
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Intel Paragon XP/S - Architecture,
Software Environment, and Performance

Rudolf Berrendorf, Heribert C. Burg, Ulrich Detert
Rüdiger Esser, Michael Gerndt, Renate Knecht

KFA-ZAM-IB-9409

Mai 1994
(Stand 16.05.94)

Intel Paragon XP/S - Architecture, SoftwareEnvironment, and PerformanceRudolf Berrendorf, Heribert C. Burg, Ulrich Detert,R�udiger Esser, Michael Gerndt, Renate KnechtCentral Institute for Applied MathematicsResearch Centre J�ulich (KFA), D-52425 J�ulich, Germanye-mail: r.esser@kfa-juelich.deMai 16, 1994Abstract. The paper describes the hardware and software componentsof the Intel Paragon XP/S system, a distributed-memory scalable mul-ticomputer. The Paragon processing nodes, which are based on the Inteli860XP RISC processor, are connected by a two-dimensional mesh withhigh bandwidth. The paper �rst gives an overview of the Paragon sys-tem architecture, the node architecture, the interconnection network,I/O interfaces, and peripherals. The second part outlines the ParagonOSF/1 operating system and the program development environment in-cluding programming models, compilers, application libraries, and toolsfor parallelization, debugging, and performance analysis. The third partincludes performance measurements characterizing the interconnectionnetwork, input/output, and numerical performance.1 IntroductionThe Paragon, which was �rst delivered in Sep tember 1992, is a product of IntelCorporation's Supercomputer Systems Division (Intel SSD). As its predecessors,the prototypical Touchstone Delta system and the iPSC/860, the Paragon is ascalable distributed multicomputer. Its nodes are also based on Intel's i860 RISCprocessor and the primarily supported programming model is message-passing.The most signi�cant di�erences between the Paragon and the iPSC/860 with itshypercube topology are the new fast rectangular interconnection network andthe new OSF/1 based operating system.This report intends to give a tutorial survey of the Paragon hardware andsoftware architecture. In addition to providing an update of an earlier version[?], it includes an assessment of the Paragon's performance characteristics w.r.t.the interconnection network, input/output, and numerical performance. At thetime of writing (May 1994), more than 50 Paragon systems have been deliveredto customers including a very large system with 1984 nodes. The hardware ofthe Paragon has reached a certain maturity, whereas the software is still underdevelopment. A large part of the functionality announced for the Paragon hasbeen available since fall 1993 when Release 1.1 of the Paragon OSF/1 operatingsystem was introduced. The rest of the essential features is expected to comewith Release 1.2 in mid 1994. As it is di�cult to give a valid description in

such a fast changing situation, we chose to describe the Paragon system as it isspeci�ed for end 1994 and to specially mark those features which are currentlystill under development. All performance results refer to Paragon OSF/1 Release1.1 as available in February/March 1994. Most measurements were carried outon KFA's 140-node Paragon XP/S 10 system.2 System architecture2.1 OverviewThe Paragon's processing nodes are arranged in a two-dimensional rectangulargrid. The memory is distributed among the nodes. The system contains nodesfor three di�erent tasks: compute nodes, service nodes, and I/O nodes. Com-pute nodes are used for the execution of parallel programs; service nodes o�erthe capabilities of a UNIX system, including compilers and program developmenttools, thus making a traditional front-end computer unnecessary; and I/O nodesare interfaces to mass storage or external networks. All nodes are uniformly in-tegrated in the interconnection network. The network provides fast routing ofmessages using wormhole routing with a deterministic routing algorithm. Themeasured bandwidth between two nodes is 35MB/s in each direction, virtuallyindependent of the distance between the nodes. The start-up latency for a mes-sage issued by a program written in a high-level language is currently 90�s.These values will improve to 75MB/s and 50�s with Release 1.2 in mid 1994and to 175MB/s and 30�s by the end of 1994.Mass storage devices and external networks are attached to special I/O nodes.Disk arrays (RAIDs) having a capacity of 4.8GB each provide internal diskspace. They are built into the Paragon cabinets; each one is connected to a singleI/O node with 5MB/s bandwidth. For external disks, tapes, and networks SCSI-1, SCSI-2, HiPPI, and Ethernet interfaces are available. A built-in DiagnosticWorkstation is used for diagnostics and for booting the system. It is connectedto the nodes by a separate network.Each Paragon cabinet has a footprint of 56� 107 cm, and can contain 64nodes, each on a separate board, and up to 8 RAIDs or 6 RAIDs plus theDiagnostic Workstation. A full cabinet has a power consumption of about 5kW;the system is air-cooled. Intel SSD has delivered Paragon systems with up to1984 nodes.2.2 Node architectureCompute nodes, service nodes, and I/O nodes are all realized by the same Gen-eral Purpose (GP) node hardware (cf. Fig. 1). All components of the GP node'scompute and network interface parts are connected by a 32-bit wide address busand a 400MB/s 64-bit wide data bus. 2

400 MB/sec
50 MHz

Application
Processor
i860 XP

Message
Processor
i860 XP

Data Transfer
Engines (2)

Performance
Monitor

Memory
16 - 32 MB

I/O
Interface

Expansion
Port

Network
InterfaceFig. 1. Paragon node componentsCompute part. The compute part includes an Intel i860XP microprocessor,whose clock speed is 50MHz (20 ns p/usr/local/doc/dokumente/ib/i9409er cy-cle), and 16 or 32MB of memory. The memory is constructed from 4Mbit, 60nsDRAM chips. It is organized in two banks and has single-bit error correction anddouble-bit error detection. The peak speed of data transfer between the memoryand the processor caches is 64 bits per cycle, i.e. 400MB/s. The node memorycan be expanded by a daughter card that can carry additional 32, 64, or 128MB.The i860XP is a fast compute-oriented RISC processor in 0.8 micron CMOStechnology and contains more than 2.5 million transistors (cf. Fig. 2 and [?]). Ad-dress paths are 32 bits wide, and data paths are 32, 64, or 128 bits wide. Besidesthe RISC core, it has two 16KB caches, one for data and one for instructions,and two integrated vector pipelines for 32-bit and 64-bit IEEE
oating-pointadd and multiply. Furthermore, it has an on-chip memory management unitsupporting the caches and virtual memory. Page sizes are 4KB and 4MB; theParagon operating system uses only the small pages.The data cache and the
oating-point registers are connected by a 128-bitwide data path, enabling a data rate of 128 bits per cycle or 800MB/s. As thepipelines can work simultaneously and the adder can deliver one result everyclock cycle and the multiplier one result every two clock cycles the theoreticalpeak performance of the i860XP is 75MFLOPS (64-bit arithmetic). For 32-bitarithmetic, also the multiplier delivers one result per cycle.Network interface part. The interface to the interconnection network con-sists of a message processor, a network interface controller, and two DirectMemory Access (DMA) controllers. The message processor is a second i860XPprocessor operating in parallel and sharing the memory with the applicationprocessor. Its task is to perform the details of inter-node communication and toprovide global communication functions. Thus the application processor is notinterrupted by message-passing operations; context switching and code turbu-lence and draining of the
oating-point pipelines are avoided.For outgoing messages, the message processor splits longer messages intopackages, adds protocol information, and initiates the transfer. Incoming mes-sages are autonomously received and the application processor is informed when3

Instruction Cache

XR: 4 KB
XP: 16 KB

Core Registers

Floating Point (FP)
Control Unit

FP Registers

Pipelined
Adder Unit

Pipelined
Multiplier Unit

Instr. Addr. Data Addr.

Core Instr. FP Instr.

Data

T KI
KR

fdest

fsrc1

fsrc2

External
Address

External
Data

Data, 32 Bit
Data, 64 Bit
Data, 128 Bit

Instruction, 32 Bit
Address, 32 Bit

Memory
Management

Unit

Data Cache

XR: 8 KB
XP: 16 KB

Bus
Control

Unit

RISC Core

Graphics Unit

Merge RegisterFig. 2. Components of the Intel i860 processor (from [12])a message has completely arrived in memory. The message processor also han-dles global operations independently including broadcast to and synchroniza-tion of nodes as well as reduction operations on integer,
oating-point or logicaloperands (e.g. global sum, global minimum, global and). The message processorwill be utilized as from Release 1.2 of the operating system.The actual transmission of data between the memory and the network ise�ectuated by a special Network Interface Controller (NIC). It is assisted bytwo DMA controllers, one for inbound and one for outbound messages, whichcan operate in parallel.Additional hardware. The Paragon GP node contains a data capture chip(RPM) that non-intrusively collects node performance data by monitoring busactivities. The data are transmitted to a service node through the interconnectionnetwork and are made available to the user through the System PerformanceVisualization Tool (SPV).Furthermore, every GP node is equipped with an expansion port. On I/Onodes, this is used to attach a special I/O interface card.4

Hardware plans. A multiprocessor node board is being designed that carriesthree i860XP processors: two application processors and one message processorall sharing the node memory. It will be available and supported by the operatingsystem by the end of 1994.2.3 Interconnection networkThe Paragon has two communication networks: the high-speed data networkand the diagnostic network. The diagnostic network is used for booting anddiagnostics. It conforms to the IEEE 1149.1 JTAG speci�cation [?]. This imple-ments serial scan strings which provide access to the various Paragon hardwarecomponents.The data network is the main communication vehicle between all nodes.For its topology, Intel SSD has chosen a 2-dimensional mesh (cf. Fig. 3). It isconstructed from Paragon Mesh Routing Chips (iMRCs) which are connectedby 16-bit wide high-speed channels. To each iMRC, one node may be attached.The iMRCs can, however, route messages autonomously and are independent ofthe attached node, and in most Paragon systems there is a number of iMRCswhich have no node attached to them. Routers and channels are combined intobackplanes carrying 16 routers (4 rows and 4 columns). Four of these activebackplanes accomodate the nodes of one cabinet.
iMRC

node

iMRC

node

iMRC

node

iMRC

node

iMRC

node

iMRC

node

iMRC

node

iMRC

node

iMRC

node

iMRC

node

iMRC

node

iMRC

nodeFig. 3. Paragon interconnection networkThe Paragon Message Routing Chip (iMRC). The iMRC is a messagerouting chip with 5 input and 5 output channels. One input and one output5

channel are connected to each of the 4 neighbouring nodes (east, west, north,south). The last pair of channels is connected to the Network Interface Con-troller (NIC) on the attached node. A 16-bit bu�er on the iMRC is assigned toevery input channel. The iMRC can route a 16-bit quantity of data from aninput bu�er to any output channel. If the direction does not change, it takes40 ns to make an individual routing decision and to close the resulting switches.The iMRC hardware supports broadcasting by automatically routing a messageto all nodes in the rectangle between the sending and the receiving nodes.Wormhole routing. The unit to be transmitted between nodes is one packet.The message processor on the node partitions the messages into packets of 8 to1984bytes (user controlled, default 1024bytes); it also adds the necessary routinginformation to the packets and controls the transmission of packets between thenetwork and the node.Wormhole routing has been introduced as a fast switching technique for di-rect networks by Seitz and Dally [?, ?] to combine a pipelined transmission ofpackages with low storage requirements on the routers. In wormhole routing apacket is divided into a sequence of
its (
ow control digits). The
it size in theParagon system is 16bits. A
it can be transmitted between adjacent routers inparallel in a single step.The header
its of a package determine its path in the network. As theheader advances along the speci�ed route, the remaining
its follow in a pipelinedfashion. When the header is blocked, because a channel that it wants to useis already in use by another packet, the whole pipeline stops. The sequenceof
its remains in place, i.e. in the input bu�ers of the router chips until therequested channel is free. A packet's header thus reserves a path for its packet,and the individual channels are owned by the packet until the last
it has beentransmitted.The pipelined nature of wormhole routing makes network latency nearly in-dependent of the distance between the sending and the receiving node, at leastfor longer messages. Furthermore, it requires only very small bu�ers on therouters. As it is di�cult to synchronize a large network, synchronization is re-placed by a handshake protocol between neighbouring routers. To implementsuch a self-timed network the Paragon uses a request line and an acknowledgeline in addition to the data lines of each channel.A serious problem with wormhole routing is deadlock. It can easily occurbecause packets travelling through the network constantly request new resources(channels) while occupying others. Deadlock is avoided by selecting adequaterouting algorithms. The Paragon uses a simple but e�ective approach: messagesare �rst sent in the horizontal direction and then in the vertical direction. Achange of direction is allowed only once on the path. This algorithm is minimal(it uses a path of minimal length) and deterministic (as opposed to adaptivealgorithms which can take collisions into account and make detours).In detail, routing on the Paragon works as follows. A packet has two header
its containing the orientation of the path and the number of intermediate hops6

to be passed. The �rst
it contains the orientation and the number of hops inthe horizontal direction. After deciding at the sending node whether to go leftor right, the
it proceeds from router to router being decremented by one atevery router it passes. When its value is zero, the �rst header
it is stripped o�,the direction is changed to vertical, and the second
it is used to determine theorientation and the number of hops to the destination.2.4 I/O and mass storageSpecialized I/O nodes located at any free position in the network act as inter-faces between the processing nodes on one side, and mass storage and externalnetworks on the other side. Their number is in principle arbitrary and doesnot depend on the number of compute and service nodes. An I/O node is builtfrom a regular GP node by plugging a specialized adaptor card into the node'sexpansion port.For di�erent I/O requirements, several types of I/O nodes are available in-cluding the MIO node, the SCSI-2 node, and the HiPPI node. The MIO nodeprovides a SCSI-1 interface (5MB/s, e.g. for internal disk arrays), an Ethernetinterface (10Mbit/s), and a V24 interface. The SCSI-2 node currently exists inan 8-bit, 10MB/s version; a 16-bit, 20MB/s version is planned for 1994. TheHiPPI node (100MB/s) consists of two physical nodes; it serves to attach exter-nal disk arrays or frame bu�ers as well as FDDI networks (100Mbit/s).Every I/O request issued by a node is serviced by an I/O node. When, for ex-ample, a program requires data from a disk �le, the data are read and bu�ered bythe I/O node to which the physical device is attached, and are transferred to therequesting node via the interconnection network. All this happens transparentlyto the user program.The primary mass storage systems of the Paragon are disk arrays (RAIDs)which are integrated in the Paragon cabinets. Each disk array has its dedicatedMIO node to which it is connected via the SCSI interface. The RAIDs consistof �ve 3.5-inch commodity disk drives with a capacity of 1.56GB each, whichhold the data and parity information. The RAID controller uses RAID level 5functionality. In total one disk array can accomodate 4.8GB of data. In the eventof a drive failure, the Paragon operating system, together with the controller,provides routines to rebuild the data. The �le system remains intact and can beused while the reconstruction is performed. Several �le systems usually residenton di�erent RAIDs can be combined to a single Parallel File System (PFS).In addition to the internal disk systems, connections and services to supportexternal disk storage and backup systems are also available for the Paragon,including HiPPI, FDDI, and UniTree. An FDDI network is attached to theParagon via an NSC router connected to the HiPPI node. Furthermore, there isa QIC-150 streamer on the Diagnostic Workstation, and another internal 4 mmstreamer tape can be attached to an MIO node.7

2.5 Fault toleranceThe strategy on the Paragon for achieving a certain level of fault tolerance istwofold: there are several means for online diagnostics on one hand, and thereare ways of concurrent repair and operation on the other hand.A separate diagnostic network controlled by the Diagnostic Workstationmon-itors important system components including CPUs and memories on the nodes,iMRCs, I/O interfaces, and power supplies. The Diagnostic Workstation is alsoused for booting the system. Online diagnostics can test groups of nodes with-out disturbing the computational activities of other nodes. The interconnectionnetwork provides error detection capabilities in both hardware and the message-passing protocols.When a fault has been detected in a node, a disk array, or a communicationcomponent, the system administrator can recon�gure the system so that part ofthe machine can still be used. A faulty node is marked so that it is no longerallocated to users. This does not a�ect the communication network, since themesh routing chip to which the node is attached can continue operation. Thesystem must, however, be powered down, when the node is replaced. In caseof a faulty disk in an internal RAID system the disk can be replaced duringoperation of the rest of the machine and the contents of the disk can be rebuiltonline while normal disk I/O goes on.3 Operating systemThe Paragon operating system was designed to provide an application interfacecompatible with the OSF/1 operating system developed by the Open SoftwareFoundation [?], the NX message-passing interface compatible with the iPSC/860,and a parallel �le system extending the Concurrent File System of the iPSC/860.3.1 Paragon OSF/1To realize the application interface an \Advanced Development" multiprocessorversion of OSF/1, called OSF/1AD, was developed. OSF/1AD is based on theMach 3 microkernel developed at Carnegie Mellon University [?]. However, tosupport an environment without shared memory, the NORMA (NO RemoteMemory Access) version is used. The Paragon operating system architecture isshown in Fig. ??.The Mach kernel provides threads, tasks, and ports as key mechanisms forbuilding higher-level system services. These mechanisms are usually not directlyexposed to the user. A thread constitutes a basic unit of execution. A task is avirtual address space in which a set of related threads execute with protectedaccess to system resources. Threads can be executed concurrently with otherthreads, even within the same task. The conventional notion of a process is,in Mach, represented by a task with a single thread of control. Communicationbetween tasks is based on a client/server system structure in which tasks (clients)8

Application

Server

NX Interface

Scalable Services

Microkernel
E

m
ul

at
io

n
Li

br
ar

yFig. 4. Paragon OSF/1 operating system architectureaccess services by making requests of other tasks (servers) via messages sent overa communication channel called port (Inter Process Communication, IPC). Aport is a unidirectional channel consisting of a queue holding messages managedand protected by the kernel. A task holds rights to these ports that specify itsability to send or receive messages. Only one task can hold the receive right fora port.Each Paragon node runs the microkernel that supports basic system services.An OSF/1 server, implemented outside the kernel, runs on every node and pro-vides access to all OSF/1 services including process management, �le system,and network access.In addition, an emulation library is linked to an application, implementingthose parts of the operating system that can be executed in the same task asthe UNIX process. There are three kinds of operations:{ Those which can be performed completely locally to the task, such as re-turning the process identi�er.{ Those which use Mach services directly, such as creating a new thread.{ Those which call the OSF/1 server.These OSF/1 servers and libraries cooperate to o�er the view of a singleUNIX-like system to the user.The NX interface provides a superset of the NX/2 message passing-interface.Applications use the fast kernel-level NX interface rather than the microkernelIPC for message-passing.The Paragon OSF/1 supports virtual memory on all nodes.File systems. The Paragon OSF/1 �le system is based on the Berkeley 4.3Virtual File System (VFS). VFS provides an abstract layer interface to di�erentUNIX �le system types, especially to the UNIX File System (UFS) and to theNetwork File System (NFS). UFS is compatible with the Berkeley 4.3 Tahoe re-lease. On top of the VFS, which is a single-processor �le system, the Distributed9

File System (DFS) has been built. This provides a common logical view of the�le system structure for every process on every node. There is only one globaldirectory tree which transparently combines local �le systems of RAID disks andNFS-mounted �le systems.In addition to its support for UNIX-type �le systems, the Paragon operatingsystem o�ers the Parallel File System (PFS), which provides �le services at highdata transfer rates by striping �les across multiple I/O nodes and their attachedRAID systems. The amount of data from a PFS �le that is stored in each RAIDsystem is determined by the stripe unit (e.g. 8KB or 64KB), which is set by thesystem administrator. There are three forms of parallelism for I/O to a PFS �le.If a single node reads or writes a block of bytes that is larger than one stripeunit, the di�erent stripe units can be read or written in parallel. If two of morenodes access di�erent RAID systems at the same time, the disk operations canproceed in parallel. Additionally, the single disks of each RAID system operatein parallel. PFS can be used with standard OSF/1 system calls and commands.For parallel applications there are also parallel I/O system calls including thoseof the Concurrent File System (CFS) that exists on the iPSC/860.The UniTree client interface is available for access to servers for �le exchangeas well as backup and restore.Single system image. A single system image across the multicomputer systemfor management of processes, �les, user authorization, accounting, etc. is realizedby scalable services which integrate the individual services of all nodes. Forexample, users are able to obtain status information regarding all processes inthe system using the ps utility, killing a process is possible wherever the processmay be. The DFS allows all I/O devices to be equally accessed from any node.The system is managed as a conventional one-processor system.3.2 Partitioning and schedulingThe Paragon operating system allows the processor mesh to be divided into setsof nodes, called partitions. Partitions provide a means of restricting access toportions of the mesh for particular users or types of jobs and a way to specifydi�erent scheduling characteristics on di�erent portions of the machine. In prin-ciple, a partition may comprise any arbitrary set of nodes. At least the followingpartitions which are established by the system administrator must always bepresent (cf. Fig. ??):{ The root partition; this consists of all the nodes in the machine.{ The service partition; this supports general user services, such as editors,compilers and UNIX shells. Operating system services, such as the �le server,are physically located on service nodes. Load levelling is supported withinthe service partition by automatically moving new processes to less loadednodes. 10

I/O nodes service partition

compute partition

user subpartitionsFig. 5. Paragon partitions{ The compute partition; this consists of the majority of the nodes in thesystem. Here the users' parallel applications are executed. The compute par-tition is hierarchical; i.e. it may be divided into subpartitions, which them-selves may have subpartitions and so on. Subpartitions may also overlap.Subpartitioning of the compute partition can be done by the system admin-istrator as well as by the user.The I/O nodes can be grouped into an I/O partition. Normally, however,these nodes are added to the service partition.Subpartitions are de�ned by specifying the parent partition from which toallocate the nodes, the speci�c nodes to allocate, access permissions, and thescheduling characteristics of the partition. Attributes similar to the UNIX �lesystem modes control the access to partitions (for user, group, all):{ r allows the subpartitions of a partition to be displayed,{ w allows the attributes of the partition to be changed and to create andremove subpartitions, and{ x allows applications to run in the partition.If access permissions or scheduling characteristics are not explicitly assigned theyare inherited from the parent partition.Depending on the type of the partition, di�erent scheduling mechanisms areavailable. In the service partition, processes are scheduled in the usual UNIX-style timesharing mode, in which they run for a short period of time (typically100 ms) or until they issue a blocking system call.11

Parallel applications will usually run in the compute partition and will therebe scheduled according to the gang scheduling mechanism. In this model all theprocesses which make up an application are scheduled at once on all the nodeson which the application has been loaded. The application will run until the endof its roll-in quantum, at which time the system will determine whether thereis another application with equal or higher priority ready to run. As the pagingfacilities of the operating system are used to page an application in and out,small applications need not be moved between disk and memory on a contextswitch. The roll-in quantum is an amount of time speci�c of the partition andwill be in the range of several minutes. Applications in overlapping partitionsare always scheduled in a way such that only one application runs on any singlenode at one time. Gang scheduling will become available in mid 1994.When on a single node more than one process is associated with an appli-cation, this set of processes is scheduled by the normal UNIX scheduling, whilethe application is active. Applications are not rolled out, when they issue systemcalls. Therefore asynchronous, i.e. non-blocking, I/O is provided.3.3 System access and accountingThe user can develop and run parallel applications on the Paragon system ei-ther interactively with remote login facilities or by submitting batch jobs. TheParagon appears as a stand-alone UNIX system on the network connected tohis workstation. After login, the user is running his shell somewhere in the ser-vice partition. Although the Paragon requires no front-end, neither for programdevelopment nor for system administration, most program development toolsincluding compiler and performance analysis tools are available as cross devel-opment versions running on SUN and SGI workstations.The Paragon utilizes the Multi-User Accounting and Control System (MACS)developed by the San Diego Supercomputer Center to manage the system re-sources and the Network Queueing System (NQS) developed at NASA Amesto manage batch jobs. It provides
exible, automated job scheduling schemesfor assigning system resources. MACS allows simultaneous batch and interactivescheduling and control, using separate partitions for each. The scheduler allowsjobs to be executed from the NQS queues. The system administrator speci�es foreach queue the number of nodes, the priority, and the number of jobs permittedto wait for execution. MACS can monitor and account for system resource usage,e.g. number of nodes and execution time of the job, producing data for analy-sis and reporting purposes. MACS includes facilities for automatic or selectivepreemption of jobs that have exceeded their resource allocations.3.4 Message-passingProcesses in parallel applications use several facilities both in hardware and insoftware to exchange information. As mentioned earlier, these include the mes-sage processor, a second i860 processor on every node. The message processor12

shares memory with the application processor, and the two processors communi-cate with each other via shared variables. When the application processor wantsto make a message-passing call, it places the parameters into these variables.The message processor regularly polls them and executes the call when it �ndsthe information. The basic message-passing software, which, e.g. packetizes themessages and controls the transfer, runs on the message processor at the kernellevel and can directly address the hardware. Thus, the involvement of the OSF/1operating system in message-passing is minimal keeping the startup latency low.Outgoing messages are sent directly out of the process memory. For incomingmessages, a system bu�er is provided on every node. It contains a distinct bu�erfor each node in the Paragon system. Every sending node knows the status of itsassociated bu�ers on all receiving nodes. A process sends the �rst packages of amessage into this bu�er. As soon as a receive is posted, the message processorwill transfer the data into the process memory, thus freeing space for subsequentpackages. It will also inform the application processor when the message hascompletely arrived by setting a shared variable. If a receive has been postedbefore the message arrives, the packets go directly to the process memory. Thevarious bu�er sizes can be selected by the application. The message processorwill be used in this way as from mid 1994.4 Program development environmentDiverse programming models are supported by the Paragon system's develop-ment environment. A broad range of programming languages, optimized mathe-matical libraries, and a set of tools assisting the user to create new applicationsor to port existing codes are available from Intel SSD or as third party products.Most tools can be used on the Paragon service nodes or as cross-developmenttools on Sun and SGI workstations. Several components of the Paragon system'sdevelopment environment have been ported from the iPSC/860.4.1 Programming modelsThe Paragon system supports several programmingmodels. Besides the message-passing model, which is basic for most distributed-memory multicomputers andis also the Paragon's primary programming model, the Paragon supports thedata parallel model through High Performance Fortran (HPF) and the shared-memory model through Shared Virtual Memory (SVM).Message-passing. In this programming model independent processes are run-ning asynchronously. They communicate by explicit message-passing. Messagesare also used to synchronize processes. On the Paragon, several processes be-longing to one application can run concurrently on one compute node.In principle, the processes can be totally di�erent programs. The most com-mon programming style, however, is the Single Program Multiple Data (SPMD)style where the same program runs on each node allocated to the application,13

but each node works only on its part of the data. For perfectly parallel problems,each process can do its work without access to data held by other processes.For other types of problems, the processes must exchange data with each otherto do their work. Another popular programming style is the manager/workerconcept. One manager process starts several worker processes and assigns themtheir tasks. As soon as a worker process has �nished its task it reports to themanager process which accepts and interprets the results and assigns it a newtask.Data parallel. For the data parallel programming model, Intel SSD will pro-vide High Performance Fortran (HPF) [?], an extension to Fortran 90. Paral-lelism is expressed in the program by array operations. Data distribution direc-tives describe how arrays are to be distributed to the parallel processes. Theprogrammer also speci�es a mesh of processes which is then mapped to thereal hardware. The compiler takes responsibility for inserting the explicit com-munication instructions required for running the code on a distributed-memorysystem. The amount of communication and load balancing is determined bythe mapping of data to processes. Each process is responsible to perform thecomputation for its assigned data. Therefore, the programmer can control thecommunication costs and load balancing with the help of the distribution di-rectives. HPF provides two important bene�ts for the parallel programmer: afamiliar programming model and portability by machine-independent speci�ca-tion of the data distribution.Shared memory. To a limited extent, the Paragon system also incorporatesShared Virtual Memory (SVM) [?] that allows building parallel applications inwhich data are logically shared between processes on one or more nodes. The dis-tributed physical memory forms a uniform global address space accessible fromevery node. There is no need for explicit message-passing. On the Paragon, SVMcan be used via the standard UNIX System V shared segment interface. Sharedsegments can be mapped into the virtual address space of di�erent processes.4.2 Message-passing librariesThe message-passing programming model is widespread, and many message-passing libraries have been developed. Some of these are related to a specialdistributed memory machine, e.g. Intel SSD's NX message-passing library. Oth-ers are portable in a sense that they allow the user to specify processes andinter-process communication in a machine-independent way.NX message-passing library. The Paragon OSF/1 operating system includesthe NX message-passing library which is known from the iPSC series. Some ex-tensions are supported on the Paragon including the possibility of allocatingmore than one process of a parallel application to a node. Synchronous (csend,14

crecv) and asynchronous (isend, irecv) messages, as well as messages produc-ing interrupts (hsend, hrecv) are supported. Additionally, global operations forperforming operations that use data from every node, e.g. for a global sum, areavailable.Other message-passing libraries. Portable message-passing libraries on theParagon include PVM of Oak Ridge National Laboratory, EXPRESS of Parasoft,PARMACS of the Gesellschaft f�ur Mathematik und Datenverarbeitung (GMD)and Pallas, P4 and TCGMSG of Argonne National Laboratory, and MPI basedon P4.4.3 Languages and compilersThe Paragon system o�ers a set of programming languages which are interoper-able, allowing compiler output to be linked irrespective of the source language.Compiler switches allow di�erent code generation strategies (e.g. scalar code,software pipelined loops, and vector code) to be selected, as well as di�erentoptimizations (e.g. scalar optimization, loop transformation, and cache manage-ment). The compilers exploit the advanced hardware features of the i860, suchas dual instruction mode, dual operation instructions, and the arithmetic andload pipelines. The compilers were originally developed for the iPSC/860 andhave been adapted to the Paragon.Fortran77 andHigh Performance Fortran. Version 4.5 of the Paragon For-tran 77 compiler for Paragon OSF/1 is available. Compilation can be performedon the service nodes and on workstations using the cross compiler.The FORGE HPF batch pre-compiler, called xhpf, is available from Ap-plied Parallel Research. It includes MAGIC, an optional automatic paralleliza-tion mode. xhpf with MAGIC takes as input a serial Fortran77 program andautomatically generates a parallelized code with Fortran 90 array syntax andHPF directives. From this, xhpf produces a Fortran 77 program with embeddedcalls to a communication library.C, C++, and Ada. Version 4.5 of the Paragon optimizing C compiler forParagon OSF/1 is available on the service nodes and as a cross compiler. Forobject oriented programming Paragon C++ is available which is based on theAT&T cfront preprocessor which translates C++ into C. For the installationof this compiler a license of AT&T is necessary. An Ada compiler for ParagonOSF/1 is available, too.4.4 Program development toolsThe tools available on Paragon are based on the Tools Application Monitor(TAM). This is a per-node, per-application server for tools that perform applica-tion process monitoring on the Paragon system. Figure 6 shows the co-operationof the program development tools. 15

All graphical tools described below can be started by the graphical userinterface ParAide which also assists the user in loading parallel applications onthe compute nodes and provides a means to open text �les into an editor.Debugging. The Interactive Parallel Debugger (IPD) is a source-level debug-ger for large parallel application programs written in Fortran, C, or Assembler.The IPD allows context debugging to access and control selected groups of pro-cesses spread across multiple nodes. The IPD has a data reduction mechanismand facilities to examine the message-passing events and structures. Breakpointscan be set in some or all of the application's processes. An enhanced version, theXIPD supports a graphical user interface based on Motif. XIPD provides con-tinuous update of node status, indicates which routines are currently executing,and notes where the execution point is in the code.
Fortran
Source

C
Source

C
Source

FORGE 90

Paragon
Fortran

Optimizing Compiler

Paragon
C

Optimizing Compiler

Libraries &
Object Code
Management

Assembler
&

Linker

Run-Time Libraries,
Floating Point, I/O,

Messages, X-windows

Parallel
Debugger

Paragon
Performance

AnalyzerFig. 6. Paragon program developmentPerformance analysis. The runtime pro�ling tools prof and gprof, which arespecial versions of the UNIX pro�ler prof and gprof for the Intel i860 processor,can be used to analyze an application program. During a program run, theIPD can collect pro�ling data on every node. These are presented in tables andprovide the user with information about the number of subroutine calls andthe execution time of these routines. prof produces a simple execution pro�le,whereas gprof additionally produces a call-graph and a cycle listing. XProf andXGprof provide graphical front ends to prof and gprof.16

To monitor the performance of the Paragon system Intel SSD has developedthe System Performance Visualization Tool (SPV). It allows the user to displaythe Paragon front panel lights on his workstation and get information on CPU,mesh, and memory bus utilization. The hardware performance monitor RPM oneach compute node collects mesh and memory bus information while the MachKernel collects CPU idle-time information, page fault rate, etc. Each secondthese performance data are sent to the spv daemon running on the service par-tition. Data transfers are optimized by using a logical tree structure. The spvdaemon sends this data to every spv client running on either the native Paragonor on a remote workstation.For software-based performance monitoring of applications, the Paragon of-fers a tool built on the ParaGraph display system developed at the Oak RidgeNational Laboratory. This system presents an animation of the execution ofparallel applications as derived from trace information gathered during programexecution. In addition, the user can request graphical summaries and statisticalanalyses of overall program behaviour in a variety of display formats. ParaGraphwhich uses Motif replaces the Performance Analysis Tools (PAT) which are pro-vided on the iPSC/860 for identi�cation of time intensive parts in an applicationprogram.Utilities. A parallel make utility, pmake, that maintains up-to-date versions oftarget �les and performs shell programs in parallel, is available on the Paragon.It is an extension of GNU make. The pmake command updates multiple target�les in parallel. Parallel execution may occur either in the service partition orthe compute partition. In the service partition, pmake relies on process migra-tion and load balancing to ensure e�cient parallel execution. In the computepartition, pmake places commands on the available nodes within a partition andexecutes as a parallel application.4.5 Optimized mathematical librariesTo ease the process of porting software to the Paragon and to provide means ofexploiting the machine's computational power, Intel SSD o�ers several librariesof mathematical routines, both node libraries with sequential routines and par-allel libraries.Node libraries.As the Paragon Fortran compiler does not always producecode that makes the most of the i860 processor, it is mandatory in order toachieve high node performance to apply optimized library routines, at least forthe mathematical kernels of the applications.The main library for this purpose is the Basic Math Library, an implementa-tion for the i860 processor of the CLASSPACK Basic Math Library from Kuckand Associates. It contains the Basic Linear Algebra Subroutines (BLAS) andalso several FFT routines and solvers for tridiagonal and pentadiagonal linearsystems. The Basic Math Library forms the basis for other libraries such as the17

commercial NAG Library or the public domain Linear Algebra PACKage (LA-PACK) [?] that contains routines for the solution of dense linear systems andeigenvalue problems.The Signal Processing Library (SEGlib) includes a collection of signal pro-cessing routines that are compatible with the SEGlib Seismic Subroutine Stan-dard Library.Parallel libraries. Intel SSD has developed the ProSolver software packagefor the solution of large systems of linear equations. The matrices can be storedeither on disk or in local memory. There are three separate products: ProSolver-DES applies a direct method to dense matrices, ProSolver-SES is a skyline directsolver for sparse matrices, and ProSolver-IES is an iterative solver for generalsparse matrices.There is a growing collection of mathematical software developed for iPSCand Paragon systems by institutions outside Intel SSD. References to this soft-ware can be found in the software catalog [?].4.6 Visualization toolsThe Paragon system provides several levels of support for network-transparent,client/server visualization. The X Window System X11 Release 5, PEX, andMotif are included in the system software. These tools enable client applicationsto run on the Paragon system and direct their output to a graphics workstationserver. Additionally, the Distributed Graphics Library (DGL) is available forinteractive graphical viewing of application results.5 PerformanceIn contrast to the previous chapters that contain a description of the Paragonhardware and software and can only give upper limits for its performance, thischapter attempts to give the reader an idea of the performance that real programscan reach on the system. The �rst two sections report measurements of thebasic message-passing and I/O performance, while the last two sections dealwith computational performance and describe measurements carried out on somealgorithmic kernels and on a typical application.Most performance results were obtained on KFA's Paragon XP/S 10 system,which is equipped with 140 compute nodes (with 32MB memory each), 4 servicenodes, 1 HiPPI node, and 6 MIO nodes (16MB) serving one RAID system each.Four RAID systems are con�gured to form two Parallel File Systems, one withstripe size 64KB, and one with 8KB.All measurements were made under Release 1.1 of the Paragon OSF/1 oper-ating system that does not yet make use of the message processor on the nodes.All message-handling is done by the application processor and this degrades18

message-passing performance for send operations, e.g. by instruction cache load-ing and re-loading on the application processor, as well as for receiving opera-tions, e.g. for asynchronous receives. This de�ciency can of course considerablyreduce the performance of parallel applications. It will be overcome by Release1.2 of the operating system when the message processor will �nally be dedicatedto communication tasks.5.1 Network performanceThe basic parameters for the network performance are the message latency andbandwidth between the nodes. Our measurements show that the startup timefor zero-length messages with synchronous message-passing is 90�s, the maxi-mal bandwidth between two nodes reached from an application program is ap-prox. 35MB/s which is 20 percent of the peak bandwidth of a communicationchannel; half of this achievable bandwidth is reached with a message length of6,200B. Fig.?? shows the bandwidth as a function of the message length for upto 100,000B. The hop overhead for long-distance message-passing is neglectableif the communication channels along the path used during the communicationhave no contention.
0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

message length (KB)

M
B

/s

Fig. 7. Measured bandwidth between two neighbouring nodesSynchronization between multiple nodes is not supported by the Paragonhardware; instead, it is implemented via low-level message-passing calls. The19

same applies to global operations, e.g. to reductions or global sums. As thestartup cost for small messages is relatively high, the performance of the globalfunctions is dominated by this overhead; this holds especially for those com-munication operations which produce a large amount of small messages, e.g.global synchronization of nodes. Typically the cost of these operations growslogarithmically with the number of nodes as they are performed in a hierarchi-cal tree-like manner. Fig.?? shows the performance of global synchronization ofn nodes while Fig.?? shows the performance of a global summation, the latterrepresenting a combination of communication and computation.
0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5

number of nodes

m
s

Fig. 8. Cost of global synchronization5.2 Parallel File System I/O performanceFunctionality and performance of the Parallel File System (PFS) depend on anumber of parameters, partly prede�ned by the Paragon OSF/1 system admin-istrator and partly selectable by the application programmer. In the following,a description of those parameters that are most important for the end-user andof their e�ect on performance will be given.The current con�guration of KFA's Parallel File System uses four stripedRAID disk arrays (striping factor 4) with a stripe size of 64KB. With this con-�guration, a user may obtain an I/O performance in the range from 0.20MB/s to23.08MB/s (or virtually even from 0.20MB/s to 116.04MB/s, if certain redun-dancies in the data can be exploited) depending on the choice of I/O parameters.20

0

500

1000

020406080100120140
0

5

10

15

20

25

vector length
number of nodes

tim
e(

m
s)

Fig. 9. Cost of global summationThe following list gives a short explanation of the considered parameters. Valuesactually tested in the measurements are given in brackets.nodes [1,2,4,8,16] The number of compute nodes used for parallel I/O oper-ations contributes to performance in that multiple communication paths tomultiple I/O nodes can be used in parallel.mode [0,1,2,3,4] There are �ve di�erent I/O modes controlling the strategyof �le pointer administration on multiple compute nodes (shared or private),the layout of data on disk (in node order, chronological order, or unordered),the characteristics of I/O operations (synchronized or unsynchronized), andthe exploitation of data redundancies (I/O on only one or all nodes).lrecl [8000,65000,500000,1000000,8192,65536,524288,1048576B] The numberof bytes read or written in each single I/O request (\logical record length")determines the e�ciency of each request. PFS has been designed for ratherlarge requests, multiples of the stripe size are especially honored.size [1MB, 20MB per compute node] The total size of a sequence of relatedI/O requests is relevant, because data are bu�ered on the I/O nodes. Hence,data volumes that �t into the I/O bu�ers can be handled more e�ciently,possibly even without real disk tra�c.read/write Even though not arbitrarily at the user's disposal, the distinctionbetween read and write operations may be of importance with respect toperformance.An assessment of the importance of each parameter and the determinationof optimal parameter values can be achieved by running an I/O benchmark with21

all possible combinations of typical parameter values. This benchmark results ina table representing a discrete performance function over the domain given bythe cross product of all parameter values. Each row of the table contains a validparameter value combination together with the achieved I/O performance. Forthe evaluation of the data, the table is sorted by ascending performance values.Thus, bene�cial parameter sets are found in the upper part of the sorted table,unpro�table value combinations in the lower part.A �rst observation is that the performance ranges from 0.20 to 116.04MB/sfor the parameter domain given in brackets in the above list. The very highperformance range from 23.65 to 116.04MB/s is achieved only with mode 4. Inthis mode, only one compute node really performs I/O, all other nodes just waitfor completion. On reads, the data read on one node are broadcast to the othernodes via NX message-passing, on writes, no data exchange whatsoever betweenthe I/O-handling node and the other nodes is done. Thus, the measured I/Operformance appears to be much higher than it physically really is.To avoid undesired interference in the evaluation, mode 4 has been excludedfrom all further measurements (i.e. all table entries that contain mode 4 havebeen deleted). With this modi�cation, the performance ranges from 0.20MB/s to23.08MB/s. This performance range is still beyond the physical bandwidth of theSCSI ports due to bu�ering e�ects for small I/O size (1MB per node). Neglectingtable entries with small I/O size reduces the bandwidth to an upper limit of12.63MB/s. However, only seven table entries account for high bandwidth abovethis limit due to bu�ering e�ects. Hence, parameter combinations with small I/Osizes have not been excluded from the further investigations.For a more detailed assessment of the importance of certain parameter val-ues or value combinations, the sorted performance table is now divided into fourequally sized \buckets" with consecutive table entries. Bucket 1 represents pa-rameter combinations yielding low I/O performance (0.20 to 1.49MB/s), bucket 2yields 1.49 to 4.28MB/s, bucket 3, 4.28 to 6.43MB/s, and �nally, bucket 4 bestperformance in the range from 6.43 to 23.08MB/s. The frequency of the occur-rence of any parameter value in each bucket may now be determined. Parametervalues that frequently occur in buckets 1 or 2, but rarely in buckets 3 or 4, arethose that contribute much to bad performance, those found mostly in buckets3 and 4 but rarely in 1 and 2 are, on the other hand, those contributing to highperformance.Figures ??, ??, and ?? depict the frequency distribution of the measured pa-rameter values. In the following, some major e�ects recognizable in the diagramsshall be discussed.A �rst observation is that there are hardly any parameter values that guaran-tee for good or bad performance. Most parameter values, instead, may occur inany performance range (bucket), even though with varying frequency. An exep-tion to this rule are record lengths 8000 and 8192B which are exclusively foundin buckets 1 and 2 and thus enforce very poor performance.In the \IOmode" diagram (Fig.??), only mode 3 shows a clear tendencytowards good performance. It is worthwhile to notice that the default mode 0 is22

0.20 - 1.49 1.49 - 4.28 4.28 - 6.43 6.43 - 23.08

Performance Range [MB/s]

0

5

10

15

20

25

30

35

40

45

50

Sa
m

pl
es

1 nodes

2 nodes

4 nodes

8 nodes

16 nodes

PFS - Nodes / without mode 4 (KFA)

0.20 - 1.49 1.49 - 4.28 4.28 - 6.43 6.43 - 23.08

Performance Range [MB/s]

0

10

20

30

40

50

60

70

80

Sa
m

pl
es

mode 0

mode 1

mode 2

mode 3

PFS - IOmode / without mode 4 (KFA)

Fig. 10. Frequency distribution of PFS I/O parameters (I)worst according to this evaluation.Clearly, the number of compute nodes used contributes to performance. How-ever, there is no number of nodes that ensures optimal performance. On the otherhand, the \Nodes" diagram (Fig.??) shows that it is much more likely to obtainbad performance, when using 1, 2, or 4 compute nodes than with 8 or 16 nodes.In contrast to the already mentioned short record lengths, record lengths524288 and 1048576B are candidates for good performance (Fig.??). They arenever found in bucket 1 and only rarely in bucket 2. It is important to notice that23

0.20 - 1.49 1.49 - 4.28 4.28 - 6.43 6.43 - 23.08

Performance Range [MB/s]

0

5

10

15

20

25

30

35

40

45

50

Sa
m

pl
es

lrecl 8192

lrecl 65536

lrecl 524288

lrecl 1048576

PFS - LRECL (8K) / without mode 4 (KFA)

0.20 - 1.49 1.49 - 4.28 4.28 - 6.43 6.43 - 23.08

Performance Range [MB/s]

0

10

20

30

40

50

60

Sa
m

pl
es

lrecl 8000

lrecl 65000

lrecl 500000

lrecl 1000000

PFS - LRECL (10x) / without mode 4 (KFA)

Fig. 11. Frequency distribution of PFS I/O parameters (II)a minor change in record length towards 500000 and 1000000B, respectively,signi�cantly deteriorates the situation. This indicates that I/O requests withlengths that are multiples of the stripe size are handled more e�ciently.This e�ect can also be seen from the \I/O size" diagram (Fig.??). In contrastto the expectations, the major criterion for good performance is not the totalrequest size (1MB or 20MB). Instead, it is most important, whether or not thesize is a multiple of the stripe size1. In fact, when summing up the frequency1 The total I/O size is directly related to the logical record length, in that multiples24

0.20 - 1.49 1.49 - 4.28 4.28 - 6.43 6.43 - 23.08

Performance Range [MB/s]

0

10

20

30

40

50

60

70

Sa
m

pl
es

size 1048576

size 1000000

size 20000000

size 20971520

PFS - I/O Size / without mode 4 (KFA)

0.20 - 1.49 1.49 - 4.28 4.28 - 6.43 6.43 - 23.08

Performance Range [MB/s]

0

20

40

60

80

100

120

Sa
m

pl
es

read

write

PFS / Read/Write - without mode 4 (KFA)

Fig. 12. Frequency distribution of PFS I/O parameters (III)values for the two \small sized" curves or for the two \big sized" curves, notendency towards better or worse performance is visible for one of the two cases.The second diagram of Fig.?? shows the performance characteristics of readand write operations. Apparently, reads and writes are found with almost equalfrequency in buckets 1 and 2, i.e. if the I/O performance is poor, this is notdirectly caused by read or write operations, but rather by other parameters. If,of the stripe size in record lengths always lead to multiples of the stripe size in thetotal I/O size and vice versa. 25

on the other hand, the performance is close to optimum, this is more likely tobe caused by write operations (probably because write operations �nish whenthe data arrives in the I/O node bu�ers, rather than on disk, whereas readsgenerally have to fetch the data from the disks).Concluding, in order to verify our �ndings, we shall compare the performanceof optimal and worst-case parameter combinations as obtained from the aboveinvestigations. According to the diagrams, an optimal parameter combinationshould be a write operation using 8 compute nodes, I/O mode 3, record length1048576B, and a total request size of 1MB (small). The I/O performance ob-tained for this parameter set is 16.9MB/s and is found at position 4 from thetop of our sorted performance table. Actually, the best parameter combinationyielding 23.08MB/s di�ers only in that it uses record length 65536B rather than1048576B, which one would not immediately expect from the diagrams, but isstill reasonably possible.For the worst-case parameter set (write, 2 nodes, mode 0, lrecl 8000, size1000000) the situation is similar. This combination results in an I/O perfor-mance of 0.30MB/s and is found at position 29 from the bottom of the table.Indeed, this is an even coarser approximation of the position 1 parameter set(write, 4 nodes, mode 2, lrecl 8000, size 1000000) yielding only 0.20MB/s I/Operformance. However, according to the diagrams there are many candidates forbad performance and, thus, this result is still reasonable.5.3 Numerical performanceAs long as parallel libraries are not yet available or implemented on the Paragon(cf. the paragraph concerning the ProSolver), performance results about librarysoftware can only refer to single node performance. The upper limit for theperformance rates, set by the peak performance of the i860XP node processorof the Paragon, is 75 MFLOPS for 64-bit arithmetic, corresponding to Fortrandouble-precision.BLAS. The Basic Linear Algebra Routines (BLAS) are widely used in densenumerical linear algebra programs. As they provide the most important vectorand matrix operations, the use of a version tuned to the speci�c machine pro-vides a simple way for speeding up existing numerical programs and writing newones. The BLAS routines also enhance portability, since programs can containstandard calls to a widely available set of library routines. The BLAS routineswere developed in three groups. The BLAS 1 routines consist of vector-vector-operations, while the BLAS 2 contain matrix-vector-operations, and the BLAS3 provide matrix-matrix-operations.For the Paragon a specially tuned version of the BLAS is part of the CLASS-PACK Basic Math Library by Kuck & Associates. The following performanceresults are due to the Paragon Basic Math Library Performance Report [?]. Thetables show MFLOP rates versus vector length N for selected double-precisionroutines. 26

N DAXPY DDOT DROT DSCAL DSDOT100 19.3 28.4 33.1 14.7 31.3200 21.4 30.4 34.7 17.0 49.7300 22.2 32.1 35.2 17.2 57.1400 22.0 34.7 35.4 18.2 60.9500 22.3 35.5 35.5 18.3 62.61000 22.7 42.0 33.7 19.0 70.51500 22.8 44.6 20.2 12.0 81.1DAXPY computes vector times scalar plus vector, DDOT computes the dotproduct of two vectors, DROT applies the Givens transformation matrix G tothe 2 by N matrix, DSCAL multiplies a vector by a scalar, and DSDOT computesthe dot product of two single-precision scalar vectors, performing the summationin double-precision.N DGEMV DGBMV DSYMV DSBMV DSPMV8 3.2 2.5 1.7 2.8 1.916 7.4 4.3 3.2 4.6 3.532 14.2 5.7 6.8 5.8 7.164 24.0 6.7 13.2 6.7 13.3128 32.6 9.2 21.4 9.7 22.4256 38.9 12.0 29.1 11.6 30.7512 41.0 13.7 35.5 12.9 36.3DGEMV, DGBMV, DSYMV, DSBMV, and DSPMV perform di�erent types ofmatrix-vector operations.N DGEMM DSYMM DTRSM DTRMM DSYRK8 8.4 3.8 1.6 2.3 3.316 8.4 8.3 3.8 4.9 7.732 20.8 19.1 16.5 15.5 15.264 41.5 29.9 26.0 29.8 31.4128 45.1 37.8 37.0 38.1 39.7256 45.8 41.0 41.3 41.4 42.5512 45.9 43.3 43.7 44.0 44.2DGEMM, DSYMM, and DTRMM perform matrix-matrix operations, DTRSMsolves a matrix equation, and DSYRK performs a matrix rank k operation.LAPACK. The goal of the LAPACK project [?] was to design and implementa portable linear algebra library for e�cient use on high performance computers.The library is based on the widely used LINPACK and EISPACK packages forsolving linear equations, eigenvalue problems, and linear least squares problems,but extends their functionality in a number of ways. The main method used inLAPACK for making the algorithms run faster is to restructure them in a waythat they perform block matrix operations (e.g. matrix-matrix multiplication)27

in their inner loops. The block sizes can be adjusted to exploit the memoryhierarchy of a speci�c architecture. Furthermore, LAPACK uses BLAS routineswhenever possible.The library was implemented on the Paragon by Intel SSD using LAPACKVersion 1.0b (though Version 1.1 has been available since Oct. 31, 1993). It wascompiled using optimization level -O3. Higher optimization levels caused toomuch trouble. During the tests at KFA, using the test routines from the xnetlibserver, one routine could even crash the machine. For the timings, the originalLAPACK timing routines from the xnetlib server were used.N DSYTRD DSTEQR M,N DGEBRD DBDSQR50 8.8 7.1 50,50 1.5 6.5100 15.0 7.7 50,100 14.0 6.6200 20.0 8.3 100,50 21.0 7.0300 26.0 8.5 100,100 19.0 7.2400 29.0 8.6 100,200 19.0 6.9DSYTRD reduces a symmetric/Hermitian matrix to real symmetric tridiagonalform by an orthogonal/unitary similarity transformation, DSTEQR computesall eigenvalues and eigenvectors of a real symmetric tridiagonal matrix, usingthe implicit QL or QR algorithm, DGEBRD reduces a general rectangular ma-trix to real bidiagonal form by an orthogonal/unitary transformation, DBDSQRcomputes the singular value decomposition (SVD) of a real bidiagonal matrix,using the bidiagonal QR algorithm.NAG. The NAG Fortran library is a comprehensive collection of Fortran 77routines for the solution of numerical and statistical problems. The version ofthe library implemented on Paragon is Mark 15; only double-precision mode isavailable. The implementation was performed by Intel SSD. Though this wasdone using Paragon OSF/1 Release 1.0.1 and f77/Paragon Release 4.0.6, theimplementation should be appropriate also for the current OSF/1 and f77 re-leases (Intel communication). Most routines have been compiled with -O4, somewith -O1 to avoid trouble. Some NAG programs are identical with BLAS rou-tines; these have been removed from the NAG library in order to link the BLASroutines. N F03AEF F04AFF F02AAF F03AAF64 1.3 1.5 4.7 5.1128 6.6 17.6 15.5 6.6192 20.5 28.1 21.5 7.4256 27.5 27.5 28.3 7.1512 32.5 32.5 47.0 6.6F03AEF does a Cholesky factorization, F04AFF an LU factorization; F02AAFcomputes eigenvalues of symmetric positive de�nite systems, F03AAF of non-symmetric ones. 28

ProSolver. This package of distributed-memoryFortran routines, developed byIntel SSD, consists of four parts. The ProSolver-SES (Skyline Equation Solver)library contains high-level parallel routines for de�ning or assembling, factoring,and solving large double-precision real and double-precision complex sparse sys-tems of equations, the ProSolver-DES is the analogue for large dense systems.The ProSolver-IES part is a library of parallel routines that use conjugate gradi-ent methods to solve large sparse systems of linear equations. For this iterativesolver, which has been newly developed for the Paragon, a special distributedmatrix interface was designed including routines for basic manipulations of dis-tributed matrices. The fourth part at last, contains routines for the computationof two- and three-dimensional Fast Fourier Transforms.Referring to Intel announcements, the dense solver is expected to achieve35MFLOPS, the skyline solver 20MFLOPS per node.5.4 Application performance: crystal growth simulationThis section outlines the performance of a crystal growth simulation program.This application was developed at KFA [?] for the optimization of the siliconproduction process. For the quality of the silicon crystal a constant convection inthe melt is very important. The convection results from the heating, the rotationof the crucible, and the rotation of the crystal. The convection is modeled by aset of partial di�erential equations and determined by an explicit �nite di�erencescheme.The simulated crucible has a radius of 3 cm and a height of 4 cm and isdiscretized into 30 x 90 x 40 elements. This determines the shape of the mainarrays to be 32 x 92 x 42 including some additional boundary cells. The boundarycells determine the boundary conditions at the surface of the crucible, e.g. thetemperature of the heating, and the values at the inner surface where the crucibleis unfolded to give a regular three-dimensional structure. This relation betweenthe crucible and the main arrays is shown in Fig. ??.The algorithm consists of an initialization phase, a time loop, and an outputphase. In the time loop for each time step the new temperature, the pressure, andthe velocity are computed and the boundary conditions are updated. The mosttime consuming procedure is the computation of the velocity and the pressure.Here the linear equation system resulting from the partial di�erential equationsis solved by successive overrelaxation.In this subroutine as well as in the other operations of the time loop mostlystencil operations are performed on the data structures, i.e. in order to computean array element only the values of neighbouring elements are needed. Whenupdating the boundary conditions some non-local operations are applied, suchas copying plane 91 onto plane 1 and plane 2 onto plane 92, thus simulating theclosed crucible.The code is designed such that a simulation can be split into a sequenceof program runs. The program generates a continuation data set at the end ofa run. In addition, data can be output during the time loop to allow o�-linevisualization. 29

3 cm

4
cm

(a) discretized crucible

32 x 92 x 42

0 4 360 4o o o o

(b) resulting array structure

(c) owned segment with overlapFig. 13. Application domainParallelization strategy. The code is parallelized according to the data par-titioning approach. The main arrays are divided into blocks that are assignedto the processors. For the application the High Performance Fortran BLOCKdistribution strategy is optimal. Depending on the number of processors, a dis-tribution of the second and the third dimension can be speci�ed by the user.The computation for a distributed array is spread among the processors withrespect to data locality. Each processor performs the computation for its arraysegment. Therefore, the iterations of the loops are spread over the processors.In this application, the distribution of arrays in blocks leads to two communi-cation patterns: an overlap update and a remote copy. If we assume a distributionin the second dimension, the stencil operations induce access to the boundaryelements of the neighbouring blocks. Therefore, the left- and rightmost planehave to be sent to the neighbouring processors prior to the computation.The copy operation outlined in the previous section leads to communicationbetween the rightmost and the leftmost processor, if the second dimension isdistributed.Performance results. Table ?? gives some performance results obtained onthe Paragon with Paragon OSF/1 Release 1.1. The best results where obtainedwith a new version of the library routine bcopy which will be part of Release1.2. The results demonstrate the node performance that can be expected for amemory-bound but vectorizable application, i.e. 8.3 MFLOPS, and the message-passing performance when the application becomes communication-bound withlarge numbers of processors. The volume-to-surface ratio is 1.7 for 72 processors,1.5 for 112 processors, and 0.8 for 138 processors.Table ?? shows the I/O performance for reading and writing the restart data.The I/O overhead is unimportant for long production runs but demonstrates theperformance of the Parallel File System. The total amount of data is 8.8 MB.30

processor execution speedup MFLOPScon�guration time (s)1�1 230.0 1.0 8.32�1 120.7 1.9 15.74�1 64.8 3.5 29.38�1 36.3 6.4 52.38�2 19.2 12.0 99.016�2 11.8 19.5 161.016�4 8.7 26.4 218.48�9 7.3 31.5 260.316�7 5.7 40.4 333.346�3 6.5 35.4 292.3Table 1. Execution times and speedupThe processors write one record of size 100B and 6 records of size 150KB for 8processors, 35KB for 32 processors, and 16KB for 112 and 138 processors.processor read writecon�guration pfs64 pfs641�1 1.8 1.62�1 1.8 1.64�1 1.7 2.28�1 2.0 2.38�2 2.7 3.616�2 4.1 5.416�4 6.3 8.98�9 7.1 10.716�7 9.9 14.946�3 13.1 20.2Table 2. Read/write restart data (PFS stripe size 64KB)AcknowledgementThe authors would like to thank Heinz Bast and J�org Finger from Intel Super-computer Systems Division for their substantial support.31

References1. Anderson, E., et al.: LAPACK User's Guide. Philadelphia, SIAM, 19922. Applied Parallel Research: FORGE 90, Version 8.0, User's Guide. 19923. Dally, W.J., Seitz, C.L.: The Torus Routing Chip. J. Distributed Computing, Vol.1, No. 3 (1986) 187{1964. Esser, R., Knecht, R. (eds.): Applications on KFA's Intel iPSC/860. InternerBericht, KFA-ZAM-IB-9218, Forschungszentrum J�ulich, 19925. Esser, R., Knecht, R.: Intel Paragon XP/S - Architecture and Software Environ-ment. In: H.-W. Meuer (ed.): Superconputer '93. Seminar, Mannheim, 24.-26. Juni1993, Springer-Verlag, Berlin, 19936. High Performance Fortran Forum: High Performance Fortran Language Speci�ca-tion (DRAFT), Version 0.4. Rice University, Houston TX, 19927. IEEE STD 1149.1-1990: IEEE Standard Test Access Port and Boundary ScanArchitecture.8. Intel Corporation: i860 Microprocessor Family Programmer's Reference Manual.Order No. 240875-002, 19929. Intel Supercomputer Systems Division: Software Resource Directory. BeavertonOR, October 199310. Intel Supercomputer Systems Division: Paragon Basic Math Library PerformanceReport. Order No. 312936-001, Beaverton OR, October 199311. Lee, K.: On the Floating Point Performance of the i860 Microprocessor. Int. J.High Speed Computing, Vol. 4, No. 4 (1992) 251{26712. Li, K.: Shared Virtual Memory on Loosely-coupled Multiprocessors. PhD Thesis,Yale University, Technical Report YALEU-RR-492, October 198613. Loepere, K.: Mach 3 Kernel Principles, Open Software Foundation and CarnegieMellon University, 199214. M. Mihelcic, H. Wenzl, K. Wingerath, Flow in Czochralski Crystal Growth Melts,Bericht des Forschungszentrums J�ulich, No. 2697, ISSN 0366-0885, December 199215. Mlynski-Wiese, A.: Die Architektur der Prozessorfamilie i860. Interner BerichtKFA-ZAM-IB-9214, Forschungszentrum J�ulich, 199216. Ni, L.M., McMinley, P.K.: A Survey of Wormhole Routing Techniques in DirectNetworks. IEEE Computer, February 1993, 62{7617. OSF/1 Operating System, User's Guide. Open Software Foundation, Prentice Hall,1992
This article was processed using the LaTEX macro package with LLNCS style32

