FORSCHUNGSZENTRUM JULICH GmbH

Zentralinstitut fiir Angewandte Mathematik
D-52425 Jiilich, Tel. (02461) 61-6402

Interner Bericht

KFAnet/INTERNET
Installation and Operating
of the
IBM-HiPPI-Interface

R. Niederberger, F.J. Schoenebeck

KFA-ZAM-IB-9407

Februar 1994
(Stand 15.02.94)

ii

Table of contents

Listof Figures i ittt ittt nneeeensnennns v
List of Tables o v i i it i ittt it et ettt et oo ooeeeoneeees vii
Introduction ¢t i i i it it ittt i ettt e et 1

1.1 Motivation ot e e e e e e e 1
2 Network environmentt i ittt ueeeeneeeooeeens 3
2.1 The computer network KFAnet 3
2.2 The workstation concept 3
2.3 UltraNet. e e 6
24 HiPPI e 7
2.5 UltraNet HiPPI network processor 8
2.6 HiPPI for MVS at KFA 8
3 Hardware Installation of the HiPPI-Interface. 11
3.1 The IBM-HiPPl-interface e 11
3.2 The Ultra-HiPPI-board 11
4 Software Installationand Bugs 000 13
4.1 The Software incompatibilities 13
4.2 Software Bugs 14
5 Testenvironmentandresultsttt ittt eeeneeens 15
5.1 Introduction to teSt SEIIES v v v v v i e e e e e e 15
5.2 TCPSPRAY e 17
5.2.1 TCPSPRAY (Ultra+FDDI) 18
522 TCPSPRAY(Ultra) i i i i 19
53 FTP . . e 20
5.3.1 FTP (Ultra+FDDI) 21
532 FTP (Ultra) e 22
54 TSOCK e 23
5.4.1 TSOCK (Ultra TCP-communication) 25
5.4.2 TSOCK (Ultra TP4-communication) 26

6 Conclusiont i it ittt eeeeeeeeeeeooeeeooeeaes 27
T AppendiX i i i ittt e e e e ettt e e 29
7.1 MVS/ESA Definitions e e e 29
7.1.1 MVS-Ultra Definitions e 29
7.1.1.1 Ultra HiPPI Profile (UPROFILH) 29
7.1.1.2 Ultra Stations file (STATIONH) 30
7.1.2 TCP/IP Version 2.2 (Definitions) 31
7.1.2.1 PROFILE TCPIP et e et 31

iii

7.2
7.3
7.4
7.5
7.6

v

Participating Systems 33

Man page TCPSPRAY 35
Man page FTP e 37
Man page TSOCK e 43
Literature e 52

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

KFAnet/Internet configuration 5
UltraHub1000 internals at KFA Juelich 6
HiPPI Architecture 7
The HiPPl test scenario 9
HiPPI, Ultra and TCP/IP software components 13
Usage of TCPSPRAY command 17
Usage of FTPcommand 20
TSOCK processing logic 23
Usage of TSOCKcommand 24

vi

List of Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8

LPAR weighting at ES9000/620. 15
Abbreviations used in throughput tables 16
Throughput TCPSPRAY (Ultra + FDDI) 18
Throughput TCPSPRAY (Ultra) 19
Throughput FTP (Ultra + FDDI) 21
Throughput FTP (Ultra) 22
Throughput TSOCK (Ultra TCP-communication) 25

Throughput TSOCK (Ultra TP4-communication) 26

vii

viii

1 Introduction

1.1 Motivation

In the last decade network research and development led to more and more powerful
computer networks. Starting with local area networks with 10 Mbit/s bandwidth like
Ethernet, followed by FDDI with 100 Mbit/s and not finally HiPPI with 800 esp. 1600
Mbit/sec, the transmission speeds of local networks grew in fantastic steps. Though
HiPPI, the High Performance Parallel Interface, is not the last step in this evolution,
this interface seems to be the fastest interface, that can be managed by the computation
power of currently available mainframe cpu’s, taking into account, that this mainframe
is not used for communication purposes only.

In 1990 a new concept for a cooperative computing in the KFA was introduced, the so
named workstation concept. This concept includes the communication of low bandwidth
attached PC’s with high bandwidth attached supercomputers as well as the high speed
communication of CRAY supercomputers and IBM mainframes. Taking into account this
requirements the KFA decided to install an IBM HiPPI interface for the IBM ES9000/620
and to analyse the opportunities available with this interface.

2 Network environment

2.1 The computer network KFAnet

KFAnet/Internet, the high speed computer network, is an open offering to the technical
scientific staff of the KFA to solve the communication problems of distributed processing
in a heterogen computer system area.

Main transport mechanisms are FDDI with 100 Mbit/s to KFA institutes with high band-
width requirements and Ethernet with 10 Mbit/s otherwise. The CRAY supercomputers
and the IBM ES9000/620 (MVS/ESA) are connected to an UltraHub 1000 and via a
Cisco router to the KFA wide FDDI network. The default path to the IBM mainframe is
currently a FDDI connection via two IBM-RS6000/350. This two gateways connect the
operating systems VM/ESA and MVS/ESA to the local network. For hardware backup
purposes an IBM 8232 communication controller can be used.

The local area network KFAnet is connected to the German WiN, Wissenschafts-Netz,
and across this to the worldwide Internet via a serial Cisco router interface with 2 MBit/s
bandwidth.

The physical KFAnet/Internet configuration at KFA is shown in the picture on the next
page.

The offered network services are the standard TCP/IP applications, developed by DARPA
and Berkley. Main protocols used are FTP, Telnet, Electronic Mail, REXEC, Line
Printing and Sun’s NFS. Further applications have been developed based on the BSD
socket interface. For software backup purposes the WDSF, Workstation Data Save
Facility, and later on DFDSM, Data Facility Distributed Storage Management, now called
ADSM, Adstar Distributed Storage Management, implemented by IBM, have been tested.

2.2 The workstation concept

Introducing the TCP/IP protocol family the KFA offered the possibility to use powerful
workstations in connection with the existing mainframes, a future additional dimension
of effective computing resources will come true. The workstation concept realizes the
following objects in view:

* additional user productivity

* improvement of technical and psychological aspects; the offerings to the users are
state of the art

e approving innovative computing concepts

* increasing effectivity and economy of central services and distributed data processing
by balancing expenses and usage

Realizing the above objects a concept has to distribute computing into a central part and
a local part. The central part can be done by servers on special mainframes or a batch
system. The local part has to be realized by workstations.

With the TCP/IP protocol family the ZAM has offered a possibility to use the central
servers, but this servers have to be accessed with an aggregate bandwidth. This can be
done only by specialized interfaces and well matched networks.

FORSCHUNGSZENTRUM JULICH GmbH I

KFAnet/INTERNET-Netztopologie und Server im ZAM
(10 Mb/s), FDDI (100 Mb/s) und Ultranet (800 Mb/s)

J.MeiBburger
Zentralinstitut flir Angewandte Mathematik

CRAY IBM ES/9000-620
Y-MP M94 Y-MP8/832 MVS VM Intel Paragon

S Ty (-

I - I (-
| . - f] H-
s A ; . HiPPI

-

SUN

ZAM Paragon
Workstations Cluster

IBM RS/6000 DEC-MIPS

zam112 zam048 zam103 zaml75

zam113 zam049 zam166
Backend | FDDI

Server

WIN Cluster
2 Mb/s DEC KFAnet e
X.25 MIPS / AXP| Management E

KFAnet
FDDI AQS+] I
backbone P s

J\N

) ’ with Bridging
/

AGS+ |
L

Department : FDDI "

backup

Figure 1 KFAnet/Internet configuration

2.3 UltraNet

The UltraNet network is a hub-oriented system providing a high-performance network,
that links a variety of supercomputers, minisupercomputers, mainframes and workstati-
ons. The UltraHub operates at a data transfer rate of 1 gigabit (125 Mbyte) per second.
The hub provides high speed interconnection between the Ultra network adapters which
are located within the hub. The network adapters attach to host computers. They provide
high-performance virtual circuit and datagram services and can route network traffic to
a locally attached cisco router. One possible host connection is via HiPPI, another for
example a HSX-Interface to the Cray-supercomputers. A software module, the Ultra
Network Manager, initializes, monitors and controls the UltraNet network. Connec-
tions within the UltraNet can be done by an ISO-TP4—stack, whereas connections to the
KFAnet/INTERNET have to be done via the Ultra-IP-stack [ULT-01], [ULT-02].

YMP |

HSX OUT

Figure 2 UltraHub1000 internals at KFA Juelich

2.4 HiPPI

The High Performance Parallel Interface, HiPPI, is an efficient simplex high-performance
point-to-point interface, designed for transmitting digital data at peak data rates of 800 or
1600 Mbit/s. The IBM HiPPI interface is an implementation of the American National
Standard Institute’s (ANSI) X3.183-1991 High Performance Parallel Interface (HiPPI-
PH) standard [ANS-05].

The transmission between data-processing equipment is designed using multiple twisted-
pair copper cabling at distances up to 25 meters. The HiPPI-PH (physical layer)
was implemented to cover the industry market needs, expressed both by users and
manufacturers, to standardize the interconnection of data processing equipments at these
data rates. The signalling protocol is designed to be distance independent, allowing the
average data rate to approach the peak data rate, even over distances longer than 25
meters.

The HiPPI architecture is designed in an ISO-OSI like fashion. The two lower layers are
organized as follows [ANS-01], [ANS-02], [ANS-03], ANS-04], [ANS-05]:

HiPPI-LE HiPPI-MI HiPPI-IPI
link encapsulation memory interface intelligent peripheral
(mapping to IEEE 802.2) (memory read/write) interface

HiPPI-FP
framing protocol
new ISO work item

HiPPI-PH :
physical layer I_-:H:\PI-S(i :
ANSI X3.183-1991 / ISO DIS 11518-1 switch contro

Figure 3 HiPPI Architecture

Data transmitted across the IBM HiPPI may be defined in terms of packets, pages and
bursts. Typically, a single transmission makes up a packet, although the HiPPI software
interface provides the ability to break the transmission of a packet into multiple partial
packets. A packet is made up of one or more pages (4096 bytes). This is the minimum
resolution of the ES/3090 or ES/9000, and the smallest amount of data that may be
transmitted over the HiPPI. Pages, once they have been moved on to the HiPPI device
itself, are organized into bursts. A burst is a fixed-length sequence of 256 four-byte
words. [IBM-02]

2.5 UltraNet HiPPI network processor

The UltraNet HiPPI network processor is the Ultra high performance implementation
of the ANSI standards Committee X3T9.3 High Performance Parallel Interface. It is
a simple but very high performance channel interface for use by both computers and
intelligent devices, such as routers. Ultra’s HiPPI implementation includes a network
protocol processor solving the integration issues faced by system administrators. The
HiPPI consists of two independent HiPPI channels controlled by a network processor
(NP). Ultra’s standard HiPPI NP acts as a host computer connection, where a computer
system has an HiPPI interface available for connection to the network. The HiPPI is
tightly coupled with Ultra supplied host software for seamless integration into existing
network-based applications, further details see below.

2.6 HiPPI for MVS at KFA

The purpose for a HiPPI attachment of an ES/9000 model 620 to the KFA network
was to provide maximum aggregate bandwidth for bulk data transfers, as it is typical
for applications like workstation backup, archival of workstation data or transmission of
large files between fast external systems and a central file server. In this context it was
not intended to attach disk arrays, nor visualize mainframe generated data on a special
purpose graphical device. Special issue for the HiPPI-Project at KFA was to analyse
the opportunities available with the IBM HiPPI interface in the context of the existing
local KFAnet infrastructure.

The HiPPI interface should be connected to an IBM ES/9000 model 620 running
MVS/ESA 4.1. The IBM is running MVS/ESA and VM/ESA in logical partitions under
PR/SM. The installed communication software is IBM TCP/IP Version 2.2.1 on both
systems.

The HiPPi test scenario implemented at KFA is displayed in the following picture:

Ultra Network

Technologies

Figure 4 The HiPPI test scenario

10

3 Hardware Installation of the HiPPI-Interface

3.1 The IBM-HiPPI-interface

The IBM HiPPI interface has been installed at KFA in the middle of December 1992.
Two employees of IBM needed about 8 hours for the HiPPI interface installation. No
problems occured during the interface hardware installation. The HiPPI interface had to
be installed in expanded storage, so that half of the possible expanded storage could not
be further used. The old expanded storage had to be removed against a new smaller one,
because of space problems. The expanded storage size has not been reduced. Additional
power supply had to be installed. The HiPPI cabeling has been attached to CP2 internaly.
New micro code for HiPPI support had to be installed. No other definitions have been
required.

Hardware and Software tests, regarding the IBM-HiPPI-Interface have been made by
IBM during the installation phase. No problems have been found. Cabeling has been
prepared to attach to the HiPPI Ultra board. Since all hardware components needed for
Ultra HiPPI communication are located in the same room and the distances between the
components are within the allowable range, no problems in this area had been found
and had to be solved.

3.2 The Ultra-HiPPI-board

The Ultra HiPPI board has been installed into the UltraHub at the Sth of January 1993.
The time had to be fixed to this date, since the Hub had to be halted (SHUTDOWN)
for the installation. So no connection to the CRAY supercomputers had been possible
for 30 minutes. After installing the Ultra HiPPI board the IBM-HiPPI-cable could be
connected. So the hardware installations had been closed.

11

12

4 Software Installation and Bugs

4.1 The Software incompatibilities

To use the IBM-HiPPI adapter with UltraNet and the TCP/IP protocol there are three
software components, which have to be installed (the software preloaded in the UltraHub
environment is out of scope). These are the IBM-HiPPI software, the Ultra Host software
and the IBM TCP/IP software.

;‘lt}ser —

Socket
Compatibility Library User Space

Kernel Space

Sockets

TCP

IP

Data Link Driver

UltraNet
Driver

UltraNet |

Host Channels

HOST HIPPI CHANNELS

Ethernet £
nE
T T
H E B B B B B B EEEmN H EH E E BN
ouT IN
U ItraNet ULTRA HiPPI CHANNELS
1000 UltraNet Protocol Processor

UltraNet Network

Figure 5 HiPPI, Ultra and TCP/IP software components

13

When installing the HiPPI interface IBM provided a Beta test HiPPI-software. The IBM
European Center for Advanced Networking, ECAN, in Heidelberg/Germany, cooperated
with KFA-Jiilich in this project. The Beta test HiPPI-software was not compatible with
the currently released Ultra Host software. Furthermore some tests regarding the MVS
connection to the local FDDI network had been nessecary. For this tests IBM TCP/IP
software version 2.2.1 had to be used. But this software was not compatible to the
Ultra host software. Until this date Ultra only shipped software compatible to IBM
TCP/IP 1.2. Taking into account the many mails and telephone calls, we got the three
software components working together, when Ultra shipped the Ultra host software H390
in March 1993.

Configuring the software was no problem using the IBM and Ultra provided manuals.
The default parameters as documented in the manual could be used. Some parameter
settings, required by Ultra, are different to the settings we would prefer and recommend.

4.2 Software Bugs

Using the term 'NULLFILE’ as destination file with binary transmission leads to crash
of IBM FTP server software on the MVS system. This crash does not occure, if we use
the CLAW communication via an IBM-RS6000/350-gateway or an IBM 3172 model 1
or IBM 8232 interconnect controller.

Using buffer length of more than 1024 byte and communicate via Ultra’s tsock program
to MVS system causes a crash of the Ultra software. This two problems may coincident.

Calling tsock on MVS as source with a destination host on Ultra-TCP-stack seems to
produce TP4 communication. Using tsock with a TP4 hostname as destination does not
work. (Network unreachable message). See also chapter Test environment and results
section TSOCK. Using tsock in the other direction you have to specify the TP4 hostname
of the MVS system.

Ultra software on the CRAY systems had a bug. Communicating via FTP between the
two CRAY systems using the host-stack leads to transmission speeds of 50 KByte/s. This
seems to occur because of overrunning the protocol processors (PP’s) at the UltraHub
1000. Some Ultra software patches had been in sight and are now available and working.
The maximum transmission unit term (MTU) within the MVS TCP/IP software can be
defined to 8400 Byte at a maximum. Taking into account the throughput degradation,
using low packet sizes, this seems to be a design failure. The ANSI HiPPI protocol
allows packet sizes of up to 1 Mbyte.

The MTU sizes defineable, defaulted and recommended by Ultra on the different systems
do not correlate (MVS 8400 Byte, CRAY 32 Kbyte, Cisco-router 1500 Byte).

14

5 Test environment and results

5.1 Introduction to test series

The IBM HiPPI tests have been made on an MVS test system using PR/SM. The four

systems running on the ES9000/620 are VM, MVS, Test VM and Test MVS. They are
weightend in the following manner:

Operating System Weighting
Production VM 280
Production MVS 100

Test VM 100
Test MVS 100

Table 1 LPAR weighting at ES9000/620

This 580 entities have to be spawned over the available 4 cpus of the IBM mainframe,
which has two operating systems running in a production environment, as seen in the
table above.

The FDDI attached IBM RS6000/350 has been out of production and has only been used
for this test purposes. The CRAY supercomputers and the Cisco-AGS+ router have been
in real production. The test scenario has been shown above.

The tested programs have been TCPSPRAY, FTP and TSOCK (TCP and OSI/TP4
communication). Some UDP tests have been made too.

15

The test constellations have been (if possible, always in both directions and to all
destinations):

e Direct Ultra connection MVS to CRAY/YMP

e Direct Ultra connection MVS to CRAY/M94

e Direct Ultra connection CRAY/YMP to CRAY/M94

e FDDI to Ultra connection IBM-RS6000/350 to MVS
e FDDI to Ultra connection IBM-RS6000/350 to YMP
e FDDI to Ultra connection IBM-RS6000/350 to M94

In general the listed values in the following tables have been produced, taking the average
of five tests in succession.

Oscilating values have been rounded, ignoring values, which correspond to high network
or cpu load. If there have been great oscilations, control test series have been made. The
tables use column headings 6000, MVS, YMP, M94 and Cisco with arrows showing the
direction of the data traffic. In this context the headings have the following meanings:

Iil::ei?::ii; System description
6000 IBM Risc System 6000 model 350 with AIX 3.2.1
MVS IBM ES9000 model 620 with MVS/ESA 1.1 and TCP/IP 2.2.1
YMP CRAY YMP/832 with UNICOS 7.0
M94 CRAY YMP/M94 with UNICOS 7.0
Cisco Cisco AGS+ router

Table 2 Abbreviations used in throughput tables

16

5.2 TCPSPRAY

The TCPSPRAY program is a socket based C-program. A source code version of tcpspray
can be obtained by anonymous ftp from nic.funet.fi. It was compiled on IBM-ES9000/620
for MVS/ESA, CRAY for Unicos and IBM/RS6000 for AIX. The source program is

public domain (see copyright).
For the Unix systems the program could be compiled without any changes. For MVS
we had to do some minor changes.

usage: TCPSPRAY [-v] [-e] [-h] [-b blksize] [-n nblks] [-f file] host
—v verbose
—e use echo service for full duplex transfer
—h print this message
—b blocksize in bytes (default 1024)
—n number of blocks (default 100)
—f file to preload buffer (zero buffer by default)

Figure 6 Usage of TCPSPRAY command

The paramters and options possible with the TCPSPRAY program are displayed above.
The test series have been done always using —b and —n. Always the discard daemons
was used.

Example:
tcpspray -b64 -n50000 zam003.zam.kfa-juelich.de

All listed speeds are shown in KByte/sec.

17

5.2.1 TCPSPRAY (Ultra+FDDI)

The following table lists the speeds with the tcpspray program measured from or to the
IBM-RS6000/350 connected to the FDDI network. The datablocks had to cross the Ultra
Hub and the FDDI network.

The test series could not be done to MVS, since there is no echo or discard daemon
on MVS available.

6000 6000 6000 MVS YMP M94
! ! ! ! ! !
. (FDDI) (FDDI) (FDDI) (Ultra) (Ultra) (Ultra)
on-
stellation / | ! ! ! .l .l
Cisco Cisco Cisco Cisco Cisco Cisco
Block-
. ! ! ! ! ! !
width
(Ultra) (Ultra) (Ultra) (FDDI) (FDDI) (FDDI)
! ! ! ! ! !
MVS YMP M94 6000 6000 6000
64 - 390 400 40 580 430
128 - 460 460 80 590 500
1024 - 1950 1950 400 1870 1650
1460 - 2230 2200 420 1970 1800
4096 - 2800 2600 460 2030 1800
8192 - 2500 2400 460 2100 1850
32768 - 2400 2300 - 1000 1900

Table 3 Throughput TCPSPRAY (Ultra + FDDI)

Annotation: All transmission speeds are listed in KBytes/sec.

18

5.2.2 TCPSPRAY(Ultra)

The following table lists the transmission speeds with the tcpspray program measured
between the systems connected directly to the Ultra HUB. The datablocks had to cross
only the Ultra Hub. No other network has been involved.

The test series could not be done to MVS, since there is no echo or discard daemon
on MVS available. The tests with blockwidth 32K from MVS systems to the CRAY
supercomputers have not been made, since buffers in MVS tcpspray program are limited
to 16Kbyte and the MVS MTU size is limited to 8400 Byte.

- YMP M94 MVS MVS YMP M94
on-
. ! ! ! ! ! !
stellation /
(Ultra) (Ultra) (Ultra) (Ultra) (Ultra) (Ultra)
Block-
. ! ! ! ! ! !
width
MVS MVS YMP M94 M94 YMP
64 - - 30 30 440 350
128 - - 60 70 630 520
1024 - - 330 560 1660 1080
1460 - - 410 740 1830 1270
4096 - - 540 1340 2020 1660
8192 - - 550 1420 3800 1820
32768 - - - - 3700 2430

Table 4 Throughput TCPSPRAY (Ultra)

Annotation: All transmission speeds are listed in KBytes/sec.

19

5.3 FTP

The File Transfer Protocol (FTP) is designed to transfer files between two systems.
Establishing the session the user has to be authorized at the remote system. This is
done by prompting for destination userid and password and checking this values at the
remote system.

The general format of the ftp command is:

usage: ftp [-d] [-g] [-i] [-n] [-v] [host]
—d enable debugging
—g disable expansing of metachars in filenames
—i turns off interactive prompting during multiple file transfers
—n prevents an automatic login on initial connection
—vV verbose
—host name of the host machine to which files will be transfered

Figure 7 Usage of FTP command

We always used the ftp put subcommand, which implies, that the disk read operation
is done by the client process. The client has been an unprivileged account at the local
system.

The test series could have been done using the ftp get subcommand too, but because all
tests have been started from all systems, all directions and servers have been tested.

20

5.3.1 FTP (Ultra+FDDI)

The following table lists the ftp transfer rates measured from or to the IBM-RS6000/350
connected to the FDDI network. The datablocks had to cross the Ultra Hub and the
FDDI network.

As recommended by Ultra the test series to /dev/null to the MVS system could be done
by specifying the destination file as file nullfile, after changing the directory to root.

This can be achieved by typing “cd ..”.

software crash.

>

Transferring the file this way causes an FTP

6000 6000 6000 MYVS YMP M94
! ! ! ! ! !
Kon- (FDDI) (FDDI) (FDDI) (Ultra) (Ultra) (Ultra)
stellation ! l l l l l
/ Cisco Cisco Cisco Cisco Cisco Cisco
Block- ! ! ! ! ! !
width (Ultra) (Ultra) (Ultra) (FDDI) (FDDI) (FDDI)
! ! ! ! ! !
MVS YMP M94 6000 6000 6000
6MByte
auf Disk 50 500 500 210 620 600
Ascii
6MByte
auf Disk 50 700 740 210 640 610
Binary
6MByte
/dev/null - 530 530 210 650 610
Ascii
6MByte
/dev/null - 720 740 210 650 620
Binary
Table 5 Throughput FTP (Ultra + FDDI)
Annotation: All transmission speeds are listed in KBytes/sec.

21

5.3.2 FTP (Ultra)

The following table lists the transmission speeds with the ftp program measured between
the systems connected directly to the Ultra HUB. The datablocks had to cross only the
Ultra Hub. No other network has been involved.

Regarding the test series to /dev/null to the MVS system see the annotations in the
section above.

- YMP M94 MVS MVS YMP M94
on-
. ! ! ! ! ! !
stellation /
(Ultra) (Ultra) (Ultra) (Ultra) (Ultra) (Ultra)
Block-
. ! ! ! ! ! !
width
MYVS MYVS YMP M94 M94 YMP
6MByte
auf Disk 440 600 950 980 4300 3800
Ascii
6MByte
auf Disk 430 700 970 960 7700 7000
Binary
6MByte
/dev/null - - 600 1050 4400 4000
Ascii
6MByte
/dev/null - - 640 1070 7500 7500
Binary

Table 6 Throughput FTP (Ultra)

Annotation: All transmission speeds are listed in KBytes/sec.

22

5.4 TSOCK

The tsock program is a Ultra test program, based on the #tcp program originally developed
by T.C.Slattery, USNA, and improved by Mike Muuss and Terry Slattery. Due to the
large number of changes, however (asynchio, data checking, random length and offset,
fake-data option, ...), it has effectively been completely rewritten. The processing logic
is as follows:

o fetch and validate parameters -

= miscellaneous initialization

define socket

rest depends on options

connection-oriented
datagram open connection

sinkmode =l filemode P] sinkmode sl filemode

"::| trans II rcvr I:":: trans I| revr I::":| trans I| revr I trans I| rcvr I

Figure 8 TSOCK processing logic

A general description of the Tsock command can be found in the appendix. A short
description is shown in the following usage figure.

23

usage: tsock

[-options] [host] > out

operate as receiver (passive initiation, X receive dara)
operate as transmitter (active initiation, X transmit data)
source/sink mode (generate and discard a data pattern)
length of network buffer (default 1024)

number of messages to transmit (with -s only, default 1024)
mark progress with *X’ for every ## bytes transferred

use random length messages <= -1## value (without -d only)
use random starting location (i.e., random byte boundary)
do NOT seed random number generator (for repeatability)
port number for connection or datagram path (default 2000)
only transmit full blocks, as specified in -1## (for TAR)

use datagrams (with -s only)

use asynch network I/0O (eg. UNICOS reada) with ## buffers
set “fake data’ option

check received data (receiver with -s only)

set TPDU size to 2 ##bytes (eg. 12=4K; default 15)

run ##processes in parallel (via fork)

same as -x## but fork both receivers and transmitters

use alternate pattern hsx ’xpat’ (default 0x00-0xff)

use alternate pattern from file

host name (optional local for -r, required remote for -t)

Figure 9 Usage of TSOCK command

The calling syntax at the source system has been:
tsock —t —s —Ilbuflen —nnumberofbufs host
The calling syntax at the destination system has been:

tsock —r —s —Ilbuflen

The number of buffers has been choosen, so that the overall communication time for a

request does not need more than 15 seconds.

Communicating to the MVS system with a bufferlength greater than 1024 Byte caused

an Ultra software crash.

The communication path, the TSOCK program uses, depends on the destination host.
Ultra defines two types of communication paths. First the Ultra TCP path (host stack or
uh-path) and second the Ultra TP4 path (native path) can be used. Since the Ultra Hub
internally uses the TP4 path, and many of the communication parts are fully implemented

24

in hardware, this communication path should be the faster. The way of communication,
TCP or TP4, will be choosen by the Ultra socket library.

5.4.1 TSOCK (Ultra TCP-communication)

The following table shows the transmission speeds measured transfering data with
different bufferlength via the Ultra host stack (uh-path) to directly connected Ultra hosts.
The communication pathes from and to the MVS system could not be tested, since the
MVS-software had not been linked with the required Ultra software components. This
tests have not been done later on, since the overall communication throughput showed
nonacceptable values.

Kon- YMP M94 MVS MVS YMP M9%4
stellation l l l l l l
/ (Ultra) (Ultra) (Ultra) (Ultra) (Ultra) (Ultra)
Buffer- l l l l l l
length MVS MVS YMP M94 M94 YMP
64 ? ? ? ? 560 370
128 ? ? ? ? 850 850
1024 ? ? ? ? 2900 2800
1460 ? ? ? ? 3200 3700
4096 ? ? ? ? 4700 4400
8192 ? ? ? ? 5500 5000
32768 ? ? ? ? 5700 5800
1MByte ? ? ? ? 5700 5700

Annotation: All transmission speeds are listed in KBytes/sec.

Table 7 Throughput TSOCK (Ultra TCP-communication)

25

5.4.2 TSOCK (Ultra TP4-communication)

The following table shows the transmission speeds measured transfering data with
different bufferlength via the Ultra native path (TP4-path) to directly connected Ultra
hosts.

Communicating to the MVS system with a bufferlength greater than 1024 Byte caused
an Ultra software crash. We did not try to fix the problem, because of limited time.
The transmission speeds we see here between the two CRAY systems show, which data
throughput can be achieved using aggregate bufferlength. The Ultra Hub and IBM HiPPI
implementation seems really not to be designed for common TCP/IP communication
protocols like Telnet and FTP.

Kon- YMP M94 MVS MYVS YMP M94
stellation l l l l l l
/ (Ultra) (Ultra) (Ultra) (Ultra) (Ultra) (Ultra)
Buffer- l l l l l l
length MYVS MYVS YMP M9%4 M9%4 YMP
64 10 10 10 10 33 40
128 26 24 26 20 66 83
1024 260 190 170 150 570 3500
1460 Error Error 245 290 750 3700
4096 Error Error 680 680 2130 4300
8192 Error Error 1400 1300 3850 5000
32768 Error Error 6800 4300 11200 11000
1MByte Error Error 19800 18300 30500 26300

Table 8 Throughput TSOCK (Ultra TP4-communication)

Annotation: All transmission speeds are listed in KBytes/sec.

26

6 Conclusion

To achieve consistent HiPPI performance, the cpu running the HiPPI has to be dedicated.
Running under LPAR will lead to degraded data transfer rates on the inbound HiPPI
channel than in a non-LPAR environment. The cpu’s in the KFA production environment
cannot be dedicated, since the free cpu capacities of the VM system at night times will
be used for MVS batch jobs running, and since only the cpu capacities at day times,
which will not be used at VM, may be used by MVS jobs.

It may be possible to achieve acceptable HiPPI performance without dedicated CPs by
weighting the HiPPI partition so that its weight is 4 times the sum of the weights of other
partitons. However, this type of shared environment is not recommended. [IBM-02]

At KFA this weighting would lead to an unacceptable favour of the MVS batch system,
if the HiPPI is located to this system. The cpu performance of the CMS interactive
system running in another logical partition will be degraded extremely, since there are
MYVS jobs queued, which have to consume the rest of the available cpu power. If no
HiPPI activity is done, this batch jobs would use 80% of the 4 cpu’s.

HiPPI interrupts are directed to a fixed CP (usually CP2 for a HiPPI installed on side 0
and CP4 for a HiPPI installed on side 1). When LPAR assigns a HiPPI partition to run on
a CP other than the one receiving the HiPPI interrupt, the interrupt must be redirected.
This interrupt redirection takes time and can cause a reduction in the sustained data
transfer rates on the inbound HiPPI channel.[IBM-02] Since the HiPPI adapter at KFA
is directly attached to one cpu, using PR/SM leads to the reduction in transfer rates.

The most significant fact effecting the data throughtput is the HiPPI packet size. Since
each packet causes an interrupt, small packet sizes will cause a greater drop in perfor-
mance than larger packet sizes.

Performance estimates indicate, that there is a performance degradation on the HiPPI
channel, if a small packet size is used of up to 5% loss in throughput, if the packet size
is 32 KB. If there is a 4 KB packet size the loss in throughput is 32% [IBM-07]. Other
IBM sources mention a loss of throughput for 32 KB packet sizes of up to 42%. So the
loss for 8KB packet sizes will be up to or more than 50%. Since Ultra limits the TCP/IP
maximum transmission unit size (MTU) to 8400 Bytes, 8192 Bytes data plus headers
etc., this loss of throughput related to the packet size can be assumed.

Another performance degradation will be the data moves in main storage. The HiPPI
performance for a 3090/HO HiPPI interface can be estimated to 98 MBytes/s, if no data
moves in main storage take place. If one data move appears, the performance degrades
to 50-60 MBytes/s. If data moves are greater equal two, the transmission speed can be
estimated to 15-30 MBytes/s [IBM-08].

The measured throughputs for the experienced applications TCPSPRAY, FTP and
TSOCK lead to the result, that only an application using the TP4 protocol, direct Ultra
connection, can use the bandwidth associated with the UltraHub and the HiPPI MVS

27

interface. Though the data rates using the HiPPI at MVS with TP4 are much better than
using TCP-protocol, nevertheless the data rates are not satisfactory.

The first assumption the HiPPI MVS interface in connection with the UltraHub could be
used as a data collector of low bandwidth ethernets and therefore maximize the throughput
to the MVS system has been an error. The experiences we made show no better data
rates than using an gateway solution with IBM-RS6000 workstations [KFAO1, KFA02]
or an IBM 3172 model 1, sometimes lower than an IBM 8232.

The applications using the HiPPI performance between the MVS system and the Cray
supercomputers are not in sight. Backup of Cray disks will go to the storage tek robot
at KFA and do not need Ultranet. Archiving, backing up or restoring files via ADSM
can only be done, if a ADSM client is available on the Cray supercomputers, which is
not implemented until now. The interaction of MVS and Cray users is currently limited.
Some datasets will be fetch from MVS and stored to the MVS system, but the usage
degrades. If the MVS system will not become a raised value in the near future and will
not home an important server with high bandwidths requirements, the installation and
usage of the MVS HiPPI interface can not be recommended.

The software errors we found will be solved in the next time or have been solved until
now, but we have to consider, that every new error we will find, has to be solved by Ultra
Networks Technologies in conjunction with IBM. Taking into account the low number of
installations using a MVS Hippi connection to an UltraHub in a production environment,
getting solutions for software errors will become more difficult. Here we have to consider
too, that IBM stopped the development of HiPPI. Support will only be done on an “as
is” base. Further development will be done on Fiber Channel Standard (FCS).

Furthermore tests using an Ultra-BMC (Block-Multiplexer-Channel) connection for the
IBM ES9000 MVS-Operating system have shown the same data throughput, than using
an Ultra HiPPI interface. The price/performance ratio leads to the use of the Ultra-BMC
solution.

Taking into account the various limitating factors like LPAR, PR/SM, IBM TCP/IP
software implementation, many software components (TCP/IP, HiPPI, Ultra), many
different connected systems with various required and recommended parameter settings,
Disk 1I/0, Batch Operating System and so on, it does not surprise , that the IBM ES9000
MVS connection via the Ultra HiPPI interface does not provide an aggregate data
communication throughput.

As a consequence the KFA decided to renounce the use of the IBM HiPPI interface
and instead of this implement the Ultra-BMC solution. Because of the persuading
performance of the IBM RS6000 gateway solution, we have seen in 1993, regarding
maintenance and throughput, in future the Ultra-BMC communication path will only be
used for backup purposes or for special CRAY to MVS communications.

28

7.1 MVS/ESA Definitions

7.1.1 MVS-Ultra Definitions

7.1.1.1 Ultra HiPPI Profile (UPROFILH)

KFA Ultra startup parms for the single HiPPI adapter
on the IBM host.

$o—
command_name sub_cmd_name function

$ oo
unetdb set debug options

hippicf define config info for HiPPI driver

unetcft madd add mapping info

unetcft mdis display mapping info

unetcft radd add route info

unetcft rdis display route info

unetcft aadd add adapter into

unetct adis display adapter into

$o——

unetdb trace off
unetdb error uerror err_rb

en/disable IP broadcast: Format: broadcast on|off
broadcast on

unetcf madd -f ’'KFA1.UH390M20.PARMLIB(KFASTAT)'

cmd input_driver_devid HiPPI_id

hippicf 01 0

__
unetcf aadd hippiO0 zam003-b 0101 0101

__
hippidb +trace

__
unetcf adis

__

unetcf radd zam003-b hippi0 Oxffffff00 zam003-b
unetcf radd zam003-uh hippi0 Oxffffff00 zam003-uip -i

7 Appendix

29

7.1.1.2 Ultra Stations file (STATIONH)

KFA Stations file for the single HiPPI
adapter on the IBM host.

#

f===========c=——=======—===== MVS§ ===========
zam003-ultra 5/33

zam003-b 5/33

zam003-uip 5/33

zam003—-uh 5/33

zam003-u 5/33

mvs-ultra 5/33
S ¥ |- ¥/ W —
zam013-a 5/35

zam013 5/35

zam013-uip 5/35

zam013-uh 5/35

zam013-u 5/35

zam013-usl 5/35

zam013-uap 5/35

sn225 5/35

m94 5/35
f===========c=============== YMP ===========
zam005-a 5/40

zam005-b 5/40

zam005 5/40

zam005-uip 5/40

zam005-uh 5/40

zam005-u 5/40

zam005-usl 5/40

zam005-uap 5/40

ymp 5/40

snl011 5/40
f=========================== (Cisco =========
zam047-uap 6/33

zam047-usl 6/33

zam047-u 6/33

zam047-uh 6/33

zam047-uip 6/33

zam047 6/33
E———————————.,

30

7.1.2 TCP/IP Version 2.2 (Definitions)

7.1.2.1 PROFILE TCPIP

; KFA PROFILE TCPIP file for the single HiPPI

; adapter on the IBM host.

LARGEENVELOPEPOOLSIZE 900 16384

DATABUFFERPOOLSIZE 160 16384

SMALLDATABUFFERPOOLSIZE 256

INFORM OPERATOR ENDINFORM

OBEY OPERATOR SNMPQE SNMPD ENDOBEY

; Set Telnet timeout to 10 minutes

INTERNALCLIENTPARMS TIMEMARK 600 ENDINTERNALCLIENTPARMS

DEVICE UHIP HIPPI 1

LINK ULT1 HIPPI 1 UHIP
HOME 134.94.72.4 ULT1
GATEWAY
134.94 = ULT1 8400 0.0.255.0 0.0.72.0
134.94 134.94.72.10 ULT1 4470 0.0.255.0 0.0.76.0
134.94 134.94.72.10 ULT1 4470 0.0.255.0 0.0.100.0
134.94 134.94.72.10 ULT1 4096 0.0.255.0 0.0.96.0
134.94 134.94.72.10 ULT1 4096 0.0.255.0 0.0.112.0
134.94 134.94.72.5 ULT1 8400 0.0.255.0 0.0.68.0
DEFAULTNET 134.94.72.10 ULT1 1500 0
START UHIP
AUTOLOG
FTPHIP ; FTP server
ENDAUTOLOG
PORT
; Values from RFC 1010, "Assigned numbers"
21 TCP FTPHIP ; FTP server
20 TCP FTPHIP NOAUTOLOG ; FTP default data port
23 TCP INTCLIEN ; Telnet server

111 UDP PORTMAP
111 TCP PORTMAP

31

14

BEGINVTAM
; Define logon mode tables to be the defaults
; with the latest level of VTAM
3278-3-E NSX32703 ; 32 line screen - default of
3279-3-E NSX32703 ; 32 line screen - default of
3278-4-E NSX32704 ; 48 line screen - default of
3279-4-E NSX32704 ; 48 line screen - default of
3278-5-E NSX32705 ; 132 col screen - default of
3279-5-E NSX32705 ; 132 col screen - default of
; Define the LUs to be used for general users
DEFAULTLUS
TCP0O0O00O1 TCPOOOO2 TCPOOOO3 TCPO0O0O04 TCPOOOOS
TCP0O0006 TCPOOOO7 TCPO0O0O08 TCPOOO09 TCPOOO1O0
TCP0O0011 TCPOOOl2 TCPOOO13 TCP0O0014 TCPOOO15
TCP0001l6 TCPOOO1l7 TCPO0O018 TCP0O0O019 TCPO00020
TCP00021 TCP0O0O022 TCP0O0023 TCP00024 TCP0O0025
TCP00026 TCP0O0027 TCP0O0028 TCP00029 TCPO0030
ENDDEFAULTLUS

Define the VTAM parameters required for the TELNET server

ENDVTAM

SYSCONTACT F.J.

Schoenebeck ENDSYSCONTACT

SYSLOCATION KFA-ZAM 02461-61/6432 ENDSYSLOCATION

32

shipped

NSX32702
NSX32702
NSX32702
NSX32702
NSX32702
NSX32702

is
is
is
is
is
is

24
24
24
24
80
80

7.2 Participating Systems

CRAY Y-MP8/832

Central processors
CPU cycles
Performance

Main storage
I/0-Processors
Schnellspeicher (SSD)
Operating System
Number of UserId’s

CRAY Y-MP M94

Central processors
CPU cycles
Performance

Main storage
I/0-Processors
Operating System
Number of UserId’s

IBM ES/9000 Model 620

CPU’s

Performance

Main storage
Expanded storage
Parallel channels
Fiber channels
Vector engines
Performance
Operating System

Number of UserId’s

8

6 ns

2666 MFLOPS
256 MB

4

1024 MB
UNICOS 7.0
ca. 390

4

6 ns

1333 MFLOPS
2048 MB

2

UNICOS 7.0
ca. 420

4

84 MIPS
512 MB

512 MB

80

32

2

138 MFLOPS/Vector engine
VM/ESA with CMS and

MVS/ESA in logical partitions
VM: ca. 2250

MVS: ca. 2000

33

IBM RISC System/6000 Model 350

Central processors 1

CPU Cycles 24 ns

Performance (Speckfp92) 65 MFLOPS

Main storage 32 MB

Data cache 32 KB

Instruction cache 8 KB

Memory bus 64 bit

DASD 400 MB

Operating System AIX V3.2

Number of UserId’s ca. 10 (System users)

Cisco AGS+ Router

Central processors 1 csc/4
cBus cbus I
Main storage 16 KB
Multibus Memory 64 KB
Non Volatile Config Memory 64 KB
Software Version 9.03
Interfaces 4 Serial
4 Ethernet
1 FDDI
1 HSCI (High Speed Channel Interface)

34

7.3 Man page TCPSPRAY

TCPSPRAY (1) (23 October 1991) TCPSPRAY (1
NAME
tcpspray — print average throughput for a tcp connection
SYNOPSIS
tcpspray [-v 1 [e 1 [-h] [-b blksize] [—-n nblks]
[—f filename] hostname
DESCRIPTION

tcpspray sends data to either the discard or echo TCP
service on the specified host and prints the average

throughput.
OPTIONS

-V Prints a dot for each block sent. Will also
print a backspace for each block received in
echo mode. Note: the I/0 required for this
option will affect the throughput rates.

-e Use the TCP echo service instead of discard
(the default) and print throughput rates for
both transmission and reception.

-h Print a usage description.

-b blksize Sets the size of a block (the internal
buffer) in bytes. Defaults to 1024.

-n nblks Sets the number of blocks to transfer.
Defaults to 100.

—-f filename Copy the contents of the specified file into

the internal buffer (sized by -b option).
The buffer is zeroed by default. If the fil
is larger than the buffer, only the first
blksize bytes will be used. If the file is

)

e

35

smaller than the buffer, the remaining bytes

are zeroed.

This option is useful in determining the
relationship of the data transferred to
throughput. E.g., if data compression is
used on any of the intermediate links
comprising the TCP connection, preloading the
buffer with a text file will produce greater
throughput than with a file that has already
been compressed.

ping(8), spray(8)

AUTHOR
Greg Christy (gmc@quotron.com)

36

7.4 Man page FTP

ftp Command

Purpose

Transfers files between a local and a remote host.
Syntax

ftp [-d] [-g] [-1] [-n] [-v] [HostName]

Description

The ftp command is the interface to the File Transfer
Protocol (FTP). This command uses FTP to transfer
files between the local host and a remote host or
between two remote hosts.

The FTP protocol allows data transfer between hosts

that use dissimilar file systems. Although the protocol
provides a high degree of flexibility in transferring
data, it does not attempt to preserve file attributes
(such as the protection mode or modification times of
a file) that are specific to a particular file system.
Moreover, the FTP protocol makes few assumptions about
the overall structure of a file system and does not
provide or allow such functions as recursively copying
subdirectories.

Note: If you are transferring files between AIX systems
and need to preserve file attributes or to recursively
copy subdirectories, use the rcp command.

At the ftp> prompt, you can enter subcommands to perform
tasks such as listing remote directories, changing the
current local and remote directory, transferring multiple
files in a single request, creating and removing direc-
tories, and escaping to the local shell to perform shell
commands.

Security and Automatic Login

37

38

The ftp command also provides for security by sending
passwords to the remote host and permits automatic login,
file transfers, and logoff.

If you execute the ftp command and specify the host name
(HostName) of a remote host, the ftp command tries to
immediately establish a connection to the specified host.
If the ftp command connects successfully, the ftp command
searches for a local S$HOME/.netrc file in your current
directory or home directory. If the file exists, the ftp
command searches the file for an entry that initiates
the login process and command macro definitions for the
remote host. If the $HOME/.netrc file or autologin entry
does not exist or i1f your system has been secured with the
securetcpip command, the ftp command prompts the user for
a user name and password. This occurs regardless of
whether the HostName parameter is specified on the command
line.

Note: The queuing system does not support multibyte host
names.

If the ftp command finds a S$SHOME/.netrc autologin entry
for the specified host, the ftp command attempts to use
the information in that entry to automatically 1log in
to the remote host. The ftp command also loads any
command macros defined in the entry. In some cases (for
example, when the required password is not listed in an
autologin entry), the ftp command prompts for the
password before displaying the ftp> prompt.

Once the ftp command completes the autologin process, the
ftp command executes the init macro if the macro is
defined in the autologin entry. If the init macro does
not exist or does not contain a gquit or bye subcommand,
the ftp command then displays the ftp> prompt and waits
for a subcommand.

Note: The remote user name that you specify either at the
prompt or in a $HOME/.netrc file must exist and have a
password defined at the remote host. Otherwise, the ftp
command fails.

Flags

The following flags can be entered on the shell command

line:

-d Enables debugging by turning on the logging feature.
See the debug subcommand.

-g Disables the expansion of metacharacters in file
names. Interpreting metacharacters can be referred
to as expanding (sometimes called globbing) a file
name. See the glob subcommand.

-i Turns off interactive prompting during multiple file
transfers. See the prompt, mget, mput, and
mdelete subcommands for descriptions of prompting
during multiple file transfers.

-n Prevents an automatic login on the initial connection.
Otherwise, the ftp command searches for a $HOME/.netrc
entry that describes the login and initialization
process for the remote host. See the user subcommand.

-V Displays all the responses from the remote server and
provides data transfer statistics. This is the default
display mode when the output of the ftp command is to
a device, such as the console or a display. However,
if output is redirected, such as to a file, or if
the ftp command is started by a daemon, such as the
cron daemon, verbose mode is not in effect unless the
-v flag or the verbose subcommand is used.

Parameter

HostName The name of the host machine to which files
will be transferred.

Subcommands

If you execute the ftp command and do not specify the Host-
Name of a remote host, the ftp command immediately displays
the ftp> prompt and waits for an ftp subcommand. To connect
to a remote host, you then execute the open subcommand.
When the ftp command connects to the remote host, the ftp
command then prompts for the login name and password before
displaying the ftp> prompt again. The ftp command fails if

no password is defined at the remote host for the login name.

The ftp command interpreter, which handles all subcommands

39

40

entered at the ftp> prompt, provides facilities that are not
available with most file-transfer programs, such as:

* Handling file-name parameters to ftp subcommands.

* Collecting a group of subcommands into a single sub-
command macro.

* Loading macros from a $HOME/.netrc file.

These facilities help simplify repetitive tasks and allow
you to use the ftp command in unattended mode.

The command interpreter handles file-name parameters accor-—
ding to the following rules:

* If a - (hyphen) is specified for the parameter, stan-
dard input is used for read operations and standard
output is used for write operations.

* If the preceding check does not apply and file—name
expansion is enabled (see the —-g command or the
glob subcommand), the interpreter expands the file
name according to the rules of the C shell. When
globbing is enabled and a pattern-matching character
is used in a subcommand that expects a single file
name, results may be different than expected.

For example, the append and put subcommands perform file-
name expansion and then use only the first file name
generated. Other ftp subcommands, such as cd, delete,
get, mkdir, rename, and rmdir, do not perform file-name
expansion and take the pattern-matching characters
literally.

* For the get, put, mget, and mput subcommands,
the interpreter has the ability to translate and map
between different local and remote file-name syntax
styles (see the case, ntrans, and nmap subcommands)
and the ability to modify a local file name if it is
not unique (see the runique subcommand). Additio-
nally, the ftp command can send instructions to a
remote ftpd server to modify a remote file name if it
is not unique (see the sunique subcommand).

Note: The ftp command interpreter does not support pipes.

To end an ftp session when you are running interactively,
use the quit or Dbye subcommand or the End of File (Ctrl-D)
key sequence at the ftp> prompt. To end a file transfer
before it has completed, press the Interrupt key sequence.
The default Interrupt key sequence is Ctrl-C. The stty
command can be used to redefine this key sequence.

Transfers being sent (from the local host to the remote
host) are normally halted immediately. Transfers being
received (from the remote host to the local host) are halted
by sending an FTP ABOR instruction to the remote FTP server
and discarding all incoming file transfer packets until
the remote server stops sending them. If the remote
server does not support the ABOR instruction, the ftp>
prompt will not be displayed until the remote server has
sent all of the requested file. Additionally, if the
remote server does something unexpected, the local ftp
process may need to be ended manually.

List of Subcommands

Implementation Specifics

This command is part of the TCP/IP Facility in Network
Facilities of AIX for RISC System/6000

Files

SHOME/ .netrc Specifies automatic login information for
the ftp command and the rexec command.

/usr/bin/ftp Command executable file.
/usr/lpp/tcpip/samples/.netrc Sample .netrc file.

Suggested Reading

41

42

Prerequisite Information

Network Overview

Related Information

How to Copy Files Using the ftp Command.

The c¢sh command, rcp command, tftp command,
How to Copy Files Using the ftp Command

Suggested Reading

Prerequisite Information

Glossary Terms: host, local host, permissions,

The c<¢d command, dir command.

Related Information

The ftp command, rcp command.

The ftpd daemon.

stty command.

remote host.

7.5 Man page TSOCK

TSOCK (8)
NAME
tsock - UltraNet socket-based network exerciser
SYNOPSIS
tsock [-r] [-t] [-s] [-lbuflen] [-nnbufs] [-mnby]
[-21] [-?s] [-?r] [-pport] [-B] [-d] [-cfreq] [-Pxpat]
[-Ffile] [—-aabufs] [-f] [-utpdu] [-xtimes] [-ztimes]
[host]
DESCRIPTION

tsock is a program which uses the UltraNet socket emulation
library to perform numerous network exercises. It may be
used for a variety of reasons, including timings, connec-—
tivity testing, fault diagnosis, software checkout, and so
forth.

The program is a derivative of the public-domain ttcp
program developed by T.C. Slattery, USNA, as improved by
Mike Muuss, BRL.

OPTIONS

-r Operate as receiver.

-t Operate as transmitter.

-s Operate in source/sink mode, in which the transmitter
sends a standard pattern of internally-generated data
and the receiver discards all data. This avoids disk
I/0 (useful for timings) and allows validation of
incoming data (see the -c option below). Alternate
patterns can also be specified (see the -P and -F
options below).

—lbuflen
Use a transmit or receive buffer of buflen bytes
[default: 1024]. If a 'K’ (or 'k’) is appended to
buflen the value is multiplied by 1024; an 'M’ (or
'm’”) multiplies by 1048576; a G’ (or 'g’) multiplies
by 1073741824.

-nnbufs

43

44

-mnby

=71

-?s

-?r

—ppor

-d

—cfre

—-Pxpa

Transmit a total of nbufs messages [default: 1024].
Applicable for transmitter only; ignored for receiver.

Mark the progress of the transfer by printing an "X"
for every nby bytes sent or received [default: 10240].
A multiplication character may be appended as for
buflen. Does not work well in conjunction with the -x
or -z options.

Use a random-length buffer ranging from one byte to
buflen. Applicable only in source/sink mode and, if
receiver, for nondatagrams only; ignored otherwise.

Use a random starting byte location within the buffer
(that is, a random byte boundary). Applicable only in
source/sink mode; ignored otherwise.

Do not seed the random number generator. Used to
produce repeatable "random" runs.

t
Use port number port for the connection or datagram
path [default: 2000]. Port numbers are 16 bits, and

there is a BSD convention that port numbers under
1024 are usable only by privileged programs; there-
fore, port must be between 1024 and 65535.

Output only full buflen-sized blocks (for TAR).
Applicable for receiver only; ignored for transmitter.

Use datagrams (ISO Connectionless Transport Service).

q
Check every freqg incoming message for correctness; if

freg is omitted every message is checked. Applicable
only in source/sink mode and for the receiver side
only; ignored otherwise. This option will signifi-
cantly slow down the transfer, depending upon the
value of freq.

t

Use an alternate pattern as specified by the hexa-
decimal string xpat. If no xpat is specified, an
alternate cyclical pattern is used (the default
pattern runs from 0x20 through 0Ox7e repetitively;

the alternate pattern runs from 0x00 through Oxff).
Requires -s, and must be specified on both the
receiver and the transmitter if -c is also specified.
If xpat is specified, data checking (-c) will work
only if the transmitter and receiver have identical
buffer sizes and no -? options are used. The xpat
string must contain an even number of hexadecimal
digits (0-9, a-f, or A-F) only; it does not start
with 0x.

-Ffile

Use an alternate pattern from the specified file.
Requires -s, and must be specified on both the
receiver and the transmitter if -c is also specified.
Data checking (-c) will work only if the transmitter
and receiver have identical buffer sizes and no -7
options are used.

—aabufs

Use asynchronous I/0 with abufs simultaneous opera-
tions [no default; abufs must be specified].
Applicable only on systems which support asynchronous
I/0, such as Cray UNICOS; ignored otherwise.

-f Use fake data mode, in which the adapter or adapter
interface generates or discards the data instead of
accessing host memory.

Applicable only in source/sink mode and with appro-
priate hardware installed.

—-utpdu
Sets maximum TPDU size to 2 "tpdu bytes [default is
configuration-dependent, usually 15 (32Kbyte TPDUs)].
May be specified for either the transmitter or the
receiver; if specified for both, the minimum of the
two sizes will be used.

-xtimes

Run the command times times in parallel by forking.
For tsock —-t, this will multiply the number of bytes
transmitted by times; for tsock -r, each receiver
process will receive approximately 1/times of the
bytes transmitted. (Approximate because there is no
coordination among the receivers; they are all in a
big free-for-all fight for messages.) This is not
the same as using multiple tsock commands, because

45

USAGE

46

all participants share the same port numbers (that
is, share the same connection or datagram path).
This option is obviously most useful in source/sink
mode (due to the free-for-all nature of both trans-
mitting and receiving).

—-ztimes
Run the command times times in parallel by forking
(same as -x) except that the forked processes will
alternate transmitter and receiver. For example,
-z4 results in two transmitters and two receivers.
This allows operating a connection or a datagram path
in true full duplex (data flowing simultaneously in
both directions). Several unique considerations must
be kept in mind when using -z; see USAGE below.

host The local (receiver) or remote (transmitter) host
name to use for the connection or datagram path;
required for transmitter, optional for receiver.

The receiver command (tsock —-r) should be issued first,

on the receiving system, followed by the transmitter
command (tsock —-t) on the sending system. The receiver
takes the passive role, and either listens for an incoming
connection or issues a recvfrom() for an incoming datagram;
the transmitter takes the active role, and either initiates
a connection or starts sending datagrams. Once the
transmitter has sent the specified number of messages
(nbufs) it either closes the connection or sends a special
"end of transmission" datagram. Both the transmitter and
receiver then generate detailed timing information on
stderr (the use of stderr allows the receiver to redirect
stdout to a file).

Since message boundaries are significant for ISO Connec-
tion-Oriented Transport Service (unlike sockets), each
message which is larger than the receive buffer will
satisfy more than one read(), but each message that is
smaller than the receive buffer will satisfy a separate
read(). For example, assume a receive buffer of 1024
bytes. If the transmitter were to send a 2000-byte
message (either because buflen were 2000 or by random
choice), then the receiver’s first read() would return
1024 bytes and its second read() would return 976 bytes.
If the transmitter were to send a 5-byte message, the

1024-byte read() would return only the five bytes.

The maximum size for an UltraNet datagram is one TPDU
(normally 32768 bytes), and datagrams are truncated rather
than continued. In the first example above (receiver
buflen of 1024, transmitter sends 2000 bytes), only the
first 1024 bytes of the message (datagram) would be
delivered; the remaining 976 bytes would be discarded.

An alternate pattern file (specified with the -F option)
is an ASCII file containing a hexadecimal representation
of the pattern to be repeated througout each message; the
file must be less than 1000 characters in length. Each
valid hexadecimal character in the file (0-9, a-f, A-F)
is converted into binary and included in the pattern,

and all other characters are ignored (to allow inclusion
of tabs, spaces, carriage returns, and so forth).

There must also be an even number of hexadecimal

characters (the pattern is a string of bytes, not nibbles).

For example, each of the following files would result in
messages consisting of the 16 hexadecimal digits
repeating throughout:

012345678%abcdef
01 23 45 67 89 AB CD EF
01/23 45/67 89/ab cd/ef

"01234567"
"8%abcdef"

When using the -z option, values for nbufs must be
specified on both commands, since otherwise the trans-
mitters and receivers will not know when to terminate;
these may be specified either with the -n option or by
using the default. Also, care must be taken to balance
the total number of transmissions and receptions. Note
that this does not mean simply that the two values of
nbufs must be the same. For one thing, nbufs is essen-
tially multiplied by the number of processes of each
type; this is particularly bothersome when times is odd
or is different on the two commands. Also, a single
transmission may satisfy several receives (e.g., one
3000-byte transmit will satisfy four 800-byte receives);
this is significant when buflen is different on the two

47

commands. Because of this, -z used with random-length
buffers (-?1) will generally not work correctly (it will
transfer data, but will generally not terminate).
Finally, note that use of -z does makes it meaningful

to specify -c along with -t.

EXAMPLES

48

The following pair of commands will send 1024 canned
messages of 1024 bytes each (the default values) from
host mulberry to host juniper.

on juniper: tsock -r -s juniper
on mulberry: tsock -t -s juniper

The following pair of commands will send 100000 random-
sized messages (ranging from 1 byte to 50000 bytes) from
host mulberry to host juniper, where the messages will
be received in a randomly-located, random-sized buffer
(ranging from 1 byte to 10000 bytes) and will be checked
for correctness. It will also mark every 100000 bytes
received, and will use a maximum TPDU size of 8192 bytes.
Note the use of backslash to bypass shell interpretation
of the "?'.

on juniper: tsock -r -s -110000 -\?1 -\?s -c 1
-m100000 —-ul3 juniper

on mulberry: tsock -t -s —-150000 -\?1 -nl100000 juniper

The following pair of commands will send the file testdata
from host mulberry to host juniper, using 256-byte
messages.

on juniper: tsock -r -1256 juniper >testdata
on mulberry: tsock -t -1256 juniper <testdata

The following pair of commands will send 1024 datagrams of
20K (20480) bytes each from host mulberry to port 5555 on

host juniper, where they will be checked for correctness.

In addition, an "X" will be printed on mulberry for every

ten datagrams sent, and on juniper for every ten datagrams
received.

on juniper: tsock -r -s -d -p5555 -120k -m200k

—-c juniper

on mulberry: tsock -t -s -d -p5555 -120K -m200K
juniper

The following pair of commands will send 1024 random-
length datagrams of up to 20000 bytes each from host
mulberry to host juniper. Note that since the receive
buffer is only 10000 bytes long, any datagrams longer
than 10000 bytes will be truncated (this should be about
half the datagrams if the random number generator is
reasonable).

on juniper: tsock -r -s -d -110000 juniper

on mulberry: tsock -t -s -d -120000 -\?1 juniper
The following pair of commands will send 100 1024-byte
messages from each of five parallel transmitters to four
parallel receivers, using a single connection. There will
be a total of 512000 bytes transmitted (default length of
1024 times -nl00 times -x5), although each of the four
receivers will probably not receive exactly one-fourth of
them; the total bytes received will be 512000.

on juniper: tsock -r -s -x4 juniper
on mulberry: tsock -t -s -nl00 -x5 juniper

The following pair of commands will result in 200
1024-byte messages being sent in each direction between
juniper and mulberry (400 messages total), using a single
connection. The data will use an alternate pattern and
will be checked on both ends.
on juniper: tsock -r -s -c -PO000Offff -nl00 -z4 Jjuniper
on mulberry: tsock -t -s -c -PO000ffff -nl00 -z4 Jjuniper
The following commands are identical to the previous
pair, but use the alternate pattern specified in the
file alt-pat4.

on juniper: tsock -r -s -c -Falt-pat4 -nl00 -z4 Jjuniper

on mulberry: tsock -t -s -c -Falt-pat4 -nl00 -z4 Jjuniper

49

DIAGNOSTICS
Error messages are self explanatory. Status and timing

50

output is directed to stderr to allow the receiver to

redirect stdout into a

file. If invoked with no parameters, tsock prints the

following usage summary:

Usage:
tsock [—-options] [host] >out

-r operate as receiver (passive initiation,
receive data)

-t operate as transmitter (active initiation,
transmit data)

-Ss source/sink mode (generate and discard a
data pattern)

—1## length of network buffer (default 1024)

-n## number of messages to transmit (with -s
only, default 1024)

—m## mark progress with X’ for every ## bytes
transferred

-21 use random length messages <= -1l## value
(without -d only)

-?5 use random starting location (i.e., random
byte boundary)

-?r do NOT seed random number generator (for
repeatability)

-p## port number for connection or datagram path
(default 2000)

-B only transmit full blocks, as specified in
-1## (for TAR)

—-d use datagrams (with -s only)

—at# use asynch network I/O (eg, UNICOS reada)
with ## buffers

-f set ’'fake data’ option

—-C check received data (receiver with -s only)

—u## set TPDU size to 2 ## bytes (eg, 12=4K;
default 15)

—x## run ## processes in parallel (via fork)

—z## same as —-x## but fork both receivers and
transmitters

-Pxpat use alternate pattern hsx ’'xpat’
(default 0x00-0xff)

-Ffile use alternate pattern from file

host host name (optional local for -r, required

BUGS

remote for -t)

Until multiple—adapter support is implemented, whenever
the current UltraNet configuration has more than one
adapter defined, a host parameter must be specified for
the receiver. (A host parameter is always required for
the transmitter.)

See unetcf(8) for information on configuring an UltraNet.

In source/sink mode using datagrams, the sender produces
datagrams as fast as possible, and in general will overrun
the ability of the receiver to receive; some datagrams
will usually be discarded. This situation is exacerbated
by the use of the -c option. Occasionally the special
"start of transmission" or "end of transmission" datagrams
will be missed, resulting in a hung receiver. This
situation is exacerbated by using the -x option on a
datagram receiver, which is really not recommended.

The option parser is relatively stupid, and requires that
there be no spaces between an option letter and its
argument (e.g., -nl000 rather than -n 1000 and -7?s rather
than -? s).

USMID Q@ (#)man/man8/tsock.8 301.2 09/14/92 15:04:48

51

7.6 Literature

52

[ANS-01] HiPPI — Framing Protocol (HiPPI-FP), preliminary draft proposed,
ANSI, X3.210-199x, X3T9/89-146, X3T9.3/89-013, Rev 4.3, 24 February 1992
[ANS-02] HiPPI — Encapsulation of ISO 8802-2 (IEEE Std 802.2) Logical
Link Control data Units — (802.2 Link Encapsulation) (HiPPI-LE), working draft
proposed, ANSI, X3T9.3/90-119, 29 July 1991

[ANS-03] HiPPI — Memory Interface (HiPPI-MI), preliminary draft proposed,
ANSI, Rev 2.6, 13 March 1992

[ANS-04] HiPPI — Physical Switch Control (HiPPI-SC), working draft proposed,
ANSI, X3.222-199x, X3T9/91-139, X3T9.3/91-023, Rev 2.4, 16 December 1991
[ANS-05] HiPPI — Mechanical, Electrical and Signalling Protocol Specification
(HiPPI-PH), preliminary draft proposed, ANSI, X3T9/88-127, X3T9.3/88-023, Rev
8.1, 24 June 1991

[COM-01] D.E.Comer, —Internetworking with TCP/IP, Vol. I, Second Edition,
Prentice-Hall International Editions, 0—13-470188-7

[COM-02] D.E.Comer, —Internetworking with TCP/IP, Vol. II, First Edition,
Prentice-Hall International Editions, 0—13-465378-5

[CRA-01] Cray’s Perspective on the HiPPI Standard, John K. Renwick, CRAY
Research Inc. Eagan, Minnesota

[CRA-02] IP and ARP on HiPPI, Internet-Draft, Internet Engineering Task Force,
Network Working Group, J.Renwick, A.Nicholson, Cray Research Inc., February
1992

[IBM-01] Program Directory for use with IBM HiPPI SCSE for MVS/ESA,
Version 1, Release 2, Modification Level 0, Program 5799-DKW, Feature
5417/5418/5419, 27 March 1991

[IBM-02] HiPPI — User’s Guide and Programmer’s Reference, X3.183—-1991,
SA23-0369-03, IBM, February 1992

[IBM-03] IBM, February 1992, HiPPI — HiPPI and Fiber Channel Standard —
FCS, Reiner H. Philipp, IBM-ECAN Heidelberg, EMEA HiPPI Class Heidelberg,
October 1992

[IBM-04] IBM Visualization Solutions for scientific and Engineering Problems,
Dr. David Watson, IBM UK Scientific Centre, Winchester, UK, 1992

[IBM-05] IBM — Power Visualization System, Dr. David Watson, IBM UK
Scientific Centre, Winchester, UK, December 1991

[IBM-06] HiPPI — The 100 Megabyte/sec ANSI Standard, Henry R. Brandt, IBM
ES Kingston, New York, May 1992

[IBM-07] HiPPI Hardware for the 3090J and ES/9000 Processors, Ronald A.
Linton, High Parallel Supercomputing Systems Laboratory, IBM Kingston, New
York, May 1992

[IBM-08] S/390 HiPPI Performance, Robert Seidel, IBM ES Kingston, New York,
May 1992

[KFA-01] KFAnet/INTERNET — Performance-Test der IBM-RS6000-32H als
FDDI-BMPX-Router, W.Anrath, R.Niederberger, First Edition, July 1992, KFA-
ZAM-IB-9208,

[KFA-02] KFAnet/INTERNET — Experiences with IBM-RS6000 as FDDI ga-
teway to IBM mainframes, R.Niederberger, First Edition, November 1993, KFA-
ZAM-IB-9311,

[MVS-01] IBM TCP/IP Version 2 Release 2.1 for MVS: Planning and Customiza-
tion, Third Edition, September 1992, SC31-6085-2

[MVS-02] IBM TCP/IP Version 2 Release 2.1 for MVS: Installation and Mainte-
nance, First Edition, March 1991, SC31-6085-0

[MVS-03] IBM TCP/IP Version 2 Release 2.1 for MVS: Programmer’s Reference,
Third Edition, September 1992, SC31-6087-2

[MVS-04] IBM TCP/IP Version 2 Release 2.1 for MVS: User’s Guide, Third
Edition, September 1992, SC31-6088-2

[MVS-05] IBM TCP/IP Version 2 Release 2.1 for MVS: Messages and Codes,
Third Edition, September 1992, SC31-6142-02

[ULT-01] Network Addressing Manual, Part Number 06-0020-001, Revision B,
Ultra Network Technologies, 18 November 1991

[ULT-02] Overview of Products for IBM Computers, Part Number 06-0009-001,
Revision B, Ultra Network Technologies, 24 April 1990

[ULT-03] UtraNet IBM Host Software Release Notes, Release 3.80.05 MVS
Versions, Ultra Network Technologies, 15 November 1991

[ULT-04] Host Software Installation Guide for MVS Systems, Part Number
06-0037-001, Revision A, Ultra Network Technologies, 4 November 1991

53

