L �
kG and bL �

kj =
X

G

oGkjb
L �
kG : (5.4)

However, the time requirements for the calculation of the matching coefficients in
this way scale with O((lmax+1)2NatomNbasNPW), where lmax is a representative for the
atom dependent l �max, Natom denotes the number of atoms, and Nbas is the number of
(LA)2PW basis functions. This is a cubic scaling with increasing system size and is
thus of the same time complexity as solving the generalized eigenvalue problem. To
avoid a significant impact on the calculation runtime due to the determination of the
matching coefficients, this scaling behavior has to be improved.
We can achieve such an improvement if we demand the oGkj coefficients to be inde-

pendent of the iteration of the self-consistency loop. In this case we can precompute
the L resolved MT matching conditions of the (LA)2PW basis functions in the run-up
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to a calculation as

oL �
kj =

4�
p



X

G

oGkj i
lei(k+G)τ � jl( j k+G j RMT � )Y �

L(
[k+G) (5.5)

together with the radial derivatives o 0 L �
kj = d

dr � o
L �
kj (r

� ) j r � =RMT �
and reuse them in ev-

ery iteration to calculate the matching coefficients by solving the system of linear
equations

aL �
kj u

�
l (RMT � ; E �

l ) + bL �
kj u̇

�
l (RMT � ; E �

l ) = oL �
kj ;

aL �
kj u

0 �
l (RMT � ; E �

l ) + bL �
kj u̇

0 �
l (RMT � ; E �

l ) = o 0 L �
kj : (5.6)

With this procedure the computational demands for calculating the matching coeffi-
cients in each iteration are reduced to a scaling behavior of O((lmax + 1)2NatomNbas).
For the precalculation step, however, the cubical scaling behavior is retained. Fur-
thermore, we obtain the better computational complexity at the cost of higher storage
requirements for the matching conditions oL �

kj and o 0 L �
kj that also scale with O((lmax +

1)2NatomNbas). Nevertheless, this tradeoff is well justified.
Extensions of the LAPW basis with local orbitals can also be applied to an (LA)2PW

basis. Thus, the handling of ghost states or the elimination of the linearization error
by LOs is also not a problem for an (LA)2PW basis.
For two- and one-dimensional materials the step from an LAPW to an (LA)2PW ba-

sis can be performed in an equivalent way. For example, for two-dimensional systems
the (LA)2PW generalization of the LAPW basis is

� k k j(r) =

8
>>>>>>>><
>>>>>>>>:

1p



P

G

oGkje
i(k k +G)r for r 2 IR

P

L

�
aL �
k k j

u �
l (r � ; E

�
l ) + bL �

k k j
u̇ �
l (r � ; E

�
l )
�
YL(r̂α) for r 2 MT �

P

G k

D
G k ; vac

k k j
(z; Evac) 1p

A
ei(k k +G k )r k for r 2 VRvac

(5.7)

with the decay function

D
G k ; vac

k k j
(z; Evac) = a

G k ; vac

k k j
uvac
k k G k

(z; Evac) + b
G k ; vac

k k j
u̇vac
k k G k

(z; Evac) : (5.8)

Similar to the calculation of the MT matching coefficients the determination of

the vacuum matching coefficients a
G k ; vac

k k j
and b

G k ; vac

k k j
is also a time-consuming task.

However, we can also overcome this problem in a similar way. We again only need
to precompute the (LA)2PW matching conditions at the vacuum boundaries. In de-
tail, we project the basis function values and their derivatives in z direction along
the interfaces to the vacuum regions onto the plane waves 1p

A
ei(k k +G k )r k to obtain

the matching conditions at the vacuum boundaries o
G k ; vac

kj and o
0 G k ; vac

kj . With these

precalculated values the computation of the vacuum matching coefficients can be
performed in O(NbasNPW2D), where NPW2D is the number of two-dimensional plane

waves, which scales with N 2 = 3
PW.
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5.2 Interstitial contributions to the overlap
and Hamilton matrices

The IR contributions to the overlap and Hamilton matrices are given by the integrals
over the interstitial region

Sk ; IR
ij =

D
� ki

��� � kj

E

IR
(5.9)

and
Hk ; IR

ij =
D
� ki

��� T̂ +V
��� � kj

E

IR
; (5.10)

where T̂ is the kinetic energy operator and V denotes the effective potential. In anal-
ogy to the calculation of the corresponding integrals for the LAPW basis, also these
integrals for the (LA)2PW basis are calculated by transforming them into integrals
over the whole unit cell. For this, we once again make use of the step function

� (r) =

(
1 for r 2 IR
0 for r 2 MT � (5.11)

to suppress contributions coming from the MT spheres. Of course, the step function
is analytically given in reciprocal space as

� (G) = � G ; 0 �

X

�

e � iGτ �
4� (RMT � )3




j1(GRMT � )

GRMT �
: (5.12)

Beyond using the step function to transform the integral we also replace the MT
augmentation of the (LA)2PWs by extending their IR parts into the spheres to obtain
the functions

˜� kj(r) =
1

p



X

G

oGkje
i(k+G)r : (5.13)

With these functions the contributions to the matrices become

Sk ; IR
ij =

D
˜� ki

��� �
��� ˜� kj

E



(5.14)

and
Hk ; IR

ij =
D
˜� ki

��� � T̂ + � V
��� ˜� kj

E



: (5.15)

Analytically exact values for these contributions are obtained if the plane wave ex-
pansion of both, the step function � and the combined function � V , feature cutoffs
at least twice as large as the cutoff for the plane wave expansion of the basis functions
Kmax.
In comparison to the corresponding matrix contributions for the LAPW basis, the

computation of the IR contributions for the (LA)2PW basis is computationally more
expensive as the basis functions are not single plane waves but linear combinations of
plane waves. Nevertheless, we find that they can be computed in a reasonable amount
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of time by performing the calculations partly in real space and partly in reciprocal
space. To do this, we first perform Fast Fourier Transformations on the functions
˜� kj(G), r 2 ˜� kj(G), � (G), and � V (G) to obtain them on a real space mesh that is fine
enough to represent � (r) and � V (r) exactly according to their limited plane wave
cutoffs.

In a second step we calculate the functions

�
[ � � ]
kj (r) = � (r) ˜� kj(r) ; (5.16)

�
[ � V � ]
kj (r) = � V (r) ˜� kj(r) ; (5.17)

and

�
[ � r 2 � ]
kj (r) = � (r) r 2 ˜� kj(r) (5.18)

on every point of the real space mesh and then transform these functions with an-
other Fast Fourier Transformation back to reciprocal space1.

With the reciprocal space representations of the functions �
[ � � ]
kj , �

[ � V � ]
kj , and �

[ � r 2 � ]
kj ,

the final computation of the matrix elements reduces to a simple sum over products.
In detail, one obtains the contributions to the overlap matrix as

Sk ; IR
ij =

D
˜� ki

��� �
��� ˜� kj

E




=
X

G

˜� ki(G) �
[ � � ]
kj (G) (5.19)

and a hermitian form of the contributions to the Hamilton matrix as

Hk ; IR
ij =

D
˜� ki

��� � T̂ + � V
��� ˜� kj

E




= �
1

4

X

G

�
[ � � ]
kj (G) r 2 ˜� ki(G) + ˜� ki(G) �

[ � r 2 � ]
kj (G)

+
X

G

˜� ki(G) �
[ � V � ]
kj (G) : (5.20)

The reason why this last step is performed in reciprocal space is that the sums only
cover those G vectors with j k+G j � Kmax. The real space mesh, on the other hand, is
constructed to represent much larger G vectors, such that it consists of 8 times more
grid points. In the calculation of these contributions only the runtime of the last
step scales cubically with the system size as O(N 2

basNPW), where Nbas is the number

of (LA)2PW basis functions. The time requirements of the other parts of the calcu-
lation have a more friendly scaling behavior and become less relevant when going to
materials with larger unit cells.

In a concluding remark, we sketch the computation of the IR contributions for the
example of the overlap matrix in figure 5.1. We also note that these contributions to

1Note that the factor eikr in the functions is excluded from the operations in real space.
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Reciprocal space Real space

φ̃kj(G), θ(G) φ̃kj(r), θ(r)

ξ
[θφ]
kj (r) = θ(r)φ̃kj(r)ξ

[θφ]
kj (G)

〈φki |φkj〉IR =
∑

G

φ̃ki(G)ξ
[θφ]
kj (G)

FFT

FFT

Figure 5.1.: Calculation of the IR contributions to the overlap matrix. We first perform a Fast
Fourier Transformation on φ̃kj and θ to obtain these functions on a real space

mesh. There, we calculate the product of the two functions, ξ
[θφ]
kj , and transform

it back to reciprocal space. Finally, the repective matrix element is obtained by a
simple sum of products in reciprocal space.

the overlap matrix and the kinetic energy contributions to the Hamilton matrix do
not depend on the respective iteration of the self-consistency cycle, such that they
can be precomputed, stored, and reused in every iteration. Though the time require-
ments for the computation of these contributions are limited, we find that such a
precomputation approach is indeed an improvement when it comes to the overall
runtime. For the example realization of the (LA)2PW basis in this work we go this
route. However, note that this comes at the prize of increased storage requirements
scaling with O(Nbas(Nbas +1)/2). Depending on the respective computer architecture
the alternative route of recalculating these contributions in every iteration may also
be reasonable.

5.3 Muffin-tin contributions to the overlap

and Hamilton matrices

Similarly to the discussion on the MT contributions in the case of the LAPW basis, we
split the discussion on the corresponding contributions for (LA)2PW basis functions

into the contributions to the overlap matrix Sk,α
ij , the Hamilton matrix contributions

originating from the kinetic energy operator and the spherical part of the poten-

tial H
k,α,sphr
ij , and the Hamilton matrix contributions due to the nonspherical part of

the potential H
k,α,nsphr
ij . Of course, the first two of these types of contributions are

strongly connected.

We start by discussing the contributions to the overlap matrix. Considering the
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form of the (LA)2PW basis functions in the MT spheres,

� �
kj(r) =

X

L

h
aL �
kj u

�
l (r � ; E

�
l ) + bL �

kj u̇
�
l (r � ; E

�
l )
i
YL(r̂α) ; (5.21)

and also the orthogonality relations between different spherical harmonics and be-
tween the radial functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ), we can write down the MT con-

tributions to the overlap matrix as

Sk ; �
ij =

D
� �
ki

���� �
�
kj

E

=
X

L

a � L �
ki aL �

kj + b � L �
ki bL �

kj

D
u̇ �
l

��� u̇ �
l

E

=
X

l

Sk ; � ; l
ij : (5.22)

After obtaining the matching coefficients with equation (5.6) we compute the contri-
butions to the overlap matrix directly with equation (5.22).

To calculate the spherical contributions to the Hamilton matrix we make use of the
fact that the radial functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ) are constructed to fulfill

Ĥ � ; sphr
j u �

l i = El j u
�
l i (5.23)

and
Ĥ � ; sphr

j u̇ �
l i +

˙̂H � ; sphr
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l i = El j u̇
�
l i + j u �

l i ; (5.24)

where we once again neglect the very small ˙̂H � ; sphr j u �
l i term. With these relations we

can write down the associated contributions to the Hamilton matrix as
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where we already averaged over the application of the Hamilton operator to the left
and to the right basis function to obtain a hermitian matrix.

In the calculation of the corresponding contributions to Sk ; �
GG 0 and H

k ; � ; sphr
GG 0 for

LAPW basis functions discussed in section 3.2.3.2, one can analytically perform the
summation over the m quantum number. As we have seen, this reduces the required
time to perform these calculations by a factor of about 10. Unfortunately this pro-
cedure is strongly bound to the interstitial representation of the LAPWs which are
simple plane waves. It cannot reasonably be translated to an equivalent elimination
of them summation in the case of (LA)2PWs. Thus, we end up with a scaling behavior
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for the required runtime to calculate these contributions of O
�
(lmax +1)2NatomN

2
bas

�
,

which is a cubic scaling with respect to the size of the unit cell.
The MT contributions to the Hamilton matrix due to the nonspherical part of the

effective potential are calculated in analogy to section 3.2.3.3 by first calculating the
integrals (cf. equation (3.61))

t
� [ � ][ � ]
LL 0 =

*
[ � ]
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l YL

����� Ĥ
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�����
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l YL 0

+

; (5.26)

where [ � ] and [ � ] either denote u or u̇, respectively. The Hamilton matrix contribu-

tions H
k ; � ; nsphr
ij then become
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For the LAPW basis this part of the matrix setup dominates the runtime of the overall
matrix setup. However, in comparison to the previously discussed MT contributions,
the LAPW basis has no advantages over the (LA)2PW basis in this case. Thus, an
efficient (LA)2PW basis profits directly from its smaller basis set size, as the runtime

for this part of the setup scales with O

�
(l
nsphr
max +1)2NatomN

2
bas

�
.

5.4 Vacuum contributions to the overlap
and Hamilton matrices

Similarly to the discussion on the vacuum contributions for the LAPW basis in sec-
tion 3.2.4, we split the contributions to the Hamilton matrix into a part originating

from the averaged effective potential H
k ; vac ; avg
ij and a part due to the deviations from

this averaged potential Hk ; vac ; dev
ij . We start, however, with the discussion on the con-

tributions to the overlap matrix.
In the vacuum regions the (LA)2PW basis functions have the form

� vac
k k j

(r) =
X

G k

�
a
G k ; vac

k k j
uvac
k k G k

(z; Evac) + b
G k ; vac

k k j
u̇vac
k k G k

(z; Evac)
�

1
p
A
ei(k k +G k )r k : (5.28)
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Considering the orthogonality relation between the different 2D plane waves in this
equation and the orthogonality relation between uvac

k k G k
(z; Evac) and u̇vac

k k G k
(z; Evac) we

can directly write down the contributions to the overlap matrix in analogy to equa-
tion (3.69) as

Sk ; vac
ij =

X

G k

� �
a
G k ; vac

k k i

� �
a
G k ; vac

k k j
+ h u̇vac

k k G k
j u̇vac

k k G k
i vac

�
b
G k ; vac

k k i

� �
b
G k ; vac

k k j

�
: (5.29)

The contributions due to the averaged effective potential and the kinetic energy
operator are obtained by making use of the relations
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In a hermitian form these contributions become
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Finally, in the calculation of the contributions to the Hamilton matrix due to the

deviations from the averaged potential we again make use of the t
vac[ � ][ � ]

k k G k G
0
k

coefficient

defined in equation (3.71). We end up with the expression
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By precalculating the factor
P

G 0
k
t
vac[ ][ ]

k k G k G
0
k

a
G 0

k
; vac

k k j
and its 3 associated terms in the other

summands for eachG k , the time requirements for the calculation of this matrix scale

with O(N 2
basNPW2D). Under the assumption of the proportionality NPW2D / N 2 = 3

PW this
scaling behavior is better than the cubical scaling required to solve the generalized
eigenvalue problem.
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5.5 Representation of the eigenfunctions
and construction of the valence density

In a typical FLAPW calculation most of the steps succeeding the diagonalization, per-
formed to solve the generalized eigenvalue problem, are not very time-consuming.
Thus, to simplify the integration of the (LA)2PW basis into an existing FLAPW code
it is desirable to use the existing FLAPW code for these parts of the calculation. How-
ever, after solving the generalized eigenvalue problem for the (LA)2PW overlap and
Hamilton matrices the eigenfunctions are given by linear combinations of (LA)2PWs
as

 �
k(r) =

X

j

z �kj � kj(r) ; (5.34)

where z �kj is the expansion coefficient of the � -th eigenfunction into the j-th (LA)2PW.

To come into a position where we can reuse the FLAPW code for the succeeding
calculation steps we have to transform this representation into the corresponding
LAPW form (cf. equation (3.76)).
One exception to this approach is the calculation of the MT matching coefficients

of the eigenfunctions (cf. equations (3.78) and (3.79)). The calculation of these coeffi-
cients is the most time consuming step after the diagonalization and its efficiency can
easily be increased by performing the calculation with the (LA)2PW representation
of the eigenfunctions. In detail, we calculate the matching coefficients directly with
the equations

AL �
k � =

X

j

z �kja
L �
kj (5.35)

and
BL �
k � =

X

j

z �kjb
L �
kj ; (5.36)

where the matching coefficients for the basis functions aL �
kj and bL �

kj are once again

calculated on the fly by solving the equation system (5.6).
For every other part of the self-consistency loop succeeding the diagonalization we

transform the representation of the eigenfunctions back into LAPW form. We realize
that such a transformation can be performed by only considering the interstitial part
of the basis functions as the space spanned by the (LA)2PW basis is a subspace of
the space spanned by the LAPW basis. Thus, projecting the eigenfunctions from
an (LA)2PW representation onto an LAPW representation does not yield any loss of
information but is pointwise exact. Obtaining this pointwise exact representation
in the interstitial region is enough since the matching conditions at the MT sphere
boundaries and the vacuum boundaries can be obtained from this representation,
such that pointwise exact representations are also implied for the other regions.
We start by replacing the (LA)2PWs by their interstitial parts extended over the

whole unit cell ˜� kj(r) (cf. equation (5.13)) and do the same for the LAPWs to obtain
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˜� kG(r). Also here the space spanned by the ˜� kj(r) is a subspace of the space spanned

by the plane waves ˜� kG(r).
For a given eigenfunction � the transformation is then given by
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where
�
S̃ � 1
k

�

GG′
is the inverse of the overlap matrix between different plane waves.

Due to the normalization of the plane waves with respect to the unit cell volume and
the orthogonality relations between the plane waves this is an identity matrix. As a
consequence the expression can be further simplified to
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which can be calculated for the eigenfunctions of all occupied states in a runtime
scaling with O(NLAPWNbasNocc). Finally, the expansion coefficients are plugged into
the LAPW representation to obtain

 �
k(r) =

X

G

z �kG � kG(r) : (5.39)

The succeeding calculation steps are then performed as sketched in chapter 3.
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The idea of an (LA)2PWbasis presented in the preceding chapter is decoupled from
the construction of the basis. Indeed, it is just a way of representing basis functions.
In the general form of the (LA)2PW basis functions,

� kj(r) =

8
>>><
>>>:

1p
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oGkje
i(k+G)r for r 2 IR
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L

h
aL �
kj u

�
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�
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kj u̇
�
l (r � ; E

�
l )
i
YL(r̂α) for r 2 MT � ; (6.1)

the plane wave expansion coefficients oGkj are not yet determined. Of course, one can

think of many different construction schemes for these coefficients. Here, we present
a scheme that features a high description efficiency of the basis functions such that
one obtains highly precise results with only very few basis functions and hence in a
fraction of the required runtime of equivalent FLAPW calculations.
For the construction of the oGkj coefficients we remark that we have already seen in

chapter 4.2.2 that the changes of the effective potential in the MT spheres throughout
the iterations of the self-consistency loop are very limited. As the MT spheres cover
a large part of the unit cell and most of the charge within the unit cell, this translates
to equivalently small changes of the overall wave functions in the whole unit cell.
Indeed, we have also seen in chapter 4.2.3 that most of the interstitial part of the wave
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functions of the self-consistent solution is already described by the associated wave
functions obtained in the first iteration on the basis of the starting density, which is a
superposition of atomic densities.

With this foundation we assume that the lowest eigenfunctions obtained in the first
iteration of the self-consistency loop of a conventional FLAPW calculation should
provide proper plane wave expansion coefficients for a highly efficient (LA)2PW ba-
sis. Thus, we perform a single FLAPW iteration on top of the starting density to
obtain eigenfunctions of the kind

 �
k(r) =

X

G

z �kG � kG(r) : (6.2)

For the other iterations of the self-consistency loop we use an (LA)2PW basis with
expansion coefficients

oGkj = z �kG ; (6.3)

where � = j.

This approach of a basis from early eigenfunctions (BEE) is partly also motivated
by a calculation scheme by Wu and Freeman [137] who repeatedly perform a sin-
gle FLAPW iteration followed by several iterations with a basis of FLAPW eigen-
functions. This scheme uses very tiny basis sets for the iterations with the FLAPW
eigenfunctions. The disadvantage of this approach is that each time a full FLAPW
calculation is performed, one observes a large change in the electron density, such
that considerably more iterations have to be performed to obtain a self consistent
solution. On the other side this approach has the advantage that the solution is iden-
tical to the solution of a conventional FLAPW calculation. We go a different way in
that we only perform a single conventional FLAPW iteration and then keep the plane
wave expansion coefficients fixed. Thus, we allow deviations from the FLAPW calcu-
lation results. Such an approach was also sketched by Wu, though he did not provide
any test results on such calculations. We add that we use larger basis sets than Wu
and the calculation speedup that we show in the following sections strongly relies on
the implementation of the matrix setup which in our case includes the precomputa-
tion and storage of certain quantities. Thus, it is connected to fixed oGkj which is a

condition that is not exploited in Wu’s approach.

We also find in practice that a hybrid approach, in which only half of the (LA)2PWs
is constructed from the first conventional FLAPW iteration and the other half are
conventional LAPWs with small wave vectors, is even more efficient than a basis that
is solely constructed from early eigenfunctions. In the following a BEE-(LA)2PW
basis with Nbas functions denotes such a hybrid basis consisting of Nbas = 2 basis func-
tions from the first FLAPW iteration and also Nbas = 2 LAPWs. The LAPWs in this
basis are dealt with like every other (LA)2PW, with the exception that several expres-
sions given in chapter 5 are simplified whenever an LAPW is involved. We exploit
such situations to further increase the efficiency. In detail, especially equations (5.19)
and (5.20) reduce to simple products when an LAPW is on the left hand side of the
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scalar product. Furthermore, to reduce the storage requirements we do not store the
plane wave expansion coefficients and MT matching coefficients for LAPWs.
In the following we analyze the BEE-(LA)2PW basis in detail. In section 6.1 we

evaluate the accuracy of the BEE-F(LA)2PW approach, before we investigate the ob-
tained speedup in section 6.2. Next, in order to further speed up the calculations we
develop and evaluate an approach to reduce the lmax requirements for the setup of
the matrices in section 6.3. Finally, we provide some concluding remarks on the new
basis in section 6.4.

6.1 Accuracy of the BEE-F(LA)2PW approach

To gain confidence in the description efficiency of the new BEE-(LA)2PW basis we
perform BEE-F(LA)2PW calculations on a couple of materials with strongly differing
properties and investigate quantities that are highly sensitive to the precision of the
calculation results. We especially concentrate on materials with different bonding
mechanisms. For this we perform calculations on the already known metallically
bonded fcc Cu, zinc blende SiC, and NaCl in rock-salt structure. Beyond these three
materials we also perform calculations on the magnetically ordered compound FeRh
in bcc B2 CsCl structure, where we especially observe the energy differences between
different magnetic configurations. Finally, to evaluate the BEE-(LA)2PW basis also
for a thin film system, we perform a similar investigation on a strained 5 layer CoPt3
film.
In F(LA)2PW calculations the basis set size is controlled by the parameter Nbas,

while the reciprocal plane wave cutoff Kmax, which controls the basis set size in the
case of an LAPW basis, is a cutoff that controls to what precision the (LA)2PW ba-
sis functions correspond to the idea of their construction principle. In this chapter
we compare BEE-F(LA)2PW to FLAPW calculations and vary both parameters, Nbas

and Kmax, to get experience in the efficiency of the BEE-(LA)2PW basis in contrast to
LAPWs. Note that for same Kmax parameters, FLAPW results are a precision limit
for F(LA)2PW calculations, since in such a case the (LA)2PW basis spans a subspace
of the space spanned by the LAPWs. Furthermore, in the limit of identical basis set
sizes for F(LA)2PW and FLAPW calculations with same Kmax parameters, one ends
up with identical results as the basis sets span the same space. Of course, an excep-
tion to this rule is the case in which one of function sets becomes linearly dependent.
Besides these theoretical considerations we claim that the construction principle of
the BEE-(LA)2PW basis yields calculation results that come very near to FLAPW re-
sults, even for very small Nbas parameters.

To demonstrate this property of the BEE-F(LA)2PW approach we determine for Cu,
SiC, and NaCl the number of basis functions Nbas required to obtain total energies
that differ by less than 25 � Htr per atom ( � 0: 68 meV/atom or 0: 016 kcal/mol1) from

1In this context the unit mole quantifies the number of atoms, not the number of formular units and
also not the number of unit cells.
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Table 6.1.: Calculational parameters for the evaluation of the BEE-(LA)2PW basis. First, the
table lists for each of the five investigated materials the XC functional, the crystal
structure, the lattice constant, and the number of atoms in the unit cell. Next it

shows the used MT radii, l �max, l
� ; nsphr
max , the number of k points in the IBZ, and the

semicore states that are described with additional LOs in the valence framework.
The table neither lists Kmax nor Nbas as these parameters will be varied in the
calculations.

parameter Cu SiC NaCl FeRh CoPt3
(Si, C) (Na, Cl) (Fe,Rh) (Co,Pt)

XC functional PBE-GGA PBE-GGA PBE-GGA PBE-GGA PBE-GGA
crystal structure fcc zinc blende rock-salt CsCl
lattice constant (a0)

2 6 : 831 8 : 238 10 : 620 5 : 66 a = 7 : 68, c = 22 : 8
atoms / unit cell 1 2 2 8 10

RMT (a0) 2 : 35 2 : 22, 1 : 25 2 : 52, 2 : 52 2 : 38, 2 : 38 2 : 4, 2 : 4
l �max 8 10, 8 8, 8 8, 8 10, 10

l
� ; nsphr
max 6 6, 4 6, 6 6, 6 8, 8
k points in IBZ 182 220 28 385 561
semicore LOs 2s,2p (Na) 4p (Rh) 5s (Pt)

the corresponding FLAPW result with same Kmax and relate the respective basis set
sizes to each other. Furthermore we repeat these calculations for different Kmax to
put the additional error due to the limited Nbas convergence in the case of the BEE-
(LA)2PW basis in context to typically accepted imprecisions due to the also limited
Kmax convergence in the corresponding FLAPW calculations.

The standard configuration of the materials taken under scrutiny is shown in ta-
ble 6.1. Unless otherwise stated the calculations are performed with these parame-
ters. Note that in this configuration the calculations are highly converged with re-
spect to l �max and on the other hand for Cu, SiC, and NaCl they are slightly under-

converged with respect to l
� ; nsphr
max . As the setup of the spherical contributions to the

matrices is more expensive for (LA)2PWs than it is for conventional LAPWs, such a
parametrization is a slight disadvantage for the BEE-(LA)2PW basis. We consciously
accept this disadvantage to avoid an overestimation of the speedup obtained with the
BEE-(LA)2PW basis.

Beyond the calculations on the total energy we also perform calculations on exper-
imentally accessible quantities and compare the precision obtainable with different
Nbas and Kmax parameters for BEE-F(LA)2PW and FLAPW calculations. In detail, we
consider the calculation of equilibrium lattice constants and bulk moduli. The ap-
plied Nbas parameters are obtained through two different criteria. The first criterion
is the already calculated number of basis functions required to obtain a precision of
the total energy corresponding to a deviation from the FLAPW result of less than

2The experimental lattice constants for Cu, SiC, and NaCl were taken from [133], [134], and [135],
respectively.
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25 � Htr per atom. The other criterion considers for each atom in the unit cell the
maximal l quantum number l �phys in the occupied states of the associated isolated

atom. In analogy to typical basis set sizes of basis sets with numerically determined
atomic orbitals we then use a basis set with two basis functions per (l ; m) channel up
to l �phys +1 to end up with a basis set size of Nbas = 2

P
� (l

�
phys +2)2.

Depending on the respective material we extend the set of observed quantities with
further tests, which are sensitive to small imprecisions in calculation results.

6.1.1 Metallic test system: fcc and hcp Cu

Figure 6.1 displays the results of the total energy calculations on fcc Cu. Depending
on the Kmax cutoff we obtain different LAPW basis set sizes. Averaged over the num-
ber of k points we obtain 58 LAPWs for Kmax = 3: 5 a � 10 , 86 for Kmax = 4: 0 a � 10 , 123
for Kmax = 4: 5 a � 10 , and 168 for the reference result with Kmax = 5: 0 a � 10 . For the BEE-
F(LA)2PW approach the figure clearly shows that even for very small Nbas cutoffs the
calculations reproduce the respective FLAPW results with very high precision. In-
dependent of the Kmax parameter the criterion of less than 25 � Htr = atom deviation
from the FLAPW results is met for BEE-(LA)2PW basis set sizes with Nbas � 20. For
Kmax = 4: 0 a � 10 or less this is an additional error of less than 6 % of the error due to
the incomplete Kmax convergence. This means that even for small Nbas parameters
the error is mainly controlled by Kmax. This is an important fact that will help us to
put the measurements on the obtained speedup below into context. Finally, we note
that the angular momentum criterion for the determination of the basis set size cor-
responds toNbas = 32. For such a basis set the deviation of the BEE-F(LA)2PW results
from the FLAPW results is less than 5 � Htr = atom.
In table 6.2 we show results for the equilibrium lattice constant and bulk modulus

of fcc Cu, both obtained throughMurnaghan fits to sets of 11 total energy calculations
for different test lattice constants. The table also shows calculations on the binding
energy difference between fcc and hcp Cu, which is very small since both structures
only differ by the stacking of the second nearest neighbor atoms. Thus, it is a highly
sensitive test on the precision of the different basis sets. In the table we consider BEE-
LA2PW basis sets of 20 (BEE-LA2PW-20) and 32 (BEE-LA2PW-32) basis functions per
atom, according to the two mentioned basis set size criteria.

Independent of the concrete basis, the BEE-FLA2PW results for the equilibrium
lattice constant reproduce the corresponding FLAPW results with a deviation of less
than 0: 003 %. In contrast to these very small deviations, the FLAPW results with
Kmax = 3: 5 a � 10 differ by 0: 166 % from the results with Kmax = 4: 5 a � 10 . With a Kmax

of 4: 0 a � 10 this deviation from the most precise result is still 0: 054 %. Nevertheless,
we consider the FLAPW result with Kmax = 4: 0 a � 10 to be converged. A similar picture
can be observed for the bulk modulus. While the deviations of less than 0: 69 GPa
(0 : 07 GPa) between the BEE-FLA2PW-20(32) results and the corresponding FLAPW
results are tiny, the different values of Kmax make a larger difference. With respect
to the best FLAPW result with Kmax = 4: 5 a � 10 we observe a deviation of 3: 42 GPa
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Figure 6.1.: Total energy calculations on fcc Cu. For each evaluated Kmax the results obtained
with different BEE-(LA)2PW basis sets are shown by open symbols connected by
solid lines. The associated results for the conventional LAPWbasis sets are shown
as horizontal dashed lines to which the BEE-F(LA)2PW results converge with in-
creasing number of basis functions Nbas. For each dashed line the figure also
shows the k point averaged number of LAPW basis functions corresponding to
the respective Kmax. The total energies are given relative to the result obtained by
the conventional FLAPW calculation with Kmax = 5 : 0 a−10 . For Nbas ≥ 20 the addi-
tional error introduced by the BEE-LA2PW approach is less than 25 � Htr = atom.

for Kmax = 3: 5 a−10 and 1: 16 GPa for Kmax = 4: 0 a−10 . Again, we consider the result
with Kmax = 4: 0 a−10 to be converged. Finally, we discuss the precision of the binding
energy difference between fcc and hcp Cu, where the fcc configuration is energetically
more favorable. Again, we observe that the BEE-FLA2PW results nearly stick to their
FLAPW counterparts, with deviations of maximally 0: 03 meV. On the other hand,
the FLAPW results for different Kmax, feature deviations up to 0: 38 meV, which is an
order of magnitude larger.
We also demonstrate the capability of the BEE-F(LA)2PW approach to obtain accu-

rate energies of the lowest unoccupied bands. For this, we compare the band struc-
ture calculated with the BEE-(LA)2PW-20 basis to the one calculated with the con-
ventional LAPW basis in figure 6.2. We observe that for energies up to about 30 eV
above the Fermi level EF the two band structures lie on top of each other. Beyond this
energy, deviations between the two band structures can be observed. We note that
the number of bands that can accurately be reproduced by the BEE-(LA)2PW-20 ba-
sis corresponds to the 10 BEE-constructed basis functions within this basis set. This
is a typical feature of BEE-F(LA)2PW band structures that also implies that the num-
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Table 6.2.: Convergence of physical quantities of fcc Cu. The number X in PW-X indicates
the number of basis functions per atom in the respective basis set. BEE-(LA)2PW-
20(32) denotes the basis set determined according to the 25 � Htr = atom (angular
momentum) criterion.

basis lattice bulk binding energy
set constant modulus difference to hcp Cu

a = aexp GPa meV/atom

Kmax = 3: 5 a−10
LAPW-58 1.00316 143.55 8.73

BEE-(LA)2PW-20 1.00314 143.51 8.71

BEE-(LA)2PW-32 1.00316 143.55 8.73

Kmax = 4: 0 a−10
LAPW-86 1.00428 141.29 8.42

BEE-(LA)2PW-20 1.00425 141.41 8.39

BEE-(LA)2PW-32 1.00427 141.36 8.42

Kmax = 4: 5 a−10
LAPW-123 1.00483 140.13 8.35

BEE-(LA)2PW-20 1.00483 140.82 8.38

BEE-(LA)2PW-32 1.00483 140.20 8.33
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Figure 6.2.: Comparison of Cu band structures obtained with the conventional LAPW basis
and the BEE-(LA)2PW-20 basis, respectively. Both calculations use a reciprocal
plane wave cutoff of Kmax = 4 : 0 a−10 .
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ber of accurately reproduced bands can systematically be converged. Note however
that the calculation of precise band energies far above the Fermi energy, also requires
the extension of the basis with adequate LOs in the MT spheres. This was not done
for the here presented comparison.

6.1.2 Covalent test system: Zinc blende SiC

The second test system is zinc blende SiC. The covalent bonds in this material are
spatially directed and develop during the self-consistency cycle. This implies the
development of inhomogeneities in the interstitial charge density and the potential.
Thus, it is questionable if the eigenstates from the first iteration are adequate to de-
scribe every important property of the self consistent solution.

For a first estimation of the BEE-(LA)2PW description efficiency for this material
we show the results of total energy calculations with the BEE-F(LA)2PW approach
in comparison to the FLAPW method in figure 6.3. Depending on the Kmax pa-
rameter, the FLAPW calculations use LAPW basis sets of 108 (Kmax = 4 : 5 a � 10 ), 148
(Kmax = 5: 0 a � 10 ), 196 (Kmax = 5: 5 a � 10 ), or 255 (Kmax = 6: 0 a � 10 ) basis functions per
atom, averaged over all k points. Similar to the picture observed for Cu, we find that
even with very small Nbas parameters the BEE-F(LA)2PW approach reproduces the
corresponding FLAPW result with high precision. Independent of the Kmax parame-
ter as few as 48 basis functions (24 basis functions per atom) are enough to meet the
convergence criterion of less than 25 � Htr = atom deviation from the FLAPW result.
With the angular momentum criterion one obtains a basis set of 36 functions (18
functions per atom). The deviations from the FLAPW results with this smaller basis
are still limited to 85 � Htr = atom. By relating the additional error due to the usage a
BEE-(LA)2PW basis to the error due the limited Kmax convergence, we find that also
for this material the remaining error is mainly controlled by Kmax.

Table 6.3 shows the results of the calculations on the equilibrium lattice constant
and the bulk modulus for this material. For the lattice constant the BEE-F(LA)2PW
results deviate by no more than 0: 002 % from their FLAPW counterparts, indepen-
dent of the concrete BEE-(LA)2PW basis set size. On the other hand, the deviations
between FLAPW calculations with different Kmax cutoffs are much larger. Here, the
deviation between the largest and the smallest calculated equilibrium lattice constant
is of the order of 0: 109 %. For the bulk modulus the maximal deviations between the
BEE-F(LA)2PW results and their respective FLAPW counterparts are 0: 15 GPa. The
different Kmax cutoffs make a larger difference. By increasing this value we observe
oscillations of the calculated bulk modulus with deviations of more than 2 GPa be-
tween consecutive results. Obviously this quantity is not yet completely converged
with respect to Kmax.

Finally, we also compare the band structure obtained with the BEE-F(LA)2PW ap-
proach to the one obtained by an FLAPW calculation. Figure 6.4 shows that these
two band structures lie on top of each other up to energies of more than 40 eV above
the Fermi level EF. Again, the number of accurate eigenenergies corresponds to the
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Figure 6.3.: Total energy calculations on SiC in zinc blende structure with 2 atoms in the
unit cell. The total energies are given relative to the result from a conventional
FLAPW calculation with Kmax = 6 : 0 a−10 . For Nbas ≥ 48 the additional error due

to the BEE-(LA)2PW approach is less than 25 � Htr = atom. For explanations of
symbols and lines, see caption of Fig. 6.1.

Table 6.3.: Convergence of physical quantities of SiC. BEE-(LA)2PW-24(18) is a basis set de-
termined according to the 25 � Htr = atom (angular momentum) criterion. For more
details see Table 6.2.

basis set basis set lattice bulk
cutoff type kind constant modulus

a = aexp GPa

LAPW-108 1.00811 215.07

Kmax = 4: 5 a−10 BEE-(LA)2PW-18 1.00813 215.03

BEE-(LA)2PW-24 1.00811 215.09
LAPW-148 1.00706 217.75

Kmax = 5: 0 a−10 BEE-(LA)2PW-18 1.00707 217.62

BEE-(LA)2PW-24 1.00706 217.73
LAPW-196 1.00701 215.69

Kmax = 5: 5 a−10 BEE-(LA)2PW-18 1.00700 215.83

BEE-(LA)2PW-24 1.00699 215.84
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Figure 6.4.: Comparison of SiC band structures obtained with the conventional LAPW basis
and the BEE-(LA)2PW-24 basis, respectively. Both calculations use a reciprocal
plane wave cutoff of Kmax = 5 : 5 a−10 .

number Nbas = 2 of BEE-(LA)2PW basis functions constructed by the BEE principle.
Above the lowest Nbas = 2 wave functions deviations between the two band structures
can be significant. We especially observe that the BEE-F(LA)2PW band structure ex-
hibits discontinuities far above the Fermi level. This is due to the asymmetric cutoff
for the Nbas = 2 basis functions that are actually LAPWs. By using a symmetric recip-
rocal cutoff parameter for these basis functions these artifacts of the BEE-F(LA)2PW
band structure can be eliminated.

6.1.3 Ionic test system: Rock-salt NaCl

The third material under inspection is NaCl in rock-salt structure. As it is typical for
ionically bonded materials, one can observe a charge transfer in this material taking
place in the first iterations of the self-consistency cycle. This implies a challenge for
the BEE-F(LA)2PW approach as the BEE-(LA)2PW basis is constructed in the very
first iteration, based on a setup with a superposition of atomic densities. Again it is
not clear if such a basis is adequate to describe the Kohn-Sham wave functions of the
self-consistent solution.
The results of the total-energy calculations on this material are shown in figure 6.5.

Averaged over the k points, the FLAPW calculations use LAPW basis sets of 69
(Kmax = 3: 0 a−10 ), 108 (Kmax = 3: 5 a−10 ), 162 (Kmax = 4: 0 a−10 ), or 231 (Kmax = 4: 5 a−10 )
basis functions per atom. The energies obtained with the FLAPW calculations are re-
produced to within 25 � Htr = atom by the corresponding BEE-F(LA)2PW calculations
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Figure 6.5.: Total energy calculations on NaCl in rock salt structure with 2 atoms in the
unit cell. The total energies are given relative to the result from a conventional
FLAPW calculation with Kmax = 4 : 5 a−10 . For Nbas ≥ 44 the additional error due

to the BEE-(LA)2PW approach is less than 25 � Htr = atom. For explanations of
symbols and lines, see caption of Fig. 6.1.

with at least 44 basis functions (22 basis functions per atom). With the angular mo-
mentum criterion one ends up with a BEE-(LA)2PW basis set size of 30 functions3.
Such a small BEE-(LA)2PW basis set still yields an agreement to the FLAPW results
with deviations of less than 58 � Htr = atom, independent of Kmax. However, beyond
this very good agreement between the BEE-F(LA)2PW and FLAPW total energies, we
note that the LAPW basis already offers a very efficient description of this material,
so that in this case the benefits of using a BEE-(LA)2PW basis are limited.

Beyond the charge transfer, NaCl has another property that imposes a challenge on
the BEE-F(LA)2PW approach. This is its very small bulk modulus, which, according
to the most precise FLAPW result in table 6.4, is only 23 : 6 GPa. Due to this property
the determination of the lattice constant is highly sensitive to any deviations in the
calculated total energies. This is visible in the results obtained for the equilibrium
lattice constant in table 6.4. We find that the deviations of the BEE-F(LA)2PW re-
sults from the FLAPW results are an order of magnitude larger than observed for the
previously discussed materials. In detail, the BEE-(LA)2PW-22 basis yields a maxi-
mal deviation of 0: 030 % from the FLAPW results, while the BEE-(LA)2PW-15 basis
increases this value to 0: 049 %. On the other hand, the maximal deviation between

3The 30 basis functions are 4 basis functions for the semicore states in Na, 8 basis functions for the
lphys of Na, and 18 basis functions for the lphys of Cl.
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Table 6.4.: Convergence of physical quantities of NaCl. BEE-(LA)2PW-22(15) is a basis set
determined according to the 25 � Htr = atom (angular momentum) criterion. For
more details see Table 6.2.

basis set basis set lattice bulk
cutoff type kind constant modulus

a = aexp GPa

LAPW-69 1.01439 24.06

Kmax = 3: 0 a−10 BEE-(LA)2PW-15 1.01396 24.26

BEE-(LA)2PW-22 1.01424 24.13
LAPW-108 1.01488 23.74

Kmax = 3: 5 a−10 BEE-(LA)2PW-15 1.01439 23.95

BEE-(LA)2PW-22 1.01458 23.92
LAPW-162 1.01488 23.60

Kmax = 4: 0 a−10 BEE-(LA)2PW-15 1.01438 23.81

BEE-(LA)2PW-22 1.01465 23.70
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Figure 6.6.: Comparison of NaCl band structures obtained with the conventional LAPW basis
and the BEE-(LA)2PW-22 basis, respectively. Both calculations use a reciprocal
plane wave cutoff of Kmax = 3 : 5 a−10 .
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the different FLAPW results is less than 0: 048 %. Thus, in this case the additional
error due to the usage of the BEE-(LA)2PW basis is not orders of magnitude smaller
than the error due to the limited Kmax convergence. The results for the bulk modulus
are slightly more in advantage of the BEE-F(LA)2PW approach. Here, the maximal
deviation from the corresponding FLAPW results for the BEE-(LA)2PW-15 basis is
0: 21 GPa and for the BEE-(LA)2PW-22 basis it is only 0: 18 GPa. The FLAPW calcula-
tions, on the other hand, deviate by maximally 0: 46 GPa. We conclude that although
the additional errors due to the usage of the BEE-F(LA)2PW approach are larger, even
for this challenging material the method still yields highly precise results with very
small basis set sizes.

Finally, we compare the band structures obtained with the BEE-F(LA)2PW and
FLAPW methods in figure 6.6. For both calculations we use a Kmax of 3: 5 a � 10 . Fur-
thermore we use the BEE-(LA)2PW-22 basis. The picture looks similar in comparison
to the previously discussed band structures. Up to an energy of about 25 eV above
the Fermi level the two band structures lie on top of each other. Above this energy we
observe considerable deviations between both band structures. The number of bands
that are accurately represented by the BEE-(LA)2PW basis once again coincides with
the number of basis functions that are constructed by the BEE principle.

6.1.4 Magnetic test system: Magnetically ordered

compound FeRh in CsCl structure

We test the capability of the BEE-F(LA)2PW approach to describe magnetic materi-
als on the example of FeRh, which crystallizes in the bcc B2 CsCl structure with two
atoms in the unit cell. Depending on the lattice constant, the ground state of this
material exhibits different magnetic configurations [138]. We choose a lattice con-
stant of alat = 5: 66 a0. However, to compare the different magnetic configurations of

the material we employ a larger tetragonal unit cell with a =
p
2alat and c = 2 � alat

comprising 8 atoms. As sketched in figure 6.7, the structure of the material in this
unit cell can be seen as alternating layers of Fe and Rh atoms in c-direction. The Fe
layers are found at z = 0: 0 c, at z = 0: 5 c, and at z = 1: 0 c. Each of these layers consists
of an atom at each edge of the unit cell along the c-direction and another atom in the
center. The Rh layers, on the other hand, are located at z = 0: 25 c and at z = 0: 75 c.
Here, atoms are found in the centers of each unit cell face.

For the chosen lattice constant FeRh possesses an antiferromagnetic ground state
AFM2 in which the Fe layers couple antiferromagnetically and within each of these
layers one finds a checkerboard arrangement of the magnetic up and downmoments.
What makes FeRh an interesting test system is the fact that two other magnetic con-
figurations (cf. figure 6.7), the ferromagnetic configuration FM and another antifer-
romagnetic configuration AFM1 with ferromagnetic layers of Fe atoms that couple
antiferromagnetically, exhibit total energies in the close vicinity to the ground state.
We analyze to what extend the BEE-F(LA)2PW approach is capable to precisely re-
produce the energy differences between these different magnetic configurations with
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Figure 6.7.: Structure and magnetic configurations of FeRh. From left to right: ferromag-
netic FM configuration, antiferromagnetic configuration AFM1, antiferromag-
netic configuration AFM2. The arrows denote the magnetic moments at the re-
spective atoms.

respect to the results obtained from corresponding FLAPW calculations.

Figure 6.8 shows for different Kmax the energy differences between the different
magnetic configurations as obtained with different BEE-(LA)2PW basis sets in com-
parison to FLAPW results. Averaging over the k points the LAPW basis sets consist
of 480, 671, and 906 basis functions for a Kmax of 3: 4 a−10 , 3: 8 a−10 , and 4: 2 a−10 , respec-
tively. The considered BEE-(LA)2PW basis sets with 128 to 288 basis functions are
much smaller. We observe that for the smaller energy difference between the FM and
AFM1 configurations BEE-(LA)2PW basis sets with at least 160 basis functions are
already enough to reproduce the respective FLAPW results with a deviation of about
0: 1 meV. Considering 8 atoms in the unit cell, such a basis set of 160 functions con-
sists of 10 BEE functions and 10 conventional LAPWs per atom. When we compare
the deviations of the BEE-F(LA)2PW from the FLAPW results we find that the error
due to the limited Kmax convergence dominates for Kmax = 3: 4 a−10 . For Kmax = 3: 8 a−10
this error source is still larger than the additional error due to the BEE-F(LA)2PW
approach, though we consider the associated result to be converged. For the larger
energy difference between the FM and AFM2 configurations we observe a similar pic-
ture. Here, each considered BEE-(LA)2PW basis set deviates by no more than about
0: 2 meV from the corresponding FLAPW result. On the other hand, the differences
between the different FLAPW calculations are larger.

We also observe that a convergence beyond these already very small deviations
between the BEE-F(LA)2PW approach with small basis sets and the FLAPW results
to an even higher agreement between the two approaches is very slow. Although
we know that for equal basis set sizes we obtain identical results, the calculations
show that one indeed has to use basis set sizes that come near to this limit if the last
0: 1 meV or 0: 2 meV deviations have to be eliminated. The reason for this problematic
convergence behavior probably is a difference in the demands on the basis set in the
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Figure 6.8.: Energy differences between different magnetic configurations of FeRh. The upper
graph demonstrates the agreement between conventional FLAPW calculations
and the BEE-F(LA)2PW approach for the energy difference between the FM and
the AFM1 configurations. The lower graph draws a similar picture for the differ-
ence between the FM and AFM2 configurations. For explanations of symbols and
lines, see caption of Fig. 6.1. For the different Kmax the k point averaged number
of LAPWs in the FLAPW calculations is 480 (Kmax = 3 : 4 a−10 ), 671 (Kmax = 3 : 8 a−10 ),
and 906 (Kmax = 4 : 2 a−10 ), respectively.



150 A basis from early eigenfunctions

Table 6.5.:Magnetic moments of FeRh in the three configurations FM, AFM1, and AFM2. The
given values are the moments inside the MT spheres associated with the respective
atoms.

basis mag. moments mag. moments mag. moments
set (FM) Fe / Rh (AFM1) Fe / Rh (AFM2) Fe / Rh

� B � B � B
Kmax = 3: 4 a � 10
LAPW-60 3.2092 / 1.0561 � 3.1815 / 0.0000 � 3.1602 / 0.0000

BEE-(LA)2PW-24 3.2089 / 1.0547 � 3.1807 / 0.0001 � 3.1595 / 0.0000

Kmax = 3: 8 a � 10
LAPW-84 3.2149 / 1.0582 � 3.1884 / 0.0000 � 3.1671 / 0.0000

BEE-(LA)2PW-24 3.2147 / 1.0567 � 3.1875 / 0.0001 � 3.1662 / 0.0001

Kmax = 4: 2 a � 10
LAPW-113 3.2166 / 1.0587 � 3.1903 / 0.0000 � 3.1689 / 0.0000

BEE-(LA)2PW-24 3.2164 / 1.0572 � 3.1894 / 0.0001 � 3.1680 / 0.0001

two spin channels. It may be the case that one of the spin channels possesses an
occupied state that has very high demands on the description flexibility of the basis
set, while the other spin channel does not feature such a state. The construction of
the BEE-(LA)2PW basis does not adapt to such situations by considering different
basis set sizes for the spin-up and spin-down channels. Instead, the basis set size for
both spin channels is equal. Another aspect may be the changes of the wave functions
during the iterations of the self-consistency cycle. These can by different for the two
spin channels, which also implies a slight asymmetry in the description capabilities
of the BEE-(LA)2PW basis for such a material. Besides these balancing issues for
the BEE-(LA)2PW basis, we note that similar aspects can also yield an equivalent
asymmetry in the description by the LAPW basis. We also remark that with respect
to the corresponding FLAPW result, the deviations of the BEE-F(LA)2PW calculations
are limited to the deviations between the total energy results. Here, we saw that we
obtain a rapid convergence with respect to the BEE-(LA)2PW basis set size. In units
of meV the 25 � Htr = atom criterion, that we considered in previous calculations, is a
deviation of 0: 68 meV = atom.

Another quantity that is appropriate to evaluate the precision of the BEE-F(LA)2PW
calculations are the magnetic moments inside the MT spheres in each of the mag-
netic configurations. Table 6.5 lists these moments as they are obtained by the differ-
ent FLAPW calculations and the corresponding values obtained with the arbitrarily
chosen BEE-(LA)2PW-24 basis (Nbas = 192). With respect to the best results with
Kmax = 4: 2 a � 10 the other FLAPW calculations deviate by maximally 0: 0088 � B for
Kmax = 3: 4 a � 10 and 0: 0019 � B for Kmax = 3: 8 a � 10 . In comparison to this, the maximal
deviation with the BEE-(LA)2PW-24 basis from the corresponding FLAPW results is
with 0: 0015 � B smaller. Thus, again the BEE-F(LA)2PW results stick to their FLAPW
counterparts and we can reasonably reduce the number of basis functions by a large
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Figure 6.9.: CoPt3 unit cell. The unit cell is periodically repeated in x and y direction. The
5 layers are marked in green for layers with only Pt atoms and red for layers
with both, Co and Pt atoms. The blue planes mark the boundaries to the vacuum
regions.

amount by switching from the FLAPW to the BEE-F(LA)2PW method.

6.1.5 Thin film test system: 5 layers of strained CoPt3
The last material to be taken under scrutiny is an unsupported but laterally strained 5
layer CoPt3 film. Thismaterial is a promising candidate formultiferroics applications
since it features an out of plane magnetization that strongly depends on structural
properties like strain and film thickness [139]. For the calculations performed in this
work we consider an in plane strain such that the lattice constant fits to a BaTiO3

substrate. Under these preconditions the atom positions are optimized to minimize
the total energy.
With these structural properties FLAPW calculations predict a ground state with

an antiferromagnetic coupling (AFM) between the two Co atoms in the unit cell. On
the other hand, with respect to the total energy the ferromagnetic configuration (FM)
is very close to this ground state. We evaluate to what precision the BEE-F(LA)2PW
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Figure 6.10.: Total energy difference between the FM and AFM configurations of the 5 layer
CoPt3 film per atom. For explanations of symbols and lines, see caption of
Fig. 6.1.

approach reproduces this very small energy difference.

Figure 6.9 shows the tetragonal 10 atom unit cell with a = 7: 68 a0 and c = 22 : 8 a0.
In this unit cell the vacuum boundary is located at zvac = ± 9: 6a0. The positions of the
Co atoms are (0; 0; ± 3: 66a0) and the Pt atoms are located at (a = 2; a = 2; ± g), (a = 2; 0; 0),
(0; −a = 2; 0), (a = 2; 0; ± h), and (0; −a = 2; ± h) with g = 3: 47 a0, and h = 6: 89 a0.

We plot the energy difference between the AFM and FM configurations as obtained
with different BEE-(LA)2PW basis sets and LAPW basis sets with different Kmax cut-
offs in figure 6.10. Averaged over the k points the different FLAPW calculations
use LAPW basis sets of 745, 1061, and 1455 basis functions for a Kmax of 3: 2 a−10 ,
3: 6 a−10 , and 4: 0 a−10 , respectively. For BEE-(LA)2PW basis set sizes of Nbas ≥ 240 the
energy difference between the FM and AFM configuration is reproduced by the BEE-
F(LA)2PW approach with a precision of 0: 2meV= atom. For basis set sizes with at least
320 basis functions this maximal deviation is reduced to 0: 1meV= atom. We note how-
ever that the FM-AFM energy difference is already well converged for Kmax = 3: 6 a−10 ,
such that the additional error due to the very small BEE-(LA)2PW basis set dominates
the imprecision in this case. For the smaller Kmax of 3: 2 a−10 the opposite is the case.

We also investigate the magnetic moments in the Co MT spheres in both magnetic
configurations. Table 6.6 shows the values for the FLAPW calculations and for BEE-
F(LA)2PW calculations with arbitrarily chosen basis set sizes of 28 and 36 functions
per atom. In the case of the FLAPW calculations we observe maximal deviations of
0: 0214 � B (0: 0046 � B) for Kmax = 3: 2 a−10 (Kmax = 3: 6 a−10 ) with respect to the best
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Table 6.6.:Magnetic moments within the Co MT spheres in the FM and AFM configurations
of the CoPt3 film.

basis mag. moments mag. moments
set (FM) Co (AFM) Co

� B � B
Kmax = 3: 2a � 10
LAPW-75 2.1822 � 2.1629

BEE-(LA)2PW-28 2.1852 � 2.1654

BEE-(LA)2PW-36 2.1830 � 2.1635

Kmax = 3: 6a � 10
LAPW-106 2.1990 � 2.1777

BEE-(LA)2PW-28 2.2020 � 2.1802

BEE-(LA)2PW-36 2.1997 � 2.1782

Kmax = 4: 0a � 10
LAPW-146 2.2036 � 2.1823

BEE-(LA)2PW-28 2.2066 � 2.1848

BEE-(LA)2PW-36 2.2043 � 2.1827

result with Kmax = 4: 0 a � 10 . On the other hand the BEE-F(LA)2PW results obtained
with 28 (36) basis functions per atom deviate by no more than 0: 0030 � B (0 : 0008 � B)
from the corresponding FLAPW calculations. This means that for this quantity the
incomplete Kmax convergence with Kmax = 3: 6 a � 10 still dominates the error in the
calculations, while the BEE-F(LA)2PW approach implies a smaller additional error.

After demonstrating the precision of the BEE-F(LA)2PW approach, we conclude
that with an adequately chosen BEE-(LA)2PW basis set the additional imprecisions
in comparison to conventional FLAPW calculations are small and in many cases neg-
ligible. In none of the here investigated materials and quantities the BEE-F(LA)2PW
approach implies a considerable precision disadvantage. For Cu, SiC, and NaCl the
FLAPW total energy was reproduced with less than 25 � Htr = atom deviation for ba-
sis sets with 20 to 24 functions per atom. Such basis set sizes are on the same or-
der of magnitude as basis sets obtained with the angular momentum criterion of
Nbas = 2

P
� (l

�
phys + 2)2. However, depending on the material the angular momentum

criterion yields basis sets that are either slightly larger or slightly smaller than the
25 � Htr = atom criterion basis sets.

Furthermore, we saw that evenwith very small BEE-(LA)2PWbasis sets the FLAPW
results for many experimentally accessible quantities were reproducedwith very high
precision. The lattice constants were reproduced with an imprecision of less than
0: 05 %. For the bulk moduli this maximal additional error was less than 0: 7 GPa
(and mostly less than 0: 25 GPa). Energy differences between different structural con-
figurations were reproduced with a higher precision than 0: 1 meV per atom. The
FLAPW and BEE-F(LA)2PW band structures for the lowest Nbas = 2 bands were indis-
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tinguishable, at least on the energy scale of such band structures. Energy differences
between different magnetic configurations were reproduced with a precision of about
0: 2 meV per atom and, finally, the determination of the magnetic moments was also
in high agreement to the FLAPW results with deviations of up to only 0: 0030 � B.

6.2 F(LA)2PW runtime performance

Both, the FLAPW method and the BEE-F(LA)2PW approach, perform an iteration of
the self-consistency cycle in a runtime that scales cubically with the system size, at
least for large unit cells. However, in this section we show that the prefactor to this
scaling is considerably smaller for BEE-F(LA)2PW calculations, such that using this
method instead of the conventional FLAPW approach yields a large reduction in the
required amount of time.

To analyze the obtainable speedup associated with the BEE-F(LA)2PW approach
we compare the runtime of BEE-F(LA)2PW and FLAPW calculations on Cu, SiC, and
NaCl for different unit cell sizes. For small unit cells we expect that the total runtime
is dominated by parts of the calculation that feature a more friendly (lower exponent)
scaling behavior than the dominating cubic scaling for large unit cells. Thus, the
speedup obtained by using the BEE-F(LA)2PW approach will increase with growing
unit cell sizes and approach an asymptotic constant for large unit cells. The speedup
obtained for large unit cells is our main interest. Materials with such unit cells are as-
sociated with very large computational demands and thus a large speedup can make
the difference whether DFT calculations on the system are feasible or not.

In the results presented below, the overall calculation runtimes are determined for
calculations with 20 iterations of the self-consistency cycle. For the BEE-F(LA)2PW
method this includes the first iteration, which uses a conventional FLAPW approach.
Furthermore, the second iteration is included. Here, a number of values are pre-
computed to increase the speedup obtained with a BEE-(LA)2PW basis (cf. chap-
ter 5 for details). 20 iterations are more or less the number of iterations required
to obtain a converged charge density for the investigated materials. More complex
unit cells often require much more iterations to obtain a self-consistent charge den-
sity. In such a case the calculation speedup obtained by using the BEE-F(LA)2PW
method approaches the larger iteration speedup of iterations that are not linked to
the construction of the basis set or the precomputation of auxiliary quantities. The
previously investigated CoPt3 film is an example for such a material. Here, more
than 100 iterations are required to obtain a self-consistent charge density. The also
investigated FeRh needs about 30 iterations. Note that both methods, FLAPW and
BEE-F(LA)2PW, show about the same convergence behavior with respect to the re-
quired number of iterations.

Before presenting the runtime results we also mention in passing that the addi-
tional error per atom due to the usage of the BEE-F(LA)2PW approach is basically
independent of the unit cell size as long as the number of basis functions per atom
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Figure 6.11.: Overall calculation speedup for fcc Cu as a function of the number of atoms
per unit cell. The measured values are the ratios between the overall runtimes
tLAPW and t, employing the conventional LAPW and the BEE-(LA)2PW basis,
respectively. Each calculation consists of 20 self-consistency iterations. The
values marked by circles (crosses) are determined with a Kmax cutoff of 4 : 0 a−10
(4 : 5 a−10 ).

remains unchanged. Thus, the statements on the description efficiency of the BEE-
(LA)2PW basis made for the small unit cells in the previous sections are also valid for
larger unit cells.

We start the runtime performance discussion with the investigations on fcc Cu. The
speedup results obtained for this material in different unit cells consisting of 4 to 128
atoms are shown in figure 6.11. The first observation wemake in this graph is that the
BEE-F(LA)2PW speedup over FLAPW becomes larger as Kmax grows. This is easily
understandable since this parameter directly controls the LAPW basis set size, while
the BEE-(LA)2PW basis set size does not depend on it. Thus, to make reasonable
statements on the BEE-F(LA)2PW speedup it is important to relate the speedup to
the precision of the results obtained with the respective basis sets. Here, we consider
Kmax values of 4: 0 a−10 and 4: 5 a−10 . At least for the smaller of these values we showed
in the previous chapter that the additional error due to BEE-F(LA)2PW approach is
considerably smaller than the error due to the incomplete Kmax convergence. This
is the case for both, the BEE-(LA)2PW-20 and the BEE-(LA)2PW-32 basis set. On
the other hand we also showed that a Kmax of at least 4: 0 a−10 is required to obtain
reasonable results from an FLAPW calculation on this material. Thus, we focus on
the speedup obtained with the BEE-(LA)2PW-20 and a plane wave cutoff of Kmax =
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Figure 6.12.: Overall calculation speedup for zinc blende SiC as a function of the number of
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basis, respectively. Each calculation consists of 20 self-consistency iterations.
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4: 0 a−10 over the corresponding FLAPW calculation. Here, the figure shows that for a
large unit cell a speedup of 4: 4 is realistic for such a material. With the larger BEE-
(LA)2PW-32 basis this speedup becomes smaller, though it is still about 2: 4. When
going to the larger Kmax cutoff to enter the regime in which the error may actually
be dominated by the restrictions due to the small BEE-(LA)2PW basis sets, we obtain
speedups of more than 7 for the BEE-(LA)2PW-20 basis and about 4: 4 for the BEE-
(LA)2PW-32 basis. We also note that these speedups are already nearly saturated for
unit cell sizes of 64 atoms. Thus, even for such medium size unit cells one can take
full advantage of the BEE-F(LA)2PW approach.

The second material to be taken under scrutiny is zinc blende SiC. For this material
we increase the unit cell size from 8 to 64 atoms. Results for the associated speedups
are displayed in figure 6.12. We have seen that at least a Kmax of 5: 0 a−10 is required
to obtain reasonable results for this material. For the bulk modulus the larger Kmax

of 5: 0 a−10 seems to be even more adequate. On the other hand both of the here dis-
cussed BEE-(LA)2PW basis sets, BEE-(LA)2PW-18 and BEE-(LA)2PW-24 reproduced
the respective FLAPW results with very high precision. Thus, for this material it is
reasonable to compare the BEE-(LA)2PW-18 calculation with Kmax = 5: 0 a−10 to its
FLAPW counterpart. For the largest unit cell with 64 atoms these two calculations
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Figure 6.13.: Overall calculation speedup for rock salt NaCl as a function of the number of
atoms per unit cell. The measured values are the ratios between the overall run-
times tLAPW and t, employing the conventional LAPW and the BEE-(LA)2PW
basis, respectively. Each calculation consists of 20 self-consistency iterations.
The values marked by circles (crosses) are determined with a Kmax cutoff of
3 : 0 a−10 (3 : 5 a−10 ).

are associated with a speedup of a factor of 10 : 4 for the BEE-F(LA)2PW approach in
comparison to FLAPW. But even the larger BEE-(LA)2PW-24 basis yields a speedup
of about 8: 2. For the larger Kmax of 5: 5 a−10 these speedups become 13 : 3 and 11 : 3 for
the BEE-(LA)2PW-18 and BEE-(LA)2PW-24 basis, respectively. We also observe that
these speedups did not yet reach their asymptotic value, even for unit cells with 64
atoms. Thus, one can expect to see even larger speedups for larger unit cells. On the
other hand, we also observe a large speedup of at least a factor of 5: 7 for small unit
cells. We conclude that for open systems like SiC the large fraction of the interstitial
region with respect to the whole unit cell implies the demand for a large amount of
LAPW basis functions to obtain reasonably converged FLAPW results. On the other
hand, the required BEE-(LA)2PW basis set size does not directly depend on this ma-
terial property. Thus, the move to the BEE-F(LA)2PW method for such open systems
is linked to an enormous reduction in the required basis set size and therefore also
with a large speedup.

The last material used for the investigations on the calculation speedup associ-
ated with the BEE-F(LA)2PW approach is NaCl in rock salt structure. For unit cells
comprising 8 to 128 atoms and Kmax cutoffs of 3: 0 a−10 and 3: 5 a−10 the speedups
are displayed in figure 6.13. Since FLAPW calculation results for this material fea-
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ture a rapid convergence with respect to Kmax we focus on the results obtained for
Kmax = 3: 0 a � 10 . Here, we obtain speedups of up to 4 and 2: 7 for the BEE-(LA)2PW-
15 and BEE-(LA)2PW-22 basis sets, respectively. For the larger Kmax of 3: 5 a � 10 these
speedups become 7: 9 and 5 : 5. For the BEE-(LA)2PW-22 basis the speedups are nearly
saturated for unit cells with 64 atoms. On the other hand, the smaller BEE-(LA)2PW-
15 benefits from even larger unit cells.

After inspecting the speedups for the different materials we note that open systems
like SiC exhibit the largest benefits due to the usage of the BEE-F(LA)2PW approach.
For metals we saw that a speedup between 4 and 5 is reasonable and even for the
challenging NaCl we saw a speedup between 2: 7 and 4 for adequate Kmax cutoffs and
BEE-(LA)2PW basis set sizes. Averaging over the materials we remark that one can
associate the BEE-F(LA)2PW approach with a typical speedup of about 5, though this
speedup is exposed to large material dependent variations. We have not seen a single
material in which the usage of an adequate BEE-(LA)2PW basis is associated with a
disadvantage in the calculation runtime.

We have also observed that the obtained speedup strongly depends on the Kmax

cutoff. For higher Kmax cutoffs we obtain larger speedups. As mentioned this is rea-
sonable as Kmax directly affects the LAPW basis set size, while in the BEE-F(LA)2PW
approach it considerably only affects the first iteration, in which the BEE-(LA)2PW
basis is constructed. Beyond the basis construction Kmax only affects the represen-
tation of the BEE-(LA)2PW basis functions. However, the precomputation of the
matching coefficients at the MT boundaries decouples the computational demands
from this representation to a large extent. In the end, the number of plane waves
NPW, determined by Kmax, only enters linearly in the scaling of the runtime of the
interstitial contributions to the matrices and the runtime of the backtransformation
of the wave functions into the LAPW representation. Furthermore, it enters with the
exponent 2= 3 in the runtime of the vacuum region setup.

To obtain a starting point to further speed up the F(LA)2PW approach we proceed
by analyzing the time requirements of each step of BEE-F(LA)2PW calculations in
detail. For this, figure 6.14 resolves the runtime titer of each iteration of the self-
consistency cycle with the BEE-F(LA)2PW approach in relation to the minimal it-
eration runtime of the respective calculation. For each of the 3 materials Cu, SiC,
and NaCl the figure displays the data of a representative calculation for the largest
investigated unit cell.
We find that the first iteration, in which the BEE-(LA)2PW basis is constructed, is a

limiting aspect for the runtime of the respective calculation. Depending on the ma-
terial, this iteration takes 3: 2 to 25 : 5 times as much runtime than one of the last 18
conventional BEE-F(LA)2PW iterations. Thus, the construction of an (LA)2PW basis
in terms of eigenfunctions to an operator obtained on the basis of LAPWs is com-
putationally so expensive that for the next (LA)2PW basis beyond the BEE-(LA)2PW
approach one has to consider a construction principle with less computational de-
mands.
The second iteration also requires considerably more runtime than the respective

BEE-F(LA)2PW reference iteration. This is due to the precomputations performed



6.2 F(LA)2PW runtime performance 159

xx

xx
xx

xx
xx

xx
xx
xx
xx

xx
xx
xx
xx

xx
xx

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

xx
xx

xx
xx

xx
xx

xx
xx

xx

xx

xx
xx

xx
xx
xx
xx

xx
xx
xx
xx

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx
xx
xx

xx
xx
xx
xx

xx
xx

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

xx
xx

xx
xx

xx
xx

xx
xx

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
iteration

0

2

4

6

8

10

12

14

16

18

20

22

24

26

t i
te

r / 
m

in
(
t i

te
r)

Cu,     128 atoms, K
max

 = 4.0 a
0

-1
, BEE-(LA)

2
PW-20x

x
xx
xx

SiC,     64 atoms, K
max

 = 5.0 a
0

-1
, BEE-(LA)

2
PW-18xxx

NaCl, 128 atoms, K
max

 = 3.0 a
0

-1
, BEE-(LA)

2
PW-22x

x
xx
xx

Figure 6.14.: Runtimes titer required for each iteration given relative to the minimal iteration
runtime within the respective calculation for the three example systems em-
ploying unit cells of 128 atoms for Cu and NaCl, respectively, and 64 atoms for
SiC.

in this iteration. Here, the calculation of the matching conditions at the MT sphere
boundaries is the most time-consuming part. It typically requires about 60 to 70 per-
cent of the total runtime of this iteration and scales with O((lmax+1)

2NatomNbasNPW).
A basis set that solves this problem either has to require a smaller angular momen-
tum cutoff lmax or has to be localized, such that each basis function is only extended
into a limited number of MT spheres.

The figure also shows the alreadymentioned fact that the BEE-F(LA)2PW approach
benefits from calculations requiring more than the 20 iterations for the here tested
example materials. With a growing number of required iterations the calculation
speedup approaches the iteration speedup, which can approximately be estimated
as the speedup of the reference iteration in comparison to the very first iteration in
figure 6.14.

Beyond the iteration dependent time consumption we analyze the BEE-F(LA)2PW
runtime consumption of each step within an iteration in table 6.7. We first observe

that the most time-consuming step is the calculation of Sk ; �
ij andH

k ; � ; sphr
ij which takes

between 31 and 44 percent of the runtime of an iteration. The computational de-
mands for this step scale with O((lmax + 1)2NatomN

2
bas)such that it is especially sensi-

tive to high lmax cutoffs. Also other steps within an iteration exhibit such a sensitivity
on the angular momentum cutoffs. For example, the runtime for the determination
of the MT matching coefficients for the eigenfunctions also depends quadratically on
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Table 6.7.: Runtime for the different computation steps tstep of a BEE-F(LA)
2PW iteration (i.e.

for iter � 3 in Fig. 6.14) relative to the total time of the iteration titer for the three
example systems employing unit cells of 128 atoms for Cu and NaCl, respectively,
and 64 atoms for SiC.

step Cu SiC NaCl
tstep = titer tstep = titer tstep = titer

potential setup 0.04 0.06 0.11
interstitial matrix setup

calculating �
[ � V � ]
kj (r) 0.06 0.09 0.04

calculating h ˜� ki j �
[ � V � ]
kj i 0.03 0.03 0.02

MT matrix setup

calculating Sk ; �
ij and H

k ; � ; sphr
ij 0.36 0.44 0.31

calculating H
k ; � ; nsphr
ij 0.11 0.09 0.10

eigenvalue problem
diagonalization 0.09 0.07 0.09
transform to LAPW basis 0.11 0.03 0.05
constructing new density 0.18 0.16 0.24
rest 0.02 0.03 0.04

this cutoff and consumes most of the runtime of the construction of the new density,
which is the second largest point in table 6.7. Another time-consuming part of the
construction of the new density is the correction for the core tails which are extended
beyond a MT sphere boundary and reach into another MT sphere (cf. chapter 3.3.6).
However, due to a better scaling behavior this step will become a less important part
of the runtime of calculations on materials with even larger unit cells.

With respect to the time requirements of the interstitial matrix setup we note that

the calculation of the �
[ � V � ]
kj (r), which consumes most of the time in the associated

section of the table, actually features a better scaling than the cubical scaling for

the calculation of the matrix elements h ˜� ki j �
[ � V � ]
kj i . Thus, for larger unit cells the

calculation of the �
[ � V � ]
kj (r) will become a less dominant part of the matrix setup.

The last aspect of table 6.7 to be discussed is the runtime for the transformation of
the eigenfunctions from the (LA)2PW representation back to LAPWs. Though this is
not a dominant step within an iteration we note that it is not necessary. The elimina-
tion of this step may provide another small addition to the performance advantage
of the F(LA)2PW approach. However, eliminating this step makes the integration of
the F(LA)2PW approach into an existing FLAPW program more expensive, such that
we keep this step at the moment.
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6.3 Reducing the angular momentum cutoff
for the matrix setup

In table 6.7 we have seen that a large part of the runtime of a conventional F(LA)2PW

iteration is used to calculate the MT contributions to the overlap matrix Sk ; �
ij and the

spherical MT contributions to the Hamilton matrixH
k ; � ; sphr
ij . We also know that these

time requirements scale withO
�
(lmax +1)2NatomN

2
bas

�
. In this section we will evaluate

several approaches to reduce the lmax cutoff in this part of the calculation to further
reduce the overall iteration runtime.

The starting point for the development of approaches to reduce lmax are the investi-
gations on the properties of the basis functions and the wave functions in section 4.2.
There, we have seen that the changes of the respective Kohn-Sham problem in each
iteration of the self-consistency loop are rather small. As a consequence we assumed
that the solution to the problem obtained in the first iteration should already be very
similar to the self-consistent solution in the last iteration. The development of the
BEE-F(LA)2PW approach is based on this assumption. Of course, this means that
just like the Kohn-Sham wave functions of the self-consistent solution also the BEE-
(LA)2PW basis functions possess matching conditions in which the higher l channels
are strongly suppressed. Thus, the contributions of these channels to the matrices
are also considerably smaller than in the case of LAPWs.

Furthermore, we have seen that the spherical potential and the radial functions
u �
l (r � ; E

�
l ) and u̇ �

l (r � ; E
�
l ) for high l quantum numbers nearly do not change through-

out the iterations of the self-consistency cycle. The strongest changes in this context
were the energy parameters that shifted in accordance with the small changes of the
spherical part of the potential in the near of the MT boundary.

Thus, we observe small contributions from the higher l channels that are only ex-
posed to very small changes over the different iterations of the self-consistency loop.
To benefit from these circumstances, we divide the l channels into two groups. The
first group are the lower l channels from l = 0 to an additional cutoff parameter
lexact ; �max and the other group are the higher l channels from lexact ; �max + 1 to l �max. For the
lower l channels we do not change anything in the calculations. This means that the
contributions to the matrices due to these channels are calculated in an exact way in
each iteration of the self-consistency loop. For the higher l channels, on the other
hand, we evaluate three different approaches to efficiently obtain approximations to
the contributions that replace the exact values.

The first approach only relies on the fact that the contributions from the higher l
channels are small in comparison to the case of LAPW basis functions. To exploit this
property of the basis functions we just neglect the contributions due to the higher l
channels by setting them to 0.

The second approach goes one step further and uses the fact that the changes of the
radial functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ) for the higher l quantum numbers over the
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iterations are negligible and the energy parameters only exhibit very small changes.
Here, the changes in the energy parameters are neglected, such that the contribu-
tions to the matrices can be precalculated and stored in the 2nd iteration of the self-
consistency loop when the matrices for the BEE-(LA)2PW are set up for the first time.
In detail, in this case the overlap and Hamilton matrices are given by

Sk ; �
ij =

0
BBBBBBB@

lexact ; �maxX

l=0

Sk ; � ; l
ij

1
CCCCCCCA
+

0
BBBBBBB@

lmaxX

l=lexact ; �max +1

Sk ; � ; l ; iter=2
ij

1
CCCCCCCA

(6.4)

and

Hk ; �
ij =

0
BBBBBBB@

lexact ; �maxX

l=0

Hk ; � ; l
ij

1
CCCCCCCA
+

0
BBBBBBB@

lmaxX

l=lexact ; �max +1

Hk ; � ; l ; iter=2
ij

1
CCCCCCCA
; (6.5)

where Sk ; � ; l ; iter=2
ij and Hk ; � ; l ; iter=2

ij = [E �
l S

k ; � ; l
ij + 1

2

P

m

�
aL �
ki

� �
bL �
kj +

�
bL �
ki

� �
aL �
kj ]

iter=2 denote

the respective contributions in the 2nd iteration.
In the last approach we additionally try to compensate for the changes of the en-

ergy parameters that affect only the contributions to the Hamilton matrix. This could

be done in a very accurate way by precalculating Sk ; � ; l ; iter=2
ij and scaling it with the

iteration dependent energy parameters E �
l . However, this is not feasible as it would

require the precalculation of Natom matrices and thus cubically scaling storage re-
quirements. As an alternative that is less accurate we approximate the changes of the
spherical potential in the outer parts of the MT spheres and hence also the changes
of the energy parameters by the changes of the averaged interstitial potential V ave

IR .
With this approximation we precalculate the sum of the contributions from all atoms
and multiply it with the difference of the averaged interstitial potential in the 2nd
iteration and the current iteration. This gives us an additional term to the Hamilton
matrix of

Hk ; IR correction
ij =

�
V ave
IR � V ave,iter=2

IR

� X

�

lmaxX

l=lexact ; �max +1

Sk ; � ; l ; iter=2
ij : (6.6)

Note that the first two approaches do not imply additional storage requirements.
For the first approach this is obvious, for the second approach we just combine the
precalculated matrices with the already stored interstitial contributions to the matri-
ces. The last approach requires additional memory as the additional contribution to
the Hamilton matrix has to be stored explicitly.
For the evaluation of the three approaches we again perform calculations on fcc Cu,

zinc blende SiC, and rock-salt NaCl. The different dominating bonding mechanisms
in these systems provide us with representative results for a wide class of materials.
Figure 6.15 shows for fcc Cu the dependence of the total energy and the lattice

constant on the reduced angular momentum cutoff parameter lexact ; �max . We observe
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Figure 6.15.: Dependence of (a) total energy and (b) lattice constant for fcc Cu on the reduc-
tion of the angular momentum cutoff lexact; �max . The figures show the results for
the three different approaches to treat the higher l channels beyond lexact; �max . The
calculations were performed with a BEE-(LA)2PW basis set size of Nbas = 20
and a reciprocal plane wave cutoff of Kmax = 4 : 5 a− 1

0 . All other parameters are
in accordance to table 6.1.
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that with the two approaches that include an approximate precalculation of the ma-
trix contributions the lexact ; �max cutoff can reasonably be greatly reduced. For both
approaches, even with an lexact ; �max of 4 the total energy deviates by no more than
25 � Htr = atom from the reference result with lexact ; �max = 8. Also the lattice constants

for this reduced lexact ; �max deviate by less than 0: 02 % from the reference result. For
both quantities the approach including the corrections for the changes of the energy
parameters yields slightly worse results than the method without these corrections.
This is directly understandable if one notes that the energy parameters for the higher
l channels shift by 0: 005 Htr between the 2nd iteration and the last one, while the av-
eraged interstitial potential changes by 0: 0145 Htr. Thus, in this material the changes
of the averaged interstitial potential are nearly three times as large than the changes
of the spherical potential near the MT sphere boundaries and thus also larger than
the changes of the energy parameters. The correction on the basis of the average in-
terstitial potential therefore overcompensates the changes of the energy parameters
and finally yields a worse result than the uncorrected approach. The last approach to
be discussed is the neglection of the contributions coming from the higher l channels.
This approximation yields considerably worse results than the other two approaches
and does not allow a significant reduction of the lexact ; �max cutoff.

The results after reducing the lexact ; �max in SiC are presented in figure 6.16. Here, we
basically observe a similar picture in comparison to fcc Cu. However, in this case
the approach that also considers the changes of the energy parameters yields the best
results. We again have a closer look at the actual numbers. From the 2nd to the last
iteration the energy parameters for the higher l channels in Si (C) shift by 0: 0098 Htr
(0 : 0997 Htr). With changes of the average interstitial potential of 0: 0078 Htr this is
very well approximated by the method involving the associated correction term. For
both methods it is again reasonable to reduce the lexact ; �max cutoffs to 4 as it keeps the
total energy within 25 � Htr = atom of the reference result and yields deviations from
the reference lattice constant of less than 0: 01 %. For the approach including the
extra correction to the Hamilton matrix it is even reasonable to reduce the angular
momentum cutoff to 3, though in this case the lattice constant deviates by nearly
0: 02 % from the reference result. The neglection of the contributions due to the
higher l channels does not allow for such a large reduction of the angular momentum
cutoff.

Finally, we discuss the results obtained for rock-salt NaCl, shown in figure 6.17. For
this material, it is indeed reasonable to reduce the lexact ; �max cutoffs to 5 by neglecting
the matrix contributions originating from the higher l channels. However, the two
approaches including the approximate precalculations again outperform this simple
idea. With the approach neglecting the changes of the energy parameters a reduction
of the lexact ; �max to 4 is reasonable. With the more sophisticated approach the approxi-
mation of the changes of the high l energy parameters between the 2nd and the last
iteration of 0: 0286 Htr (0 : 0095 Htr) in Na (Cl) by the changes of the average intersti-
tial potential of 0: 0225 Htr is very good. As a consequence it is reasonable to reduce
the lexact ; �max cutoffs to 3 with this method. In each of these cases the total energy is
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Figure 6.16.: Dependence of (a) total energy and (b) lattice constant for zinc blende SiC on
the reduction of the angular momentum cutoff lexact; �max , which is determined as
lexact ; �max = min { l �max ; l

exact
max } The figures show the results for the three different ap-

proaches to treat the higher l channels beyond lexact; �max . The calculations were
performed with a BEE-(LA)2PW basis set size of Nbas = 36 and a reciprocal
plane wave cutoff of Kmax = 5 : 5 a− 1

0 . All other parameters are in accordance
to table 6.1.
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Figure 6.17.: Dependence of (a) total energy and (b) lattice constant for rock-salt NaCl on
the reduction of the angular momentum cutoff lexact; �max , which is determined as
lexact ; �max = min { l �max ; l

exact
max } The figures show the results for the three different ap-

proaches to treat the higher l channels beyond lexact; �max . The calculations were
performed with a BEE-(LA)2PW basis set size of Nbas = 44 and a reciprocal
plane wave cutoff of Kmax = 4 : 0 a− 1

0 . All other parameters are in accordance
to table 6.1.
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within a range of 25 � Htr = atom to the reference result and also the lattice constant

deviates by no more than 0: 02 % from the case with lexact ; �max = 8.

We subsume these observations by noting that although the contributions from
the higher l channels are small, they are still relevant and should not simply be ne-
glected. On the other hand they can be precomputed in an approximate way, which
has the potential to greatly reduce the lexact ; �max cutoffs. The changes of the energy pa-
rameters for the higher l channels are very small. As a consequence the two methods
including the precomputation perform qualitatively similar, though one may argue
that the method including the approximate averaged compensation to the changes of
the energy parameters performs slightly better. With a more sophisticated approxi-
mation scheme to the changes of the energy parameters it may be possible to reduce
the lexact ; �max cutoffs even further.

The reasonable reduction of the lexact ; �max cutoffs to 4 as we have shown it, has the

potential to speed up the setup of Sk ; �
ij and H

k ; � ; sphr
ij by a factor of 3 to 4, yielding

a reduction of the iteration runtime titer by 20 to 30 percent. As this only affects
the conventional BEE-F(LA)2PW iterations after the 2nd iteration, this especially af-
fects the calculation runtime for materials that require many iterations to obtain a
self-consistent solution and materials for which the iteration speedup of the BEE-
F(LA)2PW method in comparison to FLAPW is small.

6.4 Concluding remarks

In this chapter we developed and evaluated a first construction principle for (LA)2PW
basis functions, which is based on a single diagonalization of the FLAPW Hamilto-
nian for the initial density which is a superposition of atomic densities. With this
starting point we composed a basis from early eigenfunctions (BEE) out of the Nbas = 2
energetically lowest eigenfunctions and also Nbas = 2 conventional LAPWs. We found
that this basis function construction principle yields a basis set with a very high de-
scription efficiency, such that the basis set size in comparison to reasonable LAPW
basis set sizes can considerably be reduced while maintaining the precision of the
LAPW basis. This means that even with very small BEE-(LA)2PW basis sets the re-
maining imprecision is mainly controlled by the reciprocal plane wave cutoff Kmax

that also controls the LAPW basis set size in the case of conventional FLAPW calcu-
lations.

By relating the tiny additional imprecision of the BEE-F(LA)2PW approach to the
imprecision due to the incomplete Kmax convergence in associated FLAPW calcula-
tions we determined for each material a reasonable combination of the BEE-(LA)2PW
basis set size Nbas and the plane wave cutoff Kmax for which we then measured the
speedup of calculations with different unit cell sizes. We found that depending on
the material, for large unit cells the BEE-F(LA)2PW approach yields a calculation
speedup between a factor 3 and more than 10.

To obtain a starting point for further improvements we then analyzed which steps
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of BEE-F(LA)2PW calculations are still time demanding. We found that the basis con-
struction in the first DFT iteration is one of the steps that still requires a lot of time.
A basis construction principle beyond the basis from early eigenfunctions has to ad-
dress this issue, i.e., the required computational resources for the construction of the
basis should be reduced. Another computationally expensive step is the calculation
of the MT contributions to the overlap matrix and the spherical MT contributions to
the Hamilton matrix. We addressed this issue by realizing that contributions associ-
ated to high l quantum numbers can reasonably be approximated. Indeed, we showed
that it is possible to precalculate approximate contributions from these l channels in
the 2nd iteration of the self-consistency loop and reuse them in every succeeding it-
eration without obtaining a significant impact on the precision. With this approach
it is reasonable to further speed up BEE-F(LA)2PW iterations by 20 to 30 percent.



7 Conclusions and outlook

In condensedmatter physics, materials physics andmaterials science, the importance
of materials specific theory has risen tremendously and is nowadays an invaluable
tool in the investigation and design of new materials. There are two factors that con-
tribute to the rise of this type of theory and simulation: (i) Density functional theory
(DFT) together with the successful establishment of powerful approximations to the
exchange and correlation functional and (ii) electronic structure methods implement-
ing DFT and providing highly successful and dynamical approaches to numerically
calculate properties of materials. The ever refining development of the theoretical
and practical aspects of these methods together with the growing capacity of avail-
able computing power leads to an increasing number of application fields in which
the methods are used.

One of the most accurate and wide-spread numerical implementations of DFT in
terms of an electronic structure method is the all-electron full-potential linearized aug-
mented plane-wave (FLAPW) method. To further extend the application domains of
this method, we investigated one of its main aspects in detail: The linearized aug-
mented plane-wave (LAPW) basis set, which is used to represent the Kohn-Sham wave
functions. This basis is founded on a partitioning of space into so-called muffin-
tin (MT) spheres centered at the atomic nuclei and the interstitial region between
the spheres. In the MT spheres the basis consists of a linear combination of two
types of radial functions times spherical harmonics. For predetermined angular-
momentum dependent energy parameters E �

l the first type of radial functions are
solutions u �

l (r � ; E
�
l ) to the scalar-relativistic approximation to the radial Dirac equa-

tion employing the spherical potential in the given MT sphere of atom � . The second
type of radial functions are the energy derivatives u̇ �

l (r � ; E
�
l ) of the former functions.

In the interstitial region, LAPWs consist of plane waves. Continuity and differentia-
bility of the wave functions are imposed on the level of the basis functions, i.e., at the
MT sphere boundaries the MT form of the basis is matched in value and slope to the
interstitial representation.

We started the investigation on the LAPW basis by analyzing the impact of the
implicit linearization error on calculational results. We showed that for certain ma-
terials, e.g., materials with very broad valence bands or materials consisting of atoms
with large atomic radii, this error is relevant and has to be considered. In clear words,
we demonstrated that the error affects calculated total energies, equilibrium lattice
constants, and Kohn-Sham band gaps. It also makes calculation results dependent on
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method specific numerical parameters that cannot be converged, i.e., the energy pa-
rameters and the MT sphere radii. We evaluated several approaches to eliminate the
error by adding local orbitals to the basis and found that the extension of the basis by
local orbitals employing the second energy derivative ü �

l (r � ; E
�
l ), which we call higher

derivative local orbitals (HDLOs), performs best and reduces the linearization error
by orders of magnitude. Indeed, with this approach the linearization error becomes
so small that in any practical context the remaining rest can be neglected. We also
found that the extension of the LAPW basis by HDLOs yields a decoupling of the MT
and interstitial region representation of the basis functions. This decoupling implies
that the addition of HDLOs goes hand in hand with reduced demands on the number
of conventional LAPWs, such that the addition of HDLOs may effectively reduce the
required basis set size.

We proceeded by comparing the actual matching conditions of LAPW basis func-
tions at the MT sphere boundaries to those of the Kohn-Sham wave functions. Here,
we found that LAPWs with large wave vectors possess significant contributions from
high angular momentum channels. For the wave functions this is not the case since
the form of the effective potential considerably deviates from a constant potential to
which plane waves are solutions. Depending on the actual electronic state, certain
angular momentum channels are strongly emphasized and dominate the matching
conditions at theMT sphere boundaries. This is especially visible for localized atomic
states and states associated with directed bonds. We recognized this discrepancy be-
tween the basis functions and the wave functions as an opportunity to develop a new
basis set that is even more problem-adapted than the LAPW basis. To further explore
the requirements on such a new basis we performed several additional tests that fo-
cused on the changes of the Kohn-Sham problem throughout the different iterations
of the DFT self-consistency cycle. We found that these changes are small. Indeed, in
the MT spheres we saw that the spherical potential only exhibits very small changes
in the outer parts of the sphere. The nonspherical parts are exposed to larger rela-
tive changes, though the qualitative behavior of these functions remains unchanged.
Of course, these small changes in the potential imply similarly small changes of the
radial functions u �

l (r � ; E
�
l ) and u̇ �

l (r � ; E
�
l ), especially for high l channels. Finally, we

investigated the changes of the wave functions in the interstitial region and found
that these changes are also rather small: The wave functions obtained in the very first
iteration can represent a large part of the associated wave functions in later iterations.
Motivated by the findings from these tests, we generalized the analytical form of

the LAPWs to become a new type of basis functions, which we call linearized aug-
mented lattice-adapted plane-waves (abbreviated as (LA)2PWs or LA2PWs). In these
functions the plane waves in the interstitial region are replaced by a more general
linear combination of plane waves. The idea is that the plane wave expansion in the
interstitial region provides the freedom to adapt the basis functions in this region to
the actual crystal lattice. We then developed an efficient implementation of such a
basis into an existing FLAPW code.
The concept of (LA)2PW basis functions is decoupled from their construction. Our

first idea of how to construct a lattice-adapted basis was again motivated by the pre-
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viously performed tests, especially on the observation that the changes of the Kohn-
Sham problem throughout the iterations of the self-consistency cycle are small. We
proposed to construct one half of the basis set in terms of the LAPW expansion co-
efficients of the eigenfunctions obtained by a single FLAPW iteration and take con-
ventional LAPWs for the other half of the basis set. We then evaluated the description
efficiency of this basis from early eigenfunctions (BEE) for a test set of materials with
different properties and a wide array of physical quantities to obtain a picture that
is representative for solid state physics and materials science. In these tests the BEE-
(LA)2PW basis showed a stunning performance. It reproduced the FLAPW results
with very high precision, while also reducing the required basis set size to a small
fraction. We then measured the obtainable speedup through the use of this new
basis and found that on average results for systems with unit cells of about 100 or
more atoms can be obtained 4 to 5 times as fast. Relating this speedup to the growth
of available computing power of supercomputers, which is nearly a doubling each
year [140], we conclude that the usage of the BEE-(LA)2PW basis allows calculations
on complex materials that would be infeasible for the conventional FLAPW method
for another 2 or more years. In practice, this advantage is even larger since the par-
allelizability of matrix diagonalization algorithms is limited so that the benefits of
the smaller BEE-(LA)2PW matrices are greater. Nevertheless, we did not stop at this
point but investigated in detail which parts of the calculations take most of the run-
time. We found that the construction of the basis set is one of these steps. Another
step is the setup of the MT part of the Hamilton and overlap matrices. Based on these
observations we then addressed the costs of the matrix setup by developing an ap-
proximation for the higher l channels which still yields precise results but reduces
the time requirements of a BEE-F(LA)2PW iteration by 20 % to 30 %.
As a final outlook, we remark that we believe that it is possible to construct a lo-

calized (LA)2PW basis set with a high description efficiency in a computationally less
demanding way. The development of such a basis would provide another consider-
able speedup of the calculations and is therefore highly desirable. We also note that
we developed a prototype program that does not yet feature the full functionality of
a well-established FLAPW program like the FLEUR code. The development of a full
production code requires a reformulation of several physical properties in terms of
the (LA)2PW basis instead of the LAPW basis.
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We have seen that the BEE-(LA)2PW basis features a very high description effi-
ciency. However, a drawback of this approach is that the construction of the basis
is computationally expensive as it requires a complete FLAPW iteration. For some
types of materials this single iteration can take a very large part of the overall cal-
culation runtime. Thus, to further speed up the calculations, we want to develop
another construction principle for (LA)2PW basis sets that is computationally less
expensive. Of course, a prerequisite for such a development is the identification of
the required ingredients.
What we already know is that everything we need to construct an efficient basis

is already present in the starting density, which is a superposition of atomic densi-
ties. But as we want to eliminate the time requirements associated with the setup
of the matrices and the diagonalization of the problem in terms of the LAPW basis,
we test approaches to construct a basis in a way that does not require these steps.
The first idea that comes to mind is the usage of atomic orbitals1 or other types of
radial functions times spherical harmonics that are efficiently constructible. Partly,
this is also motivated by the approach of Kotani et al. [111] to fuse the LMTO and
LAPW basis sets. Especially for calculations that do not require a very high preci-
sion, this approach considerably reduces the required basis set size. For very high
precision requirements, e.g., the 25 � Htr = atom criterion that we have imposed for
the BEE-(LA)2PW basis, the differences between this LMTO+LAPW approach and
the conventional LAPW basis becomes smaller.
We denote an (LA)2PWbasis consisting of atomic orbitals as atomic orbital (LA)2PW

(AO-(LA)2PW) basis. In this appendix we shortly sketch the construction of an exam-
ple for such a basis in section A.1 and also provide results on the obtained description
efficiency in section A.2. Finally, we conclude the appendix in section A.3.

1Here, we use a very broad definition of atomic orbital that only means that the functions are con-
structed by using some kind of spherical potential and that the functions vanish for very large
radii.
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A.1 Construction

For the construction of atomic orbitals and their expansion into plane waves in the
IR we follow a simple recipe:

Recipe for the construction of atomic orbital (LA)2PWs

1. Construct the functions in a spherical coordinate system. The function cen-
ter of mass is at the origin.

2. Replace the part of the function that is inside theMT sphere of the associated
atom by a smooth function to enable a fast converging Fourier expansion

3. Expand the function in terms of plane waves.

4. Move the function to the position of the associated atom.

For the two examples, AO-(LA)2PW-A and AO-(LA)2PW-B, that we discuss in this
appendix, we choose the atomic orbitals in the following way. First, we use the oc-
cupied atomic states of the respective isolated atoms above the core electron states,
as we have empirically observed that this is a good starting point. Next, we consider
the spherical potential in the MT spheres of the respective atoms in the actual crystal
and extrapolate it beyond the MT sphere by matching the function

f (r � ) =
A

r �
+

B

r2�
+V ave

IR (A.1)

at the MT boundary in value and slope to the spherical potential in the sphere. The
coefficients A and B are obtained through this matching condition. Asymptotically,
the potential obtained through this extension approaches the averaged interstitial
potential V ave

IR . After extending the spherical potential in this way beyond the MT
sphere boundary, we also add a confining potential

V conf(r � ) =











0 Htr for r � ≤ 20 a0
0: 005 Htr

a20
(r � − 20 a0)

2 for r � > 20 a0
: (A.2)

With the conventional energy parameters E �
l we then calculate solutions to this spher-

ical problem with regular behavior at r � = ∞ . For the first approach, AO-(LA)2PW-A,
we take all solutions up to l �phys, and for AO-(LA)2PW-B we take the solutions up to

l �phys +1. The third type of (LA)2PWs entering these basis sets are once again conven-

tional LAPWs. We add LAPWs until the desired basis set size Nbas is reached.
Note that the details of this construction principle are to some extent arbitrary.

However, this statement can also be made for most DFT codes employing localized
basis sets. In such approaches, the construction scheme is typically optimized to yield
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a basis set with a high description efficiency for a prototype system or a set of pro-
totype systems. Of course, we varied the details of the construction and performed
numerous tests with different potentials and energy parameters. The result of these
tests is that the two presented basis sets can be considered to be qualitatively repre-
sentative. Note that we also tested Hankel functions to compare to the LMTO+LAPW
fusion by Kotani et al. [111] as well as smoothed Hankel functions [141] as an ingre-
dient for an (LA)2PW basis. Basis sets including such functions also show a similar
behavior to those presented in this appendix.

Based on the now determined atomic orbitals
�

� �
Lj(r) =

�

� �
lj(r � )YL(r̂ � ), where the an-

gular momentum l and magnetic m quantum numbers, as well as the atom � , are
directly given by the index of the function j, we now construct a smooth function

˜� �
Lj that is identical to

�

� �
Lj in the IR but differs in the MT sphere of atom � . This

construction follows a recipe proposed by K. M. Rappe et al. [142]. To ensure a fast
convergence of the Fourier expansion of ˜� �

Lj we consider the cutoff parameter Kmax

for the expansion and minimize the kinetic energy connected to those Fourier com-
ponents that are beyond the cutoff.

In detail, we calculate the kinetic energy once in real space on the radial mesh
and once by the Fourier expansion and minimize the difference between these two
calculations. Formally, this difference is

� Ekin = �
1

2

Z �
˜� �
Lj

� �
(r) r 2 ˜� �

Lj(r)d
3r �

1

2

Z

jK j <Kmax

jK j
2
j ˜� �

Lj(K) j 2d3K: (A.3)

To minimize � Ekin we first have to define the set of functions in which the min-
imization takes place. Rappe proposes to construct the smooth function in the MT
spheres in terms of a linear combination of spherical Bessel functions associated with
different wave vectors Ki . We stick to this approach and thus the smooth atomic or-
bitals have the form

˜� �
Lj(r) =

˜� �
lj(r � )YL(r̂ � ) =

8
>>><
>>>:

P

i

 ijl(Kir � )YL(r̂ � ) for r � � RMT �

�

� �
lj(r � )YL(r̂ � ) for r � > RMT �

; (A.4)

where 
 i are the expansion coefficients for the i-th spherical Bessel function. A re-
quirement that has to be fulfilled by the smooth atomic orbital is that it is continuous
in value, slope, and curvature. An optimization problem of this type is a special
form of a so-called quadratic programming problem. As it only exhibits equality
constraints and no inequality constraints it is solvable with the method of Lagrange
multipliers.

The third step in the construction of an AO-(LA)2PW basis is the expansion of the
˜� �
Lj(r) in plane waves. We directly expand these functions in plane waves including

the Bloch factor, 1p


ei(k+G)r, by performing the Fourier transformation on the radial
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mesh. For this, we expand the plane waves in terms of radial Bessel functions to
obtain

� PW
kG(r) =

1
p


ei(k+G)r =

1
p



X

L

4� iljl( j k+G j r)Y �
L(
[k+G)YL(r̂) : (A.5)

As the atomic orbital vanishes for each but a single L channel, the Fourier expansion
of ˜� �

Lj(r) is then given by the simple integral over the whole space,

h � PW
kG j ˜� �

Lj i =
1

p


4� il

Z

r2jl( j k+G j r)YL( [k+G) ˜� �
lj(r)dr : (A.6)

Note that the integration over the whole space does not only yield the atomic orbital
from the actual atom, but a superposition of atomic orbitals that includes the orbitals
from equivalent atoms in the neighboring unit cells, multiplied with the Bloch factor.
Finally, we have to move the center of the function to the actual atom position by

multiplying it with the associated translation factor in reciprocal space. With this we
obtain the plane wave expansion coefficients of the AO-(LA)2PW basis functions as

oGkj = e � i(k+G)τ � h � PW
kG j ˜� �

Lj i ; (A.7)

where τ � is the atom position. Note that the construction of such a basis is more
efficient than the construction of the BEE-(LA)2PW basis as its time requirements
only scale with NbasNPW.

A.2 Precision

We test the precision of the two considered AO-(LA)2PW basis sets on two materials,
fcc Cu and zinc blende SiC, and for three quantities, i.e., the total energy, the equilib-
rium lattice constant, and the bulk modulus. Unless otherwise noted, the calculation
parameters are identical to those presented in table 6.1.

For Cu, the convergence behavior for the total energy is presented in figure A.1. We
observe that the two AO-(LA)2PW basis sets yield a very similar convergence, which
is better than the convergence with the conventional LAPW basis, but on the other
hand worse than the convergence for the BEE-(LA)2PW basis. Indeed, for the same
number of basis functions the error in the total energy of the BEE-(LA)2PW basis is
nearly two orders of magnitude smaller than the one for the AO-(LA)2PW basis sets.

For the convergence of the equilibrium lattice constant presented in figure A.2
the picture looks similar. The AO-(LA)2PW basis sets do not feature such a high
description efficiency as the BEE-(LA)2PW basis, but the convergence in comparison
to the conventional LAPW basis is much faster. The AO-(LA)2PW values obtained
with rather small basis set sizes of 30 or more basis functions are quite usable as they
deviate by less than 0: 01 % from the associated FLAPW result. We note, however,
that the convergence beyond this deviation is slow.
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Figure A.1.: Convergence behavior of the total energy for fcc Cu obtained with the two
AO-(LA)2PW basis sets, the BEE-(LA)2PW basis, and the conventional FLAPW
method. The dashed lines show the results obtained with the conventional
FLAPW method and the given Kmax parameters.

Figure A.3 shows the convergence of the bulk modulus. Here, we observe that the
error associated with the AO-(LA)2PW basis sets is larger, though this quantity still
converges faster than with the conventional LAPW basis. Again the BEE-(LA)2PW
basis yields by far the highest description efficiency.

For SiC the convergence of the total energy is displayed in figure A.4. We ob-
serve that the additional error associated with the two AO-(LA)2PW basis sets is con-
siderably larger in comparison to the previously discussed fcc Cu. However, also
the FLAPW method yields a slower convergence for this material, so that the AO-
(LA)2PW approach still allows to significantly reduce the basis set size. On the other
hand, the BEE-(LA)2PW basis does not suffer from the challenges in the description
of this material and again yields a considerably faster convergence. For same basis
set sizes the error associated with this basis in comparison to the AO-(LA)2PW basis
sets is once again smaller by nearly two orders of magnitude.

Figure A.5 shows the convergence for the equilibrium lattice constant, where the
so far drawn picture is once again confirmed. Though the AO-(LA)2PW basis sets
yield a faster convergence than the conventional LAPW basis, they are by far not as
good as the BEE-(LA)2PW basis. In comparison to the very nice agreement of the AO-
(LA)2PW lattice constants for fcc Cu, in this case a basis set size of 60 basis function,
i.e., 30 basis functions per atom, yields larger deviations to the FLAPW reference
result. Nevertheless, it these deviations are still smaller than 0: 1 %
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Figure A.2.: Convergence behavior of the equilibrium lattice constant a for fcc Cu obtained
with the two AO-(LA)2PW basis sets, the BEE-(LA)2PW basis, and the conven-
tional FLAPW method. The dashed lines show the results obtained with the
conventional FLAPW method and the given Kmax parameters.
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method. The dashed lines show the results obtained with the conventional
FLAPW method and the given Kmax parameters.
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Figure A.4.: Convergence behavior of the total energy for zinc blende SiC obtained with
the two AO-(LA)2PW basis sets, the BEE-(LA)2PW basis, and the conventional
FLAPW method. The dashed lines show the results obtained with the conven-
tional FLAPW method and the given Kmax parameters.
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Figure A.5.: Convergence behavior of the equilibrium lattice constant a for zinc blende SiC
obtained with the two AO-(LA)2PW basis sets, the BEE-(LA)2PW basis, and the
conventional FLAPW method. The dashed lines show the results obtained with
the conventional FLAPW method and the given Kmax parameters.
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Figure A.6.: Convergence behavior of the bulk modulus for zinc blende SiC obtained with
the two AO-(LA)2PW basis sets, the BEE-(LA)2PW basis, and the conventional
FLAPW method. The dashed lines show the results obtained with the conven-
tional FLAPW method and the given Kmax parameters.

Finally, the convergence of the bulk modulus for SiC is presented in figure A.6.
Here we observe a rather slow convergence with the AO-(LA)2PW basis sets. The
BEE-F(LA)2PW results, on the other hand, stick to their FLAPW counterpart.

A.3 Concluding remarks

We have seen that the convergence obtained with the AO-(LA)2PW basis sets is more
efficient in comparison to the convergence with the LAPW basis but also much slower
than the one obtained with the BEE-(LA)2PW basis. As this is connected to larger re-
quired basis sets it is questionable if a considerable speedup can be obtained with
an AO-(LA)2PW approach. Judging from the results we have obtained in this ap-
pendix, the convergence behavior of the AO-(LA)2PW basis sets is similar to the con-
vergence of the fused LMTO+LAPW method, though in the original publication on
this method [111] other example materials have been used to test the convergence.
The 25 � Htr = atom criterion is not reachable with small AO-(LA)2PW basis sets and it
is probable that we have to add many conventional LAPWs to the basis sets to comply
with this criterion.

The BEE-(LA)2PW basis has the advantage that its plane wave expansion coeffi-
cients oGkj are very well adapted to the actual crystal, especially the coefficients for
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the larger wave vectors are a very good choice. This implies that the matching con-
ditions to the MT spheres are also very well adapted to the physics of the respective
system, even for high angular momentum quantum numbers l. As a consequence, a
few conventional LAPWs and a few BEE-constructed functions are sufficient to re-
produce the associated FLAPW results with very high precision. Obviously this is
not the case for the AO-(LA)2PW basis sets. Here, additional LAPWs with larger
wave vectors are a relevant extension of the basis and thus the obtained convergence
behavior is worse. On the other hand it is a significant step forward in comparison
to the LAPW basis as we have seen that for a mediocre precision the basis set size
can be reduced with the AO-(LA)2PW approach. We stress that this is evidence that
the construction of AO-(LA)2PWs is a step into the right direction, but an important
ingredient is missing.

One promising candidate for such an ingredient is the inclusion of the nonspheri-
cal part of the potential in the construction of the AOs. While each AO-(LA)2PW is
associated to a single L channel, we have seen in chapter 6.3 that the matching con-
ditions of the wave functions at the MT sphere boundaries have contributions from
a broad range of L channels. The inclusion of the nonspherical part of the potential
in the construction yields basis functions that feature nonvanishing contributions in
such a range of L channels and may thus provide a chance to obtain fitting matching
conditions at the MT sphere boundaries, even for high angular momentum quantum
numbers. We assume that this would considerably reduce the demands for additional
LAPWs with large wave vectors.





List of abbreviations

AEP atomic energy parameter
AO atomic orbital
AFM antiferromagnetic
APW augmented plane-wave
B3LYP Becke, 3 parameter, Lee-Yang-Parr
BEE basis from early eigenfunctions
cRPA constrained random phase approximation
DFT density functional theory
DOS density of states
ECM energy center of mass
ELAPW extended linearized augmented plane-wave
EXX exact exchange
FFT fast Fourier transform
F(LA)2PW full-potential linearized augmented lattice-adapted plane-wave
FLAPW full-potential linearized augmented plane-wave
FM ferromagnetic
GEA gradient expansion approximation
GGA generalized gradient approximation
HDLO higher derivative local orbital
HELO higher energy local orbital
HSE Heyd-Scuseria-Ernzerhof
IBZ irreducible wedge of the Brillouin zone
IR interstitial region
KKR Korringa-Kohn-Rostoker
(LA)2PW linearized augmented lattice-adapted plane-wave
LAPW linearized augmented plane-wave
LCAO linear combination of atomic orbitals
LDA local density approximation
LMTO linearized muffin-tin orbitals
LO local orbital
LSDA local spin density approximation
MAPW modified augmented plane-wave
MBPT many-body perturbation theory
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MT muffin-tin
OEP optimized effective potential
PAW projector augmented wave
PBE Perdew-Burke-Ernzerhof
PW plane-wave
PZ Perdew-Zunger
QAPW quadratically augmented plane-wave
r2PT renormalized second order perturbation theory
RPA random phase approximation
rSE renormalized single excitation
SAPW spline augmented plane-wave
SOSEX second order screened exchange
SRA scalar-relativistic approximation
VR vacuum region
XC exchange and correlation
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[102] J. Petrů and L. Smrčka, Quadratic augmented plane wave method for self-
consistent band structure calculations, Czechoslovak Journal of Physics 35
(1985), 62–71.
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und deren Vergleich mit der Pulvermethode, Zeitschrift für Physik 109 (1938),
728–743 (German).
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earization error and improved basis-set convergence within the FLAPW method,
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2. Die Hauptteile der Kapitel 5 und 6 werden in Kürze eingereicht werden in

G.Michalicek und S. Blügel, The full-potential linearized augmented lattice-adapted
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