FORSCHUNGSZENTRUM JULICH GmbH
Zentralingtitut fir Angewandte M athematik
D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

Intel Paragon XP/S - Architecture,
Softwar e Environment, and Perfor mance

Rudolf Berrendorf, Heribert C. Burg, Ulrich Detert
Rudiger Esser, Michael Gerndt, Renate Knecht

KFA-ZAM-1B-9409

Mai 1994
(Stand 16.05.94)

Intel Paragon XP/S - Architecture, Software
Environment, and Performance

Rudolf Berrendorf, Heribert C. Burg, Ulrich Detert,
Rudiger Esser, Michael Gerndt, Renate Knecht

Central Institute for Applied Mathematics
Research Centre Julich (KFA), D-52425 Jilich, Germany
e-mail: r.esser@kfa-juelich.de

Mai 16, 1994

Abstract. The paper describes the hardware and software components
of the Intel Paragon XP/S system, a distributed-memory scalable mul-
ticomputer. The Paragon processing nodes, which are based on the Intel
1860 XP RISC processor, are connected by a two-dimensional mesh with
high bandwidth. The paper first gives an overview of the Paragon sys-
tem architecture, the node architecture, the interconnection network,
I/0O interfaces, and peripherals. The second part outlines the Paragon
OSF/1 operating system and the program development environment in-
cluding programming models, compilers, application libraries, and tools
for parallelization, debugging, and performance analysis. The third part
includes performance measurements characterizing the interconnection
network, input/output, and numerical performance.

1 Introduction

The Paragon, which was first delivered in Sep tember 1992, is a product of Intel
Corporation’s Supercomputer Systems Division (Intel SSD). As its predecessors,
the prototypical Touchstone Delta system and the iPSC/860, the Paragon is a
scalable distributed multicomputer. Its nodes are also based on Intel’s 1860 RISC
processor and the primarily supported programming model is message-passing.
The most significant differences between the Paragon and the iPSC/860 with its
hypercube topology are the new fast rectangular interconnection network and
the new OSF/1 based operating system.

This report intends to give a tutorial survey of the Paragon hardware and
software architecture. In addition to providing an update of an earlier version
[?], it includes an assessment of the Paragon’s performance characteristics w.r.t.
the interconnection network, input/output, and numerical performance. At the
time of writing (May 1994), more than 50 Paragon systems have been delivered
to customers including a very large system with 1984 nodes. The hardware of
the Paragon has reached a certain maturity, whereas the software is still under
development. A large part of the functionality announced for the Paragon has
been available since fall 1993 when Release 1.1 of the Paragon OSF/1 operating
system was introduced. The rest of the essential features is expected to come
with Release 1.2 in mid 1994. As it is difficult to give a valid description in

such a fast changing situation, we chose to describe the Paragon system as it is
specified for end 1994 and to specially mark those features which are currently
still under development. All performance results refer to Paragon OSF/1 Release
1.1 as available in February/March 1994. Most measurements were carried out
on KFA’s 140-node Paragon XP/S 10 system.

2 System architecture

2.1 Overview

The Paragon’s processing nodes are arranged in a two-dimensional rectangular
grid. The memory is distributed among the nodes. The system contains nodes
for three different tasks: compute nodes, service nodes, and I/O nodes. Com-
pute nodes are used for the execution of parallel programs; service nodes offer
the capabilities of a UNIX system, including compilers and program development
tools, thus making a traditional front-end computer unnecessary; and I/O nodes
are interfaces to mass storage or external networks. All nodes are uniformly in-
tegrated in the interconnection network. The network provides fast routing of
messages using wormhole routing with a deterministic routing algorithm. The
measured bandwidth between two nodes is 35 MB/s in each direction, virtually
independent of the distance between the nodes. The start-up latency for a mes-
sage issued by a program written in a high-level language is currently 90 us.
These values will improve to 75 MB/s and 50 us with Release 1.2 in mid 1994
and to 175 MB/s and 30 us by the end of 1994.

Mass storage devices and external networks are attached to special I/O nodes.
Disk arrays (RAIDs) having a capacity of 4.8 GB each provide internal disk
space. They are built into the Paragon cabinets; each one is connected to a single
I/0 node with 5 MB/s bandwidth. For external disks, tapes, and networks SCSI-
1, SCSI-2, HiPPI, and Ethernet interfaces are available. A built-in Diagnostic
Workstation is used for diagnostics and for booting the system. It is connected
to the nodes by a separate network.

Each Paragon cabinet has a footprint of 56 X 107 cm, and can contain 64
nodes, each on a separate board, and up to 8 RAIDs or 6 RAIDs plus the
Diagnostic Workstation. A full cabinet has a power consumption of about 5 kW;
the system is air-cooled. Intel SSD has delivered Paragon systems with up to

1984 nodes.

2.2 Node architecture

Compute nodes, service nodes, and I/O nodes are all realized by the same Gen-
eral Purpose (GP) node hardware (cf. Fig. 1). All components of the GP node’s
compute and network interface parts are connected by a 32-bit wide address bus

and a 400 MB/s 64-bit wide data bus.

Application Message
Processor Performance Data Transfer Processor
i860 XP Monitor Engines (2) i860 XP
400 MB/sec
50 MHz
Memory 110 Expansion Network |,
16 - 32 MB Interface j«—> Port Interface l«—

Fig. 1. Paragon node components

Compute part. The compute part includes an Intel 1860 XP microprocessor,
whose clock speed is 50 MHz (20 ns p/usr/local/doc/dokumente/ib/i9409er cy-
cle), and 16 or 32 MB of memory. The memory is constructed from 4 Mbit, 60 ns
DRAM chips. It is organized in two banks and has single-bit error correction and
double-bit error detection. The peak speed of data transfer between the memory
and the processor caches is 64 bits per cycle, i.e. 400 MB/s. The node memory
can be expanded by a daughter card that can carry additional 32, 64, or 128 MB.

The 1860 XP is a fast compute-oriented RISC processor in 0.8 micron CMOS
technology and contains more than 2.5 million transistors (cf. Fig. 2 and [?]). Ad-
dress paths are 32 bits wide, and data paths are 32, 64, or 128 bits wide. Besides
the RISC core, it has two 16 KB caches, one for data and one for instructions,
and two integrated vector pipelines for 32-bit and 64-bit IEEE floating-point
add and multiply. Furthermore, it has an on-chip memory management unit
supporting the caches and virtual memory. Page sizes are 4 KB and 4 MB; the
Paragon operating system uses only the small pages.

The data cache and the floating-point registers are connected by a 128-bit
wide data path, enabling a data rate of 128 bits per cycle or 800 MB/s. As the
pipelines can work simultaneously and the adder can deliver one result every
clock cycle and the multiplier one result every two clock cycles the theoretical
peak performance of the i860 XP is 75 MFLOPS (64-bit arithmetic). For 32-bit
arithmetic, also the multiplier delivers one result per cycle.

Network interface part. The interface to the interconnection network con-
sists of a message processor, a network interface controller, and two Direct
Memory Access (DMA) controllers. The message processor is a second 1860 XP
processor operating in parallel and sharing the memory with the application
processor. Its task is to perform the details of inter-node communication and to
provide global communication functions. Thus the application processor is not
interrupted by message-passing operations; context switching and code turbu-
lence and draining of the floating-point pipelines are avoided.

For outgoing messages, the message processor splits longer messages into
packages, adds protocol information, and initiates the transfer. Incoming mes-
sages are autonomously received and the application processor is informed when

External

Address |
|
Instruction Cache Memory Data Cache
Management
XR: 4 KB Unit XR: 8 KB
XP: 16 KB XP: 16 KB
finstr padr. 3§ _paaadar | 4
____________________________ [TR Data
— »
""""""""""" [H
Core Instr. § 11 FP Instr. |
v L1 v A 4
Bus Floating Point (FP)
External o | ol RISC Core Control Unit
Data]
Unit - -
Core Registers FP Registers
fdest 1 1 4
fsrcl T Ly
fsrc2 \ ;
l [T' l
? _/
Graphics Unit
Pipelined Pipelined
Merge Register Adder Unit Multiplier Unit

—> Data, 32 Bit
=—> Data, 64 Bit
=P Data, 128 Bit

-------- > Instruction, 32 Bit
— — » Address, 32 Bit

Fig. 2. Components of the Intel i860 processor (from [12])

a message has completely arrived in memory. The message processor also han-
dles global operations independently including broadcast to and synchroniza-
tion of nodes as well as reduction operations on integer, floating-point or logical
operands (e.g. global sum, global minimum, global and). The message processor
will be utilized as from Release 1.2 of the operating system.

The actual transmission of data between the memory and the network is
effectuated by a special Network Interface Controller (NIC). It is assisted by
two DMA controllers, one for inbound and one for outbound messages, which
can operate in parallel.

Additional hardware. The Paragon GP node contains a data capture chip
(RPM) that non-intrusively collects node performance data by monitoring bus
activities. The data are transmitted to a service node through the interconnection
network and are made available to the user through the System Performance
Visualization Tool (SPV).

Furthermore, every GP node is equipped with an expansion port. On I/O
nodes, this is used to attach a special I/O interface card.

Hardware plans. A multiprocessor node board is being designed that carries
three 1860 XP processors: two application processors and one message processor
all sharing the node memory. It will be available and supported by the operating
system by the end of 1994.

2.3 Interconnection network

The Paragon has two communication networks: the high-speed data network
and the diagnostic network. The diagnostic network is used for booting and
diagnostics. It conforms to the IEEE 1149.1 JTAG specification [?]. This imple-
ments serial scan strings which provide access to the various Paragon hardware
components.

The data network is the main communication vehicle between all nodes.
For its topology, Intel SSD has chosen a 2-dimensional mesh (cf. Fig. 3). It is
constructed from Paragon Mesh Routing Chips (iMRCs) which are connected
by 16-bit wide high-speed channels. To each iMRC, one node may be attached.
The iMRCs can, however, route messages autonomously and are independent of
the attached node, and in most Paragon systems there is a number of iMRCs
which have no node attached to them. Routers and channels are combined into
backplanes carrying 16 routers (4 rows and 4 columns). Four of these active
backplanes accomodate the nodes of one cabinet.

node
e
|
node
e

node node

£
T
0
<
byl
0O
<
Py
0o
<
Py
0O

al
al
3

node node

£
T
9
<
byl
3
<
T
o
B4
Py
0O

1 |
— = | - |
8 Lo L
on T
1 |
A\

node node

iIMRC |

=1

Fig. 3. Paragon interconnection network

The Paragon Message Routing Chip (iMRC). The iMRC is a message
routing chip with b input and 5 output channels. One input and one output

channel are connected to each of the 4 neighbouring nodes (east, west, north,
south). The last pair of channels is connected to the Network Interface Con-
troller (NIC) on the attached node. A 16-bit buffer on the iMRC is assigned to
every input channel. The iMRC can route a 16-bit quantity of data from an
input buffer to any output channel. If the direction does not change, it takes
40 ns to make an individual routing decision and to close the resulting switches.
The iMRC hardware supports broadcasting by automatically routing a message
to all nodes in the rectangle between the sending and the receiving nodes.

Wormbhole routing. The unit to be transmitted between nodes is one packet.
The message processor on the node partitions the messages into packets of 8 to
1984 bytes (user controlled, default 1024 bytes); it also adds the necessary routing
information to the packets and controls the transmission of packets between the
network and the node.

Wormbhole routing has been introduced as a fast switching technique for di-
rect networks by Seitz and Dally [?, ?] to combine a pipelined transmission of
packages with low storage requirements on the routers. In wormbhole routing a
packet is divided into a sequence of flits (low control digits). The flit size in the
Paragon system is 16 bits. A flit can be transmitted between adjacent routers in
parallel in a single step.

The header flits of a package determine its path in the network. As the
header advances along the specified route, the remaining flits follow in a pipelined
fashion. When the header is blocked, because a channel that it wants to use
is already in use by another packet, the whole pipeline stops. The sequence
of flits remains in place, i.e. in the input buffers of the router chips until the
requested channel is free. A packet’s header thus reserves a path for its packet,
and the individual channels are owned by the packet until the last flit has been
transmitted.

The pipelined nature of wormhole routing makes network latency nearly in-
dependent of the distance between the sending and the receiving node, at least
for longer messages. Furthermore, it requires only very small buffers on the
routers. As it is difficult to synchronize a large network, synchronization is re-
placed by a handshake protocol between neighbouring routers. To implement
such a self-timed network the Paragon uses a request line and an acknowledge
line in addition to the data lines of each channel.

A serious problem with wormbhole routing is deadlock. It can easily occur
because packets travelling through the network constantly request new resources
(channels) while occupying others. Deadlock is avoided by selecting adequate
routing algorithms. The Paragon uses a simple but effective approach: messages
are first sent in the horizontal direction and then in the vertical direction. A
change of direction is allowed only once on the path. This algorithm is menimal
(it uses a path of minimal length) and deterministic (as opposed to adaptive
algorithms which can take collisions into account and make detours).

In detail, routing on the Paragon works as follows. A packet has two header
flits containing the orientation of the path and the number of intermediate hops

to be passed. The first flit contains the orientation and the number of hops in
the horizontal direction. After deciding at the sending node whether to go left
or right, the flit proceeds from router to router being decremented by one at
every router it passes. When its value is zero, the first header flit is stripped off,
the direction is changed to vertical, and the second flit is used to determine the
orientation and the number of hops to the destination.

2.4 1I/0 and mass storage

Specialized I/O nodes located at any free position in the network act as inter-
faces between the processing nodes on one side, and mass storage and external
networks on the other side. Their number is in principle arbitrary and does
not depend on the number of compute and service nodes. An I/O node is built
from a regular GP node by plugging a specialized adaptor card into the node’s
expansion port.

For different I/O requirements, several types of I/O nodes are available in-
cluding the MIO node, the SCSI-2 node, and the HiPPI node. The MIO node
provides a SCSI-1 interface (5 MB/s, e.g. for internal disk arrays), an Ethernet
interface (10 Mbit/s), and a V24 interface. The SCSI-2 node currently exists in
an 8-bit, 10 MB/s version; a 16-bit, 20 MB/s version is planned for 1994. The
HiPPI node (100 MB/s) consists of two physical nodes; it serves to attach exter-
nal disk arrays or frame buffers as well as FDDI networks (100 Mbit/s).

Every I/O request issued by a node is serviced by an I/O node. When, for ex-
ample, a program requires data from a disk file, the data are read and buffered by
the I/O node to which the physical device is attached, and are transferred to the
requesting node via the interconnection network. All this happens transparently
to the user program.

The primary mass storage systems of the Paragon are disk arrays (RAIDs)
which are integrated in the Paragon cabinets. Each disk array has its dedicated
MIO node to which it is connected via the SCSI interface. The RAIDs consist
of five 3.5-inch commodity disk drives with a capacity of 1.56 GB each, which
hold the data and parity information. The RAID controller uses RAID level 5
functionality. In total one disk array can accomodate 4.8 GB of data. In the event
of a drive failure, the Paragon operating system, together with the controller,
provides routines to rebuild the data. The file system remains intact and can be
used while the reconstruction is performed. Several file systems usually resident
on different RAIDs can be combined to a single Parallel File System (PFS).

In addition to the internal disk systems, connections and services to support
external disk storage and backup systems are also available for the Paragon,
including HiPPI, FDDI, and UniTree. An FDDI network is attached to the
Paragon via an NSC router connected to the HiPPI node. Furthermore, there is
a QIC-150 streamer on the Diagnostic Workstation, and another internal 4 mm
streamer tape can be attached to an MIO node.

2.5 Fault tolerance

The strategy on the Paragon for achieving a certain level of fault tolerance is
twofold: there are several means for online diagnostics on one hand, and there
are ways of concurrent repair and operation on the other hand.

A separate diagnostic network controlled by the Diagnostic Workstation mon-
itors important system components including CPUs and memories on the nodes,
iMRCs, I/0O interfaces, and power supplies. The Diagnostic Workstation is also
used for booting the system. Online diagnostics can test groups of nodes with-
out disturbing the computational activities of other nodes. The interconnection
network provides error detection capabilities in both hardware and the message-
passing protocols.

When a fault has been detected in a node, a disk array, or a communication
component, the system administrator can reconfigure the system so that part of
the machine can still be used. A faulty node is marked so that it is no longer
allocated to users. This does not affect the communication network, since the
mesh routing chip to which the node is attached can continue operation. The
system must, however, be powered down, when the node is replaced. In case
of a faulty disk in an internal RAID system the disk can be replaced during
operation of the rest of the machine and the contents of the disk can be rebuilt
online while normal disk I/O goes on.

3 Operating system

The Paragon operating system was designed to provide an application interface
compatible with the OSF/1 operating system developed by the Open Software
Foundation [?], the NX message-passing interface compatible with the iPSC/860,
and a parallel file system extending the Concurrent File System of the iPSC/860.

3.1 Paragon OSF/1

To realize the application interface an “Advanced Development” multiprocessor
version of OSF/1, called OSF/1AD, was developed. OSF/1AD is based on the
Mach 3 microkernel developed at Carnegie Mellon University [?]. However, to
support an environment without shared memory, the NORMA (NO Remote
Memory Access) version is used. The Paragon operating system architecture is
shown in Fig. 77.

The Mach kernel provides threads, tasks, and ports as key mechanisms for
building higher-level system services. These mechanisms are usually not directly
exposed to the user. A thread constitutes a basic unit of execution. A task is a
virtual address space in which a set of related threads execute with protected
access to system resources. Threads can be executed concurrently with other
threads, even within the same task. The conventional notion of a process is,
in Mach, represented by a task with a single thread of control. Communication
between tasks is based on a client/server system structure in which tasks (clients)

Application

NX Interface

Server

Emulation
Library

Scalable Services

Microkernel

Fig. 4. Paragon OSF/1 operating system architecture

access services by making requests of other tasks (servers) via messages sent over
a communication channel called port (Inter Process Communication, IPC). A
port is a unidirectional channel consisting of a queue holding messages managed
and protected by the kernel. A task holds rights to these ports that specify its
ability to send or receive messages. Only one task can hold the receive right for
a port.

Each Paragon node runs the microkernel that supports basic system services.
An OSF/1 server, implemented outside the kernel, runs on every node and pro-
vides access to all OSF/1 services including process management, file system,
and network access.

In addition, an emulation library is linked to an application, implementing
those parts of the operating system that can be executed in the same task as
the UNIX process. There are three kinds of operations:

— Those which can be performed completely locally to the task, such as re-
turning the process identifier.
— Those which use Mach services directly, such as creating a new thread.

— Those which call the OSF/1 server.

These OSF/1 servers and libraries cooperate to offer the view of a single
UNIX-like system to the user.

The NX interface provides a superset of the NX/2 message passing-interface.
Applications use the fast kernel-level NX interface rather than the microkernel
IPC for message-passing.

The Paragon OSF/1 supports virtual memory on all nodes.

File systems. The Paragon OSF/1 file system is based on the Berkeley 4.3
Virtual File System (VFS). VFS provides an abstract layer interface to different
UNIX file system types, especially to the UNIX File System (UFS) and to the
Network File System (NFS). UFS is compatible with the Berkeley 4.3 Tahoe re-
lease. On top of the VFS, which is a single-processor file system, the Distributed

File System (DFS) has been built. This provides a common logical view of the
file system structure for every process on every node. There is only one global
directory tree which transparently combines local file systems of RAID disks and
NFS-mounted file systems.

In addition to its support for UNIX-type file systems, the Paragon operating
system offers the Parallel File System (PFS), which provides file services at high
data transfer rates by striping files across multiple I/O nodes and their attached
RAID systems. The amount of data from a PFS file that is stored in each RAID
system is determined by the stripe unit (e.g. 8 KB or 64 KB), which is set by the
system administrator. There are three forms of parallelism for I/O to a PFS file.
If a single node reads or writes a block of bytes that is larger than one stripe
unit, the different stripe units can be read or written in parallel. If two of more
nodes access different RAID systems at the same time, the disk operations can
proceed in parallel. Additionally, the single disks of each RAID system operate
in parallel. PFS can be used with standard OSF/1 system calls and commands.
For parallel applications there are also parallel I/O system calls including those
of the Concurrent File System (CFS) that exists on the iPSC/860.

The UniTree client interface is available for access to servers for file exchange
as well as backup and restore.

Single system image. A single system image across the multicomputer system
for management of processes, files, user authorization, accounting, etc. is realized
by scalable services which integrate the individual services of all nodes. For
example, users are able to obtain status information regarding all processes in
the system using the ps utility, killing a process is possible wherever the process
may be. The DFS allows all I/O devices to be equally accessed from any node.
The system is managed as a conventional one-processor system.

3.2 Partitioning and scheduling

The Paragon operating system allows the processor mesh to be divided into sets
of nodes, called partitions. Partitions provide a means of restricting access to
portions of the mesh for particular users or types of jobs and a way to specify
different scheduling characteristics on different portions of the machine. In prin-
ciple, a partition may comprise any arbitrary set of nodes. At least the following
partitions which are established by the system administrator must always be
present (cf. Fig. 77):

— The root partition; this consists of all the nodes in the machine.

— The service partition; this supports general user services, such as editors,
compilers and UNIX shells. Operating system services, such as the file server,
are physically located on service nodes. Load levelling is supported within
the service partition by automatically moving new processes to less loaded
nodes.

10

1/0 nodes service partition

compute partition

JJO 0|
RN Y
agaaon
wesmors =TT Q10 O
JJaaa0
|

Euuyuyu)
LoD -

Fig. 5. Paragon partitions

— The compute partition; this consists of the majority of the nodes in the
system. Here the users’ parallel applications are executed. The compute par-
tition is hierarchical; i.e. it may be divided into subpartitions, which them-
selves may have subpartitions and so on. Subpartitions may also overlap.
Subpartitioning of the compute partition can be done by the system admin-
istrator as well as by the user.

The I/O nodes can be grouped into an I/O partition. Normally, however,
these nodes are added to the service partition.

Subpartitions are defined by specifying the parent partition from which to
allocate the nodes, the specific nodes to allocate, access permissions, and the
scheduling characteristics of the partition. Attributes similar to the UNIX file
systemn modes control the access to partitions (for user, group, all):

— r allows the subpartitions of a partition to be displayed,

— w allows the attributes of the partition to be changed and to create and
remove subpartitions, and

— x allows applications to run in the partition.

If access permissions or scheduling characteristics are not explicitly assigned they
are inherited from the parent partition.

Depending on the type of the partition, different scheduling mechanisms are
available. In the service partition, processes are scheduled in the usual UNIX-
style timesharing mode, in which they run for a short period of time (typically
100 ms) or until they issue a blocking system call.

11

Parallel applications will usually run in the compute partition and will there
be scheduled according to the gang scheduling mechanism. In this model all the
processes which make up an application are scheduled at once on all the nodes
on which the application has been loaded. The application will run until the end
of its roll-in quantum, at which time the system will determine whether there
is another application with equal or higher priority ready to run. As the paging
facilities of the operating system are used to page an application in and out,
small applications need not be moved between disk and memory on a context
switch. The roll-in quantum is an amount of time specific of the partition and
will be in the range of several minutes. Applications in overlapping partitions
are always scheduled in a way such that only one application runs on any single
node at one time. Gang scheduling will become available in mid 1994.

When on a single node more than one process is associated with an appli-
cation, this set of processes is scheduled by the normal UNIX scheduling, while
the application is active. Applications are not rolled out, when they issue system
calls. Therefore asynchronous, i.e. non-blocking, I/0 is provided.

3.3 System access and accounting

The user can develop and run parallel applications on the Paragon system ei-
ther interactively with remote login facilities or by submitting batch jobs. The
Paragon appears as a stand-alone UNIX system on the network connected to
his workstation. After login, the user is running his shell somewhere in the ser-
vice partition. Although the Paragon requires no front-end, neither for program
development nor for system administration, most program development tools
including compiler and performance analysis tools are available as cross devel-
opment versions running on SUN and SGI workstations.

The Paragon utilizes the Multi-User Accounting and Control System (MACS)
developed by the San Diego Supercomputer Center to manage the system re-
sources and the Network Queueing System (NQS) developed at NASA Ames
to manage batch jobs. It provides flexible, automated job scheduling schemes
for assigning system resources. MACS allows simultaneous batch and interactive
scheduling and control, using separate partitions for each. The scheduler allows
jobs to be executed from the NQS queues. The system administrator specifies for
each queue the number of nodes, the priority, and the number of jobs permitted
to wait for execution. MACS can monitor and account for system resource usage,
e.g. number of nodes and execution time of the job, producing data for analy-
sis and reporting purposes. MACS includes facilities for automatic or selective
preemption of jobs that have exceeded their resource allocations.

3.4 Message-passing

Processes in parallel applications use several facilities both in hardware and in
software to exchange information. As mentioned earlier, these include the mes-
sage processor, a second i860 processor on every node. The message processor

12

shares memory with the application processor, and the two processors communi-
cate with each other via shared variables. When the application processor wants
to make a message-passing call, it places the parameters into these variables.
The message processor regularly polls them and executes the call when it finds
the information. The basic message-passing software, which, e.g. packetizes the
messages and controls the transfer, runs on the message processor at the kernel
level and can directly address the hardware. Thus, the involvement of the OSF/1
operating system in message-passing is minimal keeping the startup latency low.

Outgoing messages are sent directly out of the process memory. For incoming
messages, a system buffer is provided on every node. It contains a distinct buffer
for each node in the Paragon system. Every sending node knows the status of its
assoclated buffers on all receiving nodes. A process sends the first packages of a
message into this buffer. As soon as a receive is posted, the message processor
will transfer the data into the process memory, thus freeing space for subsequent
packages. It will also inform the application processor when the message has
completely arrived by setting a shared variable. If a receive has been posted
before the message arrives, the packets go directly to the process memory. The
various buffer sizes can be selected by the application. The message processor
will be used in this way as from mid 1994.

4 Program development environment

Diverse programming models are supported by the Paragon system’s develop-
ment environment. A broad range of programming languages, optimized mathe-
matical libraries, and a set of tools assisting the user to create new applications
or to port existing codes are available from Intel SSD or as third party products.
Most tools can be used on the Paragon service nodes or as cross-development
tools on Sun and SGI workstations. Several components of the Paragon system’s
development environment have been ported from the iPSC/860.

4.1 Programming models

The Paragon system supports several programming models. Besides the message-
passing model, which is basic for most distributed-memory multicomputers and
is also the Paragon’s primary programming model, the Paragon supports the
data parallel model through High Performance Fortran (HPF) and the shared-
memory model through Shared Virtual Memory (SVM).

Message-passing. In this programming model independent processes are run-
ning asynchronously. They communicate by explicit message-passing. Messages
are also used to synchronize processes. On the Paragon, several processes be-
longing to one application can run concurrently on one compute node.

In principle, the processes can be totally different programs. The most com-
mon programming style, however, is the Single Program Multiple Data (SPMD)
style where the same program runs on each node allocated to the application,

13

but each node works only on its part of the data. For perfectly parallel problems,
each process can do its work without access to data held by other processes.
For other types of problems, the processes must exchange data with each other
to do their work. Another popular programming style is the manager/worker
concept. One manager process starts several worker processes and assigns them
their tasks. As soon as a worker process has finished its task it reports to the
manager process which accepts and interprets the results and assigns it a new
task.

Data parallel. For the data parallel programming model, Intel SSD will pro-
vide High Performance Fortran (HPF) [?], an extension to Fortran 90. Paral-
lelism is expressed in the program by array operations. Data distribution direc-
tives describe how arrays are to be distributed to the parallel processes. The
programmer also specifies a mesh of processes which is then mapped to the
real hardware. The compiler takes responsibility for inserting the explicit com-
munication instructions required for running the code on a distributed-memory
system. The amount of communication and load balancing is determined by
the mapping of data to processes. Each process is responsible to perform the
computation for its assigned data. Therefore, the programmer can control the
communication costs and load balancing with the help of the distribution di-
rectives. HPF provides two important benefits for the parallel programmer: a
familiar programming model and portability by machine-independent specifica-
tion of the data distribution.

Shared memory. To a limited extent, the Paragon system also incorporates
Shared Virtual Memory (SVM) [?] that allows building parallel applications in
which data are logically shared between processes on one or more nodes. The dis-
tributed physical memory forms a uniform global address space accessible from
every node. There is no need for explicit message-passing. On the Paragon, SVM
can be used via the standard UNIX System V shared segment interface. Shared
segments can be mapped into the virtual address space of different processes.

4.2 Message-passing libraries

The message-passing programming model is widespread, and many message-
passing libraries have been developed. Some of these are related to a special
distributed memory machine, e.g. Intel SSD’s NX message-passing library. Oth-
ers are portable in a sense that they allow the user to specify processes and
inter-process communication in a machine-independent way.

NX message-passing library. The Paragon OSF/1 operating system includes
the NX message-passing library which is known from the iPSC series. Some ex-
tensions are supported on the Paragon including the possibility of allocating
more than one process of a parallel application to a node. Synchronous (csend,

14

crecv) and asynchronous (isend, irecv) messages, as well as messages produc-
ing interrupts (hsend, hrecv) are supported. Additionally, global operations for
performing operations that use data from every node, e.g. for a global sum, are
available.

Other message-passing libraries. Portable message-passing libraries on the
Paragon include PVM of Oak Ridge National Laboratory, EXPRESS of Parasoft,
PARMACS of the Gesellschaft fiir Mathematik und Datenverarbeitung (GMD)
and Pallas, P4 and TCGMSG of Argonne National Laboratory, and MPI based
on P4.

4.3 Languages and compilers

The Paragon system offers a set of programming languages which are interoper-
able, allowing compiler output to be linked irrespective of the source language.
Compiler switches allow different code generation strategies (e.g. scalar code,
software pipelined loops, and vector code) to be selected, as well as different
optimizations (e.g. scalar optimization, loop transformation, and cache manage-
ment). The compilers exploit the advanced hardware features of the 1860, such
as dual instruction mode, dual operation instructions, and the arithmetic and
load pipelines. The compilers were originally developed for the iPSC/860 and
have been adapted to the Paragon.

Fortran 77 and High Performance Fortran. Version 4.5 of the Paragon For-
tran 77 compiler for Paragon OSF/1 is available. Compilation can be performed
on the service nodes and on workstations using the cross compiler.

The FORGE HPF batch pre-compiler, called xhpf, is available from Ap-
plied Parallel Research. It includes MAGIC, an optional automatic paralleliza-
tion mode. xhpf with MAGIC takes as input a serial Fortran77 program and
automatically generates a parallelized code with Fortran 90 array syntax and
HPF directives. From this, xhpf produces a Fortran 77 program with embedded
calls to a communication library.

C, C++4, and Ada. Version 4.5 of the Paragon optimizing C compiler for
Paragon OSF/1 is available on the service nodes and as a cross compiler. For
object oriented programming Paragon C++ is available which is based on the
AT&T cfront preprocessor which translates C++ into C. For the installation
of this compiler a license of AT&T is necessary. An Ada compiler for Paragon
OSF/1 is available, too.

4.4 Program development tools

The tools available on Paragon are based on the Tools Application Monitor
(TAM). This is a per-node, per-application server for tools that perform applica-
tion process monitoring on the Paragon system. Figure 6 shows the co-operation
of the program development tools.

15

All graphical tools described below can be started by the graphical user
interface ParAide which also assists the user in loading parallel applications on
the compute nodes and provides a means to open text files into an editor.

Debugging. The Interactive Parallel Debugger (IPD) is a source-level debug-
ger for large parallel application programs written in Fortran, C, or Assembler.
The IPD allows context debugging to access and control selected groups of pro-
cesses spread across multiple nodes. The IPD has a data reduction mechanism
and facilities to examine the message-passing events and structures. Breakpoints
can be set in some or all of the application’s processes. An enhanced version, the
XIPD supports a graphical user interface based on Motif. XIPD provides con-
tinuous update of node status, indicates which routines are currently executing,
and notes where the execution point is in the code.

Fortran C
Source Source

FORGE 90
Paragon Paragon
Fortran C
Optimizing Compiler Optimizing Compiler

Libraries & Assembler Run-Time Libraries,
Object Code & Floating Point, 1/O,
Management Linker Messages, X-windows

;

Parallel F——> Performance
Paragon >

Debugger - « Analyzer

Fig. 6. Paragon program development

Performance analysis. The runtime profiling tools prof and gprof, which are
special versions of the UNIX profiler prof and gprof for the Intel 1860 processor,
can be used to analyze an application program. During a program run, the
IPD can collect profiling data on every node. These are presented in tables and
provide the user with information about the number of subroutine calls and
the execution time of these routines. prof produces a simple execution profile,
whereas gprof additionally produces a call-graph and a cycle listing. XProf and
XGprof provide graphical front ends to prof and gprof.

16

To monitor the performance of the Paragon system Intel SSD has developed
the System Performance Visualization Tool (SPV). It allows the user to display
the Paragon front panel lights on his workstation and get information on CPU,
mesh, and memory bus utilization. The hardware performance monitor RPM on
each compute node collects mesh and memory bus information while the Mach
Kernel collects CPU idle-time information, page fault rate, etc. Each second
these performance data are sent to the spv daemon running on the service par-
tition. Data transfers are optimized by using a logical tree structure. The spv
daemon sends this data to every spv client running on either the native Paragon
or on a remote workstation.

For software-based performance monitoring of applications, the Paragon of-
fers a tool built on the ParaGraph display system developed at the Oak Ridge
National Laboratory. This system presents an animation of the execution of
parallel applications as derived from trace information gathered during program
execution. In addition, the user can request graphical summaries and statistical
analyses of overall program behaviour in a variety of display formats. ParaGraph
which uses Motif replaces the Performance Analysis Tools (PAT) which are pro-
vided on the iPSC/860 for identification of time intensive parts in an application
program.

Utilities. A parallel make utility, pmake, that maintains up-to-date versions of
target files and performs shell programs in parallel, is available on the Paragon.
It is an extension of GNU make. The pmake command updates multiple target
files in parallel. Parallel execution may occur either in the service partition or
the compute partition. In the service partition, pmake relies on process migra-
tion and load balancing to ensure efficient parallel execution. In the compute
partition, pmake places commands on the available nodes within a partition and
executes as a parallel application.

4.5 Optimized mathematical libraries

To ease the process of porting software to the Paragon and to provide means of
exploiting the machine’s computational power, Intel SSD offers several libraries
of mathematical routines, both node libraries with sequential routines and par-
allel libraries.

Node libraries. As the Paragon Fortran compiler does not always produce
code that makes the most of the 1860 processor, it is mandatory in order to
achieve high node performance to apply optimized library routines, at least for
the mathematical kernels of the applications.

The main library for this purpose is the Basic Math Library, an implementa-
tion for the 1860 processor of the CLASSPACK Basic Math Library from Kuck
and Associates. It contains the Basic Linear Algebra Subroutines (BLAS) and
also several FFT routines and solvers for tridiagonal and pentadiagonal linear
systems. The Basic Math Library forms the basis for other libraries such as the

17

commercial NAG Library or the public domain Linear Algebra PACKage (LA-
PACK) [?] that contains routines for the solution of dense linear systems and
eigenvalue problems.

The Signal Processing Library (SEGlib) includes a collection of signal pro-

cessing routines that are compatible with the SEGIib Seismic Subroutine Stan-
dard Library.

Parallel libraries. Intel SSD has developed the ProSolver software package
for the solution of large systems of linear equations. The matrices can be stored
either on disk or in local memory. There are three separate products: ProSolver-
DES applies a direct method to dense matrices, ProSolver-SES is a skyline direct
solver for sparse matrices, and ProSolver-IES is an iterative solver for general
sparse matrices.

There is a growing collection of mathematical software developed for iPSC
and Paragon systems by institutions outside Intel SSD. References to this soft-
ware can be found in the software catalog [?].

4.6 Visualization tools

The Paragon system provides several levels of support for network-transparent,
client/server visualization. The X Window System X11 Release 5, PEX, and
Motif are included in the system software. These tools enable client applications
to run on the Paragon system and direct their output to a graphics workstation
server. Additionally, the Distributed Graphics Library (DGL) is available for
interactive graphical viewing of application results.

5 Performance

In contrast to the previous chapters that contain a description of the Paragon
hardware and software and can only give upper limits for its performance, this
chapter attempts to give the reader an idea of the performance that real programs
can reach on the system. The first two sections report measurements of the
basic message-passing and I/O performance, while the last two sections deal
with computational performance and describe measurements carried out on some
algorithmic kernels and on a typical application.

Most performance results were obtained on KFA’s Paragon XP/S 10 system,
which is equipped with 140 compute nodes (with 32 MB memory each), 4 service
nodes, 1 HiPPI node, and 6 MIO nodes (16 MB) serving one RAID system each.
Four RAID systems are configured to form two Parallel File Systems, one with
stripe size 64 KB, and one with 8 KB.

All measurements were made under Release 1.1 of the Paragon OSF/1 oper-
ating system that does not yet make use of the message processor on the nodes.
All message-handling is done by the application processor and this degrades

18

message-passing performance for send operations, e.g. by instruction cache load-
ing and re-loading on the application processor, as well as for receiving opera-
tions, e.g. for asynchronous receives. This deficiency can of course considerably
reduce the performance of parallel applications. It will be overcome by Release
1.2 of the operating system when the message processor will finally be dedicated
to communication tasks.

5.1 Network performance

The basic parameters for the network performance are the message latency and
bandwidth between the nodes. Our measurements show that the startup time
for zero-length messages with synchronous message-passing is 90 us, the maxi-
mal bandwidth between two nodes reached from an application program is ap-
prox. 35 MB/s which is 20 percent of the peak bandwidth of a communication
channel; half of this achievable bandwidth is reached with a message length of
6,200B. Fig.?? shows the bandwidth as a function of the message length for up
to 100,000 B. The hop overhead for long-distance message-passing is neglectable
if the communication channels along the path used during the communication
have no contention.

35

MB/s

0 | | | | |
0 20 40 60 80 100 120

message length (KB)

Fig. 7. Measured bandwidth between two neighbouring nodes

Synchronization between multiple nodes is not supported by the Paragon
hardware; instead, it is implemented via low-level message-passing calls. The

19

same applies to global operations, e.g. to reductions or global sums. As the
startup cost for small messages is relatively high, the performance of the global
functions is dominated by this overhead; this holds especially for those com-
munication operations which produce a large amount of small messages, e.g.
global synchronization of nodes. Typically the cost of these operations grows
logarithmically with the number of nodes as they are performed in a hierarchi-
cal tree-like manner. Fig. 7?7 shows the performance of global synchronization of
n nodes while Fig. 7?7 shows the performance of a global summation, the latter
representing a combination of communication and computation.

25

Il Il Il Il
0 20 40 60 80 100 120 140
number of nodes

Fig. 8. Cost of global synchronization

5.2 Parallel File System I/O performance

Functionality and performance of the Parallel File System (PFS) depend on a
number of parameters, partly predefined by the Paragon OSF/1 system admin-
istrator and partly selectable by the application programmer. In the following,
a description of those parameters that are most important for the end-user and
of their effect on performance will be given.

The current configuration of KFA’s Parallel File System uses four striped
RAID disk arrays (striping factor 4) with a stripe size of 64 KB. With this con-
figuration, a user may obtain an I/O performance in the range from 0.20 MB/s to
23.08 MB/s (or virtually even from 0.20 MB/s to 116.04 MB/s, if certain redun-
dancies in the data can be exploited) depending on the choice of I/O parameters.

20

25—

20—

15+

time(ms)

10—

1000

500

80 60 40 20 o O

number of nodes vector length

Fig. 9. Cost of global summation

The following list gives a short explanation of the considered parameters. Values
actually tested in the measurements are given in brackets.

nodes [1,2,4,8,16] The number of compute nodes used for parallel I/O oper-
ations contributes to performance in that multiple communication paths to
multiple I/O nodes can be used in parallel.

mode [0,1,2,3,4] There are five different I/O modes controlling the strategy
of file pointer administration on multiple compute nodes (shared or private),
the layout of data on disk (in node order, chronological order, or unordered),
the characteristics of I/O operations (synchronized or unsynchronized), and
the exploitation of data redundancies (I/O on only one or all nodes).

Irecl [8000,65000,500000,1000000,8192,65536,524288,1048576B] The number
of bytes read or written in each single I/O request (“logical record length”)
determines the efficiency of each request. PFS has been designed for rather
large requests, multiples of the stripe size are especially honored.

size [1MB, 20 MB per compute node] The total size of a sequence of related
I/0 requests is relevant, because data are buffered on the I/O nodes. Hence,
data volumes that fit into the I/O buffers can be handled more efficiently,
possibly even without real disk traffic.

read/write Even though not arbitrarily at the user’s disposal, the distinction
between read and write operations may be of importance with respect to
performance.

An assessment of the importance of each parameter and the determination
of optimal parameter values can be achieved by running an I/O benchmark with

21

all possible combinations of typical parameter values. This benchmark results in
a table representing a discrete performance function over the domain given by
the cross product of all parameter values. Each row of the table contains a valid
parameter value combination together with the achieved I/O performance. For
the evaluation of the data, the table is sorted by ascending performance values.
Thus, beneficial parameter sets are found in the upper part of the sorted table,
unprofitable value combinations in the lower part.

A first observation is that the performance ranges from 0.20 to 116.04 MB/s
for the parameter domain given in brackets in the above list. The very high
performance range from 23.65 to 116.04 MB/s is achieved only with mode 4. In
this mode, only one compute node really performs I/0O, all other nodes just wait
for completion. On reads, the data read on one node are broadcast to the other
nodes via NX message-passing, on writes, no data exchange whatsoever between
the I/0O-handling node and the other nodes is done. Thus, the measured I/0
performance appears to be much higher than it physically really is.

To avoid undesired interference in the evaluation, mode 4 has been excluded
from all further measurements (i.e. all table entries that contain mode 4 have
been deleted). With this modification, the performance ranges from 0.20 MB/s to
23.08 MB/s. This performance range is still beyond the physical bandwidth of the
SCSI ports due to buffering effects for small I/O size (1 MB per node). Neglecting
table entries with small I/O size reduces the bandwidth to an upper limit of
12.63 MB/s. However, only seven table entries account for high bandwidth above
this limit due to buffering effects. Hence, parameter combinations with small 1/O
sizes have not been excluded from the further investigations.

For a more detailed assessment of the importance of certain parameter val-
ues or value combinations, the sorted performance table is now divided into four
equally sized “buckets” with consecutive table entries. Bucket 1 represents pa-
rameter combinations yielding low I/O performance (0.20 to 1.49MB/s), bucket 2
yields 1.49 to 4.28 MB/s, bucket 3, 4.28 to 6.43MB/s, and finally, bucket 4 best
performance in the range from 6.43 to 23.08 MB/s. The frequency of the occur-
rence of any parameter value in each bucket may now be determined. Parameter
values that frequently occur in buckets 1 or 2, but rarely in buckets 3 or 4, are
those that contribute much to bad performance, those found mostly in buckets
3 and 4 but rarely in 1 and 2 are, on the other hand, those contributing to high
performance.

Figures 77, 77, and ?? depict the frequency distribution of the measured pa-
rameter values. In the following, some major effects recognizable in the diagrams
shall be discussed.

A first observation is that there are hardly any parameter values that guaran-
tee for good or bad performance. Most parameter values, instead, may occur in
any performance range (bucket), even though with varying frequency. An exep-
tion to this rule are record lengths 8000 and 8192 B which are exclusively found
in buckets 1 and 2 and thus enforce very poor performance.

In the “IOmode” diagram (Fig.??), only mode 3 shows a clear tendency
towards good performance. It is worthwhile to notice that the default mode 0 is

22

PFS - Nodes / without mode 4 (KFA)

== 1nodes
2 nodes
4 nodes

40 == 8nodes
16 nodes
35

g8 7 e
e |\ T
(% s e
.
L.
20 -~
.
4""
15 -~
o"
é"
10 [o*
5
0
0.20- 1.49 149-4.28 4.28-6.43 6.43 - 23.08
Performance Range [MB/s]

PFS - I0mode / without mode 4 (KFA)

Samples

10

0
0.20- 1.49 149-4.28 4.28-6.43 6.43-23.08
Performance Range [MB/s]

Fig. 10. Frequency distribution of PFS I/O parameters (I)

worst according to this evaluation.

Clearly, the number of compute nodes used contributes to performance. How-
ever, there is no number of nodes that ensures optimal performance. On the other
hand, the “Nodes” diagram (Fig. ??7) shows that it is much more likely to obtain
bad performance, when using 1, 2, or 4 compute nodes than with 8 or 16 nodes.

In contrast to the already mentioned short record lengths, record lengths
524288 and 1048576 B are candidates for good performance (Fig.??). They are
never found in bucket 1 and only rarely in bucket 2. It is important to notice that

23

PFS- LRECL (8K) / without mode 4 (KFA)

50
= Irecl 8192
Irecl 65536
Irecl 524288
== Irecl 1048576
8
3
0.20- 1.49 149-4.28 4.28-6.43 6.43-23.08
Performance Range [MB/s]
PFS- LRECL (10x) / without mode 4 (KFA)
*® == Irecl 8000
Irecl 65000
Irecl 500000
== |recl 1000000
8
3
0
0.20- 1.49 149-4.28 4.28-6.43 6.43-23.08

Performance Range [MB/s]

Fig. 11. Frequency distribution of PFS 1/O parameters (II)

a minor change in record length towards 500000 and 1000000 B, respectively,
significantly deteriorates the situation. This indicates that I/O requests with
lengths that are multiples of the stripe size are handled more efficiently.

This effect can also be seen from the “I/O size” diagram (Fig. ??). In contrast
to the expectations, the major criterion for good performance is not the total
request size (1 MB or 20 MB). Instead, it is most important, whether or not the
size is a multiple of the stripe sizel. In fact, when summing up the frequency

! The total I/O size is directly related to the logical record length, in that multiples

24

PFS - 1/O Size/ without mode 4 (KFA)

70
= size 1048576

size 1000000
60 size 20000000
R size 20971520

Samples

20

10

0
0.20-1.49 1.49-4.28 4.28-6.43 6.43-23.08

Performance Range [MB/s]

PFS/ Read/Write - without mode 4 (KFA)

120

= read
write

100
80
§ 60
40
20
0

0.20- 149 149-4.28 4.28-6.43 6.43 - 23.08

Performance Range [MB/s]

Fig. 12. Frequency distribution of PFS I/O parameters (III)

values for the two “small sized” curves or for the two “big sized” curves, no
tendency towards better or worse performance is visible for one of the two cases.

The second diagram of Fig. 7?7 shows the performance characteristics of read
and write operations. Apparently, reads and writes are found with almost equal
frequency in buckets 1 and 2, i.e. if the I/O performance is poor, this is not
directly caused by read or write operations, but rather by other parameters. If,

of the stripe size in record lengths always lead to multiples of the stripe size in the
total I/O size and vice versa.

25

on the other hand, the performance is close to optimum, this is more likely to
be caused by write operations (probably because write operations finish when
the data arrives in the I/O node buffers, rather than on disk, whereas reads
generally have to fetch the data from the disks).

Concluding, in order to verify our findings, we shall compare the performance
of optimal and worst-case parameter combinations as obtained from the above
investigations. According to the diagrams, an optimal parameter combination
should be a write operation using 8 compute nodes, I/O mode 3, record length
1048576 B, and a total request size of 1 MB (small). The I/O performance ob-
tained for this parameter set is 16.9 MB/s and is found at position 4 from the
top of our sorted performance table. Actually, the best parameter combination
yielding 23.08 MB/s differs only in that it uses record length 65536 B rather than
1048576 B, which one would not immediately expect from the diagrams, but is
still reasonably possible.

For the worst-case parameter set (write, 2 nodes, mode 0, Irecl 8000, size
1000000) the situation is similar. This combination results in an I/O perfor-
mance of 0.30MB/s and is found at position 29 from the bottom of the table.
Indeed, this is an even coarser approximation of the position 1 parameter set
(write, 4 nodes, mode 2, Irecl 8000, size 1000000) yielding only 0.20 MB/s I/O
performance. However, according to the diagrams there are many candidates for
bad performance and, thus, this result is still reasonable.

5.3 Numerical performance

As long as parallel libraries are not yet available or implemented on the Paragon
(cf. the paragraph concerning the ProSolver), performance results about library
software can only refer to single node performance. The upper limit for the
performance rates, set by the peak performance of the 1860 XP node processor
of the Paragon, is 7b MFLOPS for 64-bit arithmetic, corresponding to Fortran
double-precision.

BLAS. The Basic Linear Algebra Routines (BLAS) are widely used in dense
numerical linear algebra programs. As they provide the most important vector
and matrix operations, the use of a version tuned to the specific machine pro-
vides a simple way for speeding up existing numerical programs and writing new
ones. The BLAS routines also enhance portability, since programs can contain
standard calls to a widely available set of library routines. The BLAS routines
were developed in three groups. The BLAS 1 routines consist of vector-vector-
operations, while the BLAS 2 contain matrix-vector-operations, and the BLAS
3 provide matrix-matrix-operations.

For the Paragon a specially tuned version of the BLAS is part of the CLASS-
PACK Basic Math Library by Kuck & Associates. The following performance
results are due to the Paragon Basic Math Library Performance Report [?]. The
tables show MFLOP rates versus vector length N for selected double-precision
routines.

26

[N [DAXPY]| DDOT | DROT | DSCAL [DSDOT |

100 19.3 28.4 33.1 14.7 31.3
200 214 30.4 34.7 17.0 49.7
300 22.2 32.1 35.2 17.2 57.1
400 22.0 34.7 35.4 18.2 60.9
500 22.3 35.5 35.5 18.3 62.6
1000 22.7 42.0 33.7 19.0 70.5
1500 22.8 44.6 20.2 12.0 81.1

DAXPY computes vector times scalar plus vector, DDOT computes the dot
product of two vectors, DROT applies the Givens transformation matrix G to
the 2 by N matrix, DSCAL multiplies a vector by a scalar, and DSDOT computes
the dot product of two single-precision scalar vectors, performing the summation
in double-precision.

[N [[DGEMV][DGBMV]|DSYMV | DSBMV [DSPMV |
8 3.2 2.5 1.7 2.8 1.9

16 7.4 4.3 3.2 4.6 3.5

32 14.2 5.7 6.8 5.8 7.1

64 24.0 6.7 13.2 6.7 13.3

128 32.6 9.2 21.4 9.7 22.4

256 38.9 12.0 29.1 11.6 30.7

512 41.0 13.7 35.5 12.9 36.3

DGEMV, DGBMV, DSYMV, DSBMV, and DSPMV perform different types of

matrix-vector operations.

[N [DGEMM|[DSYMM]DTRSM [DTRMM][DSYRK |
8 8.4 3.8 1.6 2.3 3.3

16 8.4 8.3 3.8 4.9 7.7

32 20.8 19.1 16.5 15.5 15.2

64 415 29.9 26.0 29.8 31.4

128 45.1 37.8 37.0 38.1 39.7

256 45.8 41.0 41.3 41.4 42.5

512 45.9 43.3 43.7 44.0 44.2

DGEMM, DSYMM, and DTRMM perform matrix-matrix operations, DTRSM
solves a matrix equation, and DSYRK performs a matrix rank k operation.

LAPACK. The goal of the LAPACK project [?] was to design and implement
a portable linear algebra library for efficient use on high performance computers.
The library is based on the widely used LINPACK and EISPACK packages for
solving linear equations, eigenvalue problems, and linear least squares problems,
but extends their functionality in a number of ways. The main method used in
LAPACK for making the algorithms run faster is to restructure them in a way
that they perform block matrix operations (e.g. matrix-matrix multiplication)

27

in their inner loops. The block sizes can be adjusted to exploit the memory
hierarchy of a specific architecture. Furthermore, LAPACK uses BLAS routines
whenever possible.

The library was implemented on the Paragon by Intel SSD using LAPACK
Version 1.0b (though Version 1.1 has been available since Oct. 31, 1993). It was
compiled using optimization level -O3. Higher optimization levels caused too
much trouble. During the tests at KFA, using the test routines from the xnetlib
server, one routine could even crash the machine. For the timings, the original
LAPACK timing routines from the xnetlib server were used.

[N _[[DSYTRD [DSTEQR]| M,N | DGEBRD | DBDSQR |

50 8.8 7.1]| 50,50 1.5 6.5
100 15.0 7.7]| 50,100 14.0 6.6
200 20.0 8.3|| 100,50 21.0 7.0
300 26.0 8.5/|100,100 19.0 7.2
400 29.0 8.6/(100,200 19.0 6.9

DSYTRD reduces a symmetric/Hermitian matrix to real symmetric tridiagonal
form by an orthogonal/unitary similarity transformation, DSTEQR computes
all eigenvalues and eigenvectors of a real symmetric tridiagonal matrix, using
the implicit QL or QR algorithm, DGEBRD reduces a general rectangular ma-
trix to real bidiagonal form by an orthogonal /unitary transformation, DBDSQR
computes the singular value decomposition (SVD) of a real bidiagonal matrix,
using the bidiagonal QR algorithm.

NAG. The NAG Fortran library is a comprehensive collection of Fortran 77
routines for the solution of numerical and statistical problems. The version of
the library implemented on Paragon is Mark 15; only double-precision mode is
available. The implementation was performed by Intel SSD. Though this was
done using Paragon OSF/1 Release 1.0.1 and f77/Paragon Release 4.0.6, the
implementation should be appropriate also for the current OSF/1 and {77 re-
leases (Intel communication). Most routines have been compiled with -O4, some
with -O1 to avoid trouble. Some NAG programs are identical with BLAS rou-
tines; these have been removed from the NAG library in order to link the BLAS
routines.

[N [FO3AEF | FO4AFF | F02AAF | FO3AAF |
64 1.3 1.5 47 5.1
128 6.6 17.6 15.5 6.6
192 20.5 28.1 21.5 7.4
256 27.5 27.5 28.3 7.1
512 32.5 32.5 47.0 6.6

FO3AEF does a Cholesky factorization, FO4AFF an LU factorization; FO2AAF
computes eigenvalues of symmetric positive definite systems, FOSAAF of non-
symmetric ones.

28

ProSolver. This package of distributed-memory Fortran routines, developed by
Intel SSD, consists of four parts. The ProSolver-SES (Skyline Equation Solver)
library contains high-level parallel routines for defining or assembling, factoring,
and solving large double-precision real and double-precision complex sparse sys-
tems of equations, the ProSolver-DES is the analogue for large dense systems.
The ProSolver-IES part is a library of parallel routines that use conjugate gradi-
ent methods to solve large sparse systems of linear equations. For this iterative
solver, which has been newly developed for the Paragon, a special distributed
matrix interface was designed including routines for basic manipulations of dis-
tributed matrices. The fourth part at last, contains routines for the computation
of two- and three-dimensional Fast Fourier Transforms.

Referring to Intel announcements, the dense solver is expected to achieve

35 MFLOPS, the skyline solver 20 MFLOPS per node.

5.4 Application performance: crystal growth simulation

This section outlines the performance of a crystal growth simulation program.
This application was developed at KFA [?] for the optimization of the silicon
production process. For the quality of the silicon crystal a constant convection in
the melt is very important. The convection results from the heating, the rotation
of the crucible, and the rotation of the crystal. The convection is modeled by a
set of partial differential equations and determined by an explicit finite difference
scheme.

The simulated crucible has a radius of 3cm and a height of 4cm and is
discretized into 30 x 90 x 40 elements. This determines the shape of the main
arrays to be 32 x 92 x 42 including some additional boundary cells. The boundary
cells determine the boundary conditions at the surface of the crucible, e.g. the
temperature of the heating, and the values at the inner surface where the crucible
is unfolded to give a regular three-dimensional structure. This relation between
the crucible and the main arrays is shown in Fig. ?77.

The algorithm consists of an initialization phase, a time loop, and an output
phase. In the time loop for each time step the new temperature, the pressure, and
the velocity are computed and the boundary conditions are updated. The most
time consuming procedure is the computation of the velocity and the pressure.
Here the linear equation system resulting from the partial differential equations
is solved by successive overrelaxation.

In this subroutine as well as in the other operations of the time loop mostly
stencil operations are performed on the data structures, i.e. in order to compute
an array element only the values of neighbouring elements are needed. When
updating the boundary conditions some non-local operations are applied, such
as copying plane 91 onto plane 1 and plane 2 onto plane 92, thus simulating the
closed crucible.

The code is designed such that a simulation can be split into a sequence
of program runs. The program generates a continuation data set at the end of
a run. In addition, data can be output during the time loop to allow off-line
visualization.

29

32x92x42

0 4° 360° 4°

4cm
o
IN

(b) resulting array structure

(a) discretized crucible

(c) owned segment with overlap

Fig. 13. Application domain

Parallelization strategy. The code is parallelized according to the data par-
titioning approach. The main arrays are divided into blocks that are assigned
to the processors. For the application the High Performance Fortran BLOCK
distribution strategy is optimal. Depending on the number of processors, a dis-
tribution of the second and the third dimension can be specified by the user.

The computation for a distributed array is spread among the processors with
respect to data locality. Each processor performs the computation for its array
segment. Therefore, the iterations of the loops are spread over the processors.

In this application, the distribution of arrays in blocks leads to two communi-
cation patterns: an overlap update and a remote copy. If we assume a distribution
in the second dimension, the stencil operations induce access to the boundary
elements of the neighbouring blocks. Therefore, the left- and rightmost plane
have to be sent to the neighbouring processors prior to the computation.

The copy operation outlined in the previous section leads to communication
between the rightmost and the leftmost processor, if the second dimension is
distributed.

Performance results. Table 7?7 gives some performance results obtained on
the Paragon with Paragon OSF/1 Release 1.1. The best results where obtained
with a new version of the library routine bcopy which will be part of Release
1.2. The results demonstrate the node performance that can be expected for a
memory-bound but vectorizable application, i.e. 8.3 MFLOPS, and the message-
passing performance when the application becomes communication-bound with
large numbers of processors. The volume-to-surface ratio is 1.7 for 72 processors,
1.5 for 112 processors, and 0.8 for 138 processors.

Table ?? shows the I/O performance for reading and writing the restart data.
The I/O overhead is unimportant for long production runs but demonstrates the
performance of the Parallel File System. The total amount of data is 8.8 MB.

30

processor execution | speedup | MFLOPS
configuration || time (s)

1x1 230.0 1.0 8.3
2x1 120.7 1.9 15.7
4x1 64.8 35 29.3
8x1 36.3 6.4 52.3
8x2 19.2 12.0 99.0
16%2 11.8 19.5 161.0
16x4 8.7 26.4 218.4
8x9 7.3 31.5 260.3
16x7 5.7 40.4 333.3
46x3 6.5 35.4 292.3

Table 1. Execution times and speedup

The processors write one record of size 100 B and 6 records of size 150 KB for 8
processors, 35 KB for 32 processors, and 16 KB for 112 and 138 processors.

processor read write

configuration pfs64 pfs64
1x1 1.8 1.6
2x1 1.8 1.6
4x1 1.7 2.2
8x1 2.0 2.3
82 2.7 3.6
16x2 4.1 5.4
16x4 6.3 8.9
8x9 7.1 10.7
16x7 9.9 14.9
46x3 13.1 20.2

Table 2. Read/write restart data (PFS stripe size 64 KB)

Acknowledgement

The authors would like to thank Heinz Bast and Jorg Finger from Intel Super-
computer Systems Division for their substantial support.

31

References

[N

10.

11.

12.

13.

14.

15.

16.

17.

Anderson, E., et al.: LAPACK User’s Guide. Philadelphia, SIAM, 1992

Applied Parallel Research: FORGE 90, Version 8.0, User’s Guide. 1992

Dally, W.J., Seitz, C.L.: The Torus Routing Chip. J. Distributed Computing, Vol.
1, No. 3 (1986) 187-196

Esser, R., Knecht, R. (eds.): Applications on KFA’s Intel iPSC/860. Interner
Bericht, KFA-ZAM-IB-9218, Forschungszentrum Jilich, 1992

Esser, R., Knecht, R.: Intel Paragon XP/S - Architecture and Software Environ-
ment. In: H.-W. Meuer (ed.): Superconputer ’93. Seminar, Mannheim, 24.-26. Juni
1993, Springer-Verlag, Berlin, 1993

High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion (DRAFT), Version 0.4. Rice University, Houston TX, 1992

IEEE STD 1149.1-1990: IEEE Standard Test Access Port and Boundary Scan
Architecture.

Intel Corporation: 1860 Microprocessor Family Programmer’s Reference Manual.
Order No. 240875-002, 1992

Intel Supercomputer Systems Division: Software Resource Directory. Beaverton
OR, October 1993

Intel Supercomputer Systems Division: Paragon Basic Math Library Performance
Report. Order No. 312936-001, Beaverton OR, October 1993

Lee, K.: On the Floating Point Performance of the i860 Microprocessor. Int. J.
High Speed Computing, Vol. 4, No. 4 (1992) 251-267

Li, K.: Shared Virtual Memory on Loosely-coupled Multiprocessors. PhD Thesis,
Yale University, Technical Report YALEU-RR-492, October 1986

Loepere, K.: Mach 3 Kernel Principles, Open Software Foundation and Carnegie
Mellon University, 1992

M. Mihelcic, H. Wenzl, K. Wingerath, Flow in Czochralski Crystal Growth Melts,
Bericht des Forschungszentrums Julich, No. 2697, ISSN 0366-0885, December 1992
Mlynski-Wiese, A.: Die Architektur der Prozessorfamilie i860. Interner Bericht
KFA-ZAM-IB-9214, Forschungszentrum Jilich, 1992

Ni, L.M., McMinley, P.K.: A Survey of Wormhole Routing Techniques in Direct
Networks. IEEE Computer, February 1993, 62-76

OSF/1 Operating System, User’s Guide. Open Software Foundation, Prentice Hall,
1992

This article was processed using the INTgX macro package with LLNCS style

32

