
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

KFAnet/INTERNET

Installation and Operating

of the

IBM-HiPPI-Interface

R. Niederberger, F.J. Schoenebeck

KFA-ZAM-IB-9407

Februar 1994

(Stand 15.02.94)

ii

Table of contents

List of Figures . v

List of Tables . vii

1 Introduction . 1

1.1 Motivation . 1

2 Network environment . 3

2.1 The computer network KFAnet . 3

2.2 The workstation concept . 3

2.3 UltraNet . 6

2.4 HiPPI . 7

2.5 UltraNet HiPPI network processor . 8

2.6 HiPPI for MVS at KFA . 8

3 Hardware Installation of the HiPPI-Interface 11

3.1 The IBM-HiPPI-interface . 11

3.2 The Ultra-HiPPI-board . 11

4 Software Installation and Bugs . 13

4.1 The Software incompatibilities . 13

4.2 Software Bugs . 14

5 Test environment and results . 15

5.1 Introduction to test series . 15

5.2 TCPSPRAY . 17

5.2.1 TCPSPRAY (Ultra+FDDI) . 18

5.2.2 TCPSPRAY(Ultra) . 19

5.3 FTP . 20

5.3.1 FTP (Ultra+FDDI) . 21

5.3.2 FTP (Ultra) . 22

5.4 TSOCK . 23

5.4.1 TSOCK (Ultra TCP-communication) . 25

5.4.2 TSOCK (Ultra TP4-communication) . 26

6 Conclusion . 27

7 Appendix . 29

7.1 MVS/ESA Definitions . 29

7.1.1 MVS-Ultra Definitions . 29
7.1.1.1 Ultra HiPPI Profile (UPROFILH) . 29
7.1.1.2 Ultra Stations file (STATIONH) . 30

7.1.2 TCP/IP Version 2.2 (Definitions) . 31
7.1.2.1 PROFILE TCPIP . 31

iii

7.2 Participating Systems . 33

7.3 Man page TCPSPRAY . 35

7.4 Man page FTP . 37

7.5 Man page TSOCK . 43

7.6 Literature . 52

iv

List of Figures

Figure 1 KFAnet/Internet configuration 5

Figure 2 UltraHub1000 internals at KFA Juelich 6

Figure 3 HiPPI Architecture . 7

Figure 4 The HiPPI test scenario . 9

Figure 5 HiPPI, Ultra and TCP/IP software components 13

Figure 6 Usage of TCPSPRAY command 17

Figure 7 Usage of FTP command . 20

Figure 8 TSOCK processing logic . 23

Figure 9 Usage of TSOCK command 24

v

vi

List of Tables

Table 1 LPAR weighting at ES9000/620 15

Table 2 Abbreviations used in throughput tables 16

Table 3 Throughput TCPSPRAY (Ultra + FDDI) 18

Table 4 Throughput TCPSPRAY (Ultra) 19

Table 5 Throughput FTP (Ultra + FDDI) 21

Table 6 Throughput FTP (Ultra) . 22

Table 7 Throughput TSOCK (Ultra TCP-communication) 25

Table 8 Throughput TSOCK (Ultra TP4-communication) 26

vii

viii

1 Introduction

1.1 Motivation

In the last decade network research and development led to more and more powerful

computer networks. Starting with local area networks with 10 Mbit/s bandwidth like

Ethernet, followed by FDDI with 100 Mbit/s and not finally HiPPI with 800 esp. 1600

Mbit/sec, the transmission speeds of local networks grew in fantastic steps. Though

HiPPI, the High Performance Parallel Interface, is not the last step in this evolution,

this interface seems to be the fastest interface, that can be managed by the computation

power of currently available mainframe cpu’s, taking into account, that this mainframe

is not used for communication purposes only.

In 1990 a new concept for a cooperative computing in the KFA was introduced, the so

named workstation concept. This concept includes the communication of low bandwidth

attached PC’s with high bandwidth attached supercomputers as well as the high speed

communication of CRAY supercomputers and IBM mainframes. Taking into account this

requirements the KFA decided to install an IBM HiPPI interface for the IBM ES9000/620

and to analyse the opportunities available with this interface.

1

2

2 Network environment

2.1 The computer network KFAnet

KFAnet/Internet, the high speed computer network, is an open offering to the technical

scientific staff of the KFA to solve the communication problems of distributed processing

in a heterogen computer system area.

Main transport mechanisms are FDDI with 100 Mbit/s to KFA institutes with high band-

width requirements and Ethernet with 10 Mbit/s otherwise. The CRAY supercomputers

and the IBM ES9000/620 (MVS/ESA) are connected to an UltraHub 1000 and via a

Cisco router to the KFA wide FDDI network. The default path to the IBM mainframe is

currently a FDDI connection via two IBM-RS6000/350. This two gateways connect the

operating systems VM/ESA and MVS/ESA to the local network. For hardware backup

purposes an IBM 8232 communication controller can be used.

The local area network KFAnet is connected to the German WiN, Wissenschafts-Netz,

and across this to the worldwide Internet via a serial Cisco router interface with 2 MBit/s

bandwidth.

The physical KFAnet/Internet configuration at KFA is shown in the picture on the next

page.

The offered network services are the standard TCP/IP applications, developed by DARPA

and Berkley. Main protocols used are FTP, Telnet, Electronic Mail, REXEC, Line

Printing and Sun’s NFS. Further applications have been developed based on the BSD

socket interface. For software backup purposes the WDSF, Workstation Data Save

Facility, and later on DFDSM, Data Facility Distributed Storage Management, now called

ADSM, Adstar Distributed Storage Management, implemented by IBM, have been tested.

2.2 The workstation concept

Introducing the TCP/IP protocol family the KFA offered the possibility to use powerful

workstations in connection with the existing mainframes, a future additional dimension

of effective computing resources will come true. The workstation concept realizes the

following objects in view:

• additional user productivity

• improvement of technical and psychological aspects; the offerings to the users are

state of the art

• approving innovative computing concepts

• increasing effectivity and economy of central services and distributed data processing

by balancing expenses and usage

3

Realizing the above objects a concept has to distribute computing into a central part and

a local part. The central part can be done by servers on special mainframes or a batch

system. The local part has to be realized by workstations.

With the TCP/IP protocol family the ZAM has offered a possibility to use the central

servers, but this servers have to be accessed with an aggregate bandwidth. This can be

done only by specialized interfaces and well matched networks.

4

FORSCHUNGSZENTRUM JÜLICH GmbH

J.Meißburger

Zentralinstitut für Angewandte Mathematik

KFAnet/INTERNET­Netztopologie und Server im ZAM

Ethernet (10 Mb/s), FDDI (100 Mb/s) und Ultranet (800 Mb/s)

8232

zamnet/FDDI

HiPPIHiPPI HSX

Ultranet

MVS VM

KFAnet/Ethernet
backbone

Department FDDI

zamnet1

C

KFAnet

backbone

WIN

BMC

zam122

NSC

Server
Cluster

C

AGS+

RS6000

HiPPI

RS6000

350 350

X.25
2 Mb/s

zam103zam112

zam113

Hub

zam048

zam049

Y­MP M94 Intel Paragon
intel

digital

digital DECstation 5000/200

Paragon
Cluster

B

zamnet3/4 (backup)

zamnet2

KFAnet
Management

Department

Ethernet

B

B B B

Backend FDDI

backup

 FDDI AGS+

AGS+

Y­MP8/832
CRAY IBM ES/9000­620

Motorola

zam166

with Bridging

zam175

ZAM

Workstations

IBM RS/6000 DEC­MIPS

SUN

DEC
MIPS / AXP

Figure 1 KFAnet/Internet configuration

5

2.3 UltraNet

The UltraNet network is a hub-oriented system providing a high-performance network,

that links a variety of supercomputers, minisupercomputers, mainframes and workstati-

ons. The UltraHub operates at a data transfer rate of 1 gigabit (125 Mbyte) per second.

The hub provides high speed interconnection between the Ultra network adapters which

are located within the hub. The network adapters attach to host computers. They provide

high-performance virtual circuit and datagram services and can route network traffic to

a locally attached cisco router. One possible host connection is via HiPPI, another for

example a HSX-Interface to the Cray-supercomputers. A software module, the Ultra

Network Manager, initializes, monitors and controls the UltraNet network. Connec-

tions within the UltraNet can be done by an ISO-TP4–stack, whereas connections to the

KFAnet/INTERNET have to be done via the Ultra-IP-stack [ULT-01], [ULT-02].

free free free free free

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
P

H
iP

P
I

P
P

H
S

X
 O

U
T

H
S

X
 I

N

P
P

L
in

k

P
P

H
iP

P
I

UltraBus

M
V

S

Y
M

P

Y
M

P

Y
M

P

M
V

S

C
is

c
o

C
is

c
o

M
9
4

M
9
4

UltraHub1000

Figure 2 UltraHub1000 internals at KFA Juelich

6

2.4 HiPPI

The High Performance Parallel Interface, HiPPI, is an efficient simplex high-performance

point-to-point interface, designed for transmitting digital data at peak data rates of 800 or

1600 Mbit/s. The IBM HiPPI interface is an implementation of the American National

Standard Institute’s (ANSI) X3.183–1991 High Performance Parallel Interface (HiPPI-

PH) standard [ANS-05].

The transmission between data-processing equipment is designed using multiple twisted-

pair copper cabling at distances up to 25 meters. The HiPPI-PH (physical layer)

was implemented to cover the industry market needs, expressed both by users and

manufacturers, to standardize the interconnection of data processing equipments at these

data rates. The signalling protocol is designed to be distance independent, allowing the

average data rate to approach the peak data rate, even over distances longer than 25

meters.

The HiPPI architecture is designed in an ISO-OSI like fashion. The two lower layers are

organized as follows [ANS-01], [ANS-02], [ANS-03], ANS-04], [ANS-05]:

HiPPI-LE

link encapsulation

(mapping to IEEE 802.2)

HiPPI-MI

memory interface

(memory read/write)

HiPPI-IPI

intelligent peripheral

interface

HiPPI-FP

framing protocol

new ISO work item

HiPPI-PH

physical layer

ANSI X3.183-1991 / ISO DIS 11518-1

HiPPI-SC

switch control

Figure 3 HiPPI Architecture

7

Data transmitted across the IBM HiPPI may be defined in terms of packets, pages and

bursts. Typically, a single transmission makes up a packet, although the HiPPI software

interface provides the ability to break the transmission of a packet into multiple partial

packets. A packet is made up of one or more pages (4096 bytes). This is the minimum

resolution of the ES/3090 or ES/9000, and the smallest amount of data that may be

transmitted over the HiPPI. Pages, once they have been moved on to the HiPPI device

itself, are organized into bursts. A burst is a fixed-length sequence of 256 four-byte

words. [IBM-02]

2.5 UltraNet HiPPI network processor

The UltraNet HiPPI network processor is the Ultra high performance implementation

of the ANSI standards Committee X3T9.3 High Performance Parallel Interface. It is

a simple but very high performance channel interface for use by both computers and

intelligent devices, such as routers. Ultra’s HiPPI implementation includes a network

protocol processor solving the integration issues faced by system administrators. The

HiPPI consists of two independent HiPPI channels controlled by a network processor

(NP). Ultra’s standard HiPPI NP acts as a host computer connection, where a computer

system has an HiPPI interface available for connection to the network. The HiPPI is

tightly coupled with Ultra supplied host software for seamless integration into existing

network-based applications, further details see below.

2.6 HiPPI for MVS at KFA

The purpose for a HiPPI attachment of an ES/9000 model 620 to the KFA network

was to provide maximum aggregate bandwidth for bulk data transfers, as it is typical

for applications like workstation backup, archival of workstation data or transmission of

large files between fast external systems and a central file server. In this context it was

not intended to attach disk arrays, nor visualize mainframe generated data on a special

purpose graphical device. Special issue for the HiPPI-Project at KFA was to analyse

the opportunities available with the IBM HiPPI interface in the context of the existing

local KFAnet infrastructure.

The HiPPI interface should be connected to an IBM ES/9000 model 620 running

MVS/ESA 4.1. The IBM is running MVS/ESA and VM/ESA in logical partitions under

PR/SM. The installed communication software is IBM TCP/IP Version 2.2.1 on both

systems.

The HiPPi test scenario implemented at KFA is displayed in the following picture:

8

CRAY YMP/M94

 zam013

CRAY YMP/832

 zam005

IBM-RS6000/350

KFAnet/

 FDDI

ES9000/620

 zam003

DECconcentrator 500

C I S C O S y s t e m s

AGS
+

Ultra Network

Technologies

Figure 4 The HiPPI test scenario

9

10

3 Hardware Installation of the HiPPI-Interface

3.1 The IBM-HiPPI-interface

The IBM HiPPI interface has been installed at KFA in the middle of December 1992.

Two employees of IBM needed about 8 hours for the HiPPI interface installation. No

problems occured during the interface hardware installation. The HiPPI interface had to

be installed in expanded storage, so that half of the possible expanded storage could not

be further used. The old expanded storage had to be removed against a new smaller one,

because of space problems. The expanded storage size has not been reduced. Additional

power supply had to be installed. The HiPPI cabeling has been attached to CP2 internaly.

New micro code for HiPPI support had to be installed. No other definitions have been

required.

Hardware and Software tests, regarding the IBM-HiPPI-Interface have been made by

IBM during the installation phase. No problems have been found. Cabeling has been

prepared to attach to the HiPPI Ultra board. Since all hardware components needed for

Ultra HiPPI communication are located in the same room and the distances between the

components are within the allowable range, no problems in this area had been found

and had to be solved.

3.2 The Ultra-HiPPI-board

The Ultra HiPPI board has been installed into the UltraHub at the 5th of January 1993.

The time had to be fixed to this date, since the Hub had to be halted (SHUTDOWN)

for the installation. So no connection to the CRAY supercomputers had been possible

for 30 minutes. After installing the Ultra HiPPI board the IBM-HiPPI-cable could be

connected. So the hardware installations had been closed.

11

12

4 Software Installation and Bugs

4.1 The Software incompatibilities

To use the IBM-HiPPI adapter with UltraNet and the TCP/IP protocol there are three

software components, which have to be installed (the software preloaded in the UltraHub

environment is out of scope). These are the IBM-HiPPI software, the Ultra Host software

and the IBM TCP/IP software.

Ethernet

FDDI

HiPPI

to

HiPPI

UltraNet

TCP

IP

Data Link Driver

Sockets

UltraNet

 Driver

 Socket

Compatibility Library

RCP FTP User Applications

HOST HIPPI CHANNELS

IN OUT

OUT IN

ULTRA HiPPI CHANNELS

UltraNet Protocol Processor

UltraNet Network

User Space

Kernel Space

Host Channels

 Host
System

UltraNet
 1000
 Hub

Figure 5 HiPPI, Ultra and TCP/IP software components

13

When installing the HiPPI interface IBM provided a Beta test HiPPI-software.The IBM

European Center for Advanced Networking, ECAN, in Heidelberg/Germany, cooperated

with KFA-Jülich in this project. The Beta test HiPPI-software was not compatible with

the currently released Ultra Host software. Furthermore some tests regarding the MVS

connection to the local FDDI network had been nessecary. For this tests IBM TCP/IP

software version 2.2.1 had to be used. But this software was not compatible to the

Ultra host software. Until this date Ultra only shipped software compatible to IBM

TCP/IP 1.2. Taking into account the many mails and telephone calls, we got the three

software components working together, when Ultra shipped the Ultra host software H390

in March 1993.

Configuring the software was no problem using the IBM and Ultra provided manuals.

The default parameters as documented in the manual could be used. Some parameter

settings, required by Ultra, are different to the settings we would prefer and recommend.

4.2 Software Bugs

Using the term ’NULLFILE’ as destination file with binary transmission leads to crash

of IBM FTP server software on the MVS system. This crash does not occure, if we use

the CLAW communication via an IBM-RS6000/350–gateway or an IBM 3172 model 1

or IBM 8232 interconnect controller.

Using buffer length of more than 1024 byte and communicate via Ultra’s tsock program

to MVS system causes a crash of the Ultra software. This two problems may coincident.

Calling tsock on MVS as source with a destination host on Ultra-TCP-stack seems to

produce TP4 communication. Using tsock with a TP4 hostname as destination does not

work. (Network unreachable message). See also chapter Test environment and results

section TSOCK. Using tsock in the other direction you have to specify the TP4 hostname

of the MVS system.

Ultra software on the CRAY systems had a bug. Communicating via FTP between the

two CRAY systems using the host-stack leads to transmission speeds of 50 KByte/s. This

seems to occur because of overrunning the protocol processors (PP’s) at the UltraHub

1000. Some Ultra software patches had been in sight and are now available and working.

The maximum transmission unit term (MTU) within the MVS TCP/IP software can be

defined to 8400 Byte at a maximum. Taking into account the throughput degradation,

using low packet sizes, this seems to be a design failure. The ANSI HiPPI protocol

allows packet sizes of up to 1 Mbyte.

The MTU sizes defineable, defaulted and recommended by Ultra on the different systems

do not correlate (MVS 8400 Byte, CRAY 32 Kbyte, Cisco-router 1500 Byte).

14

5 Test environment and results

5.1 Introduction to test series

The IBM HiPPI tests have been made on an MVS test system using PR/SM. The four

systems running on the ES9000/620 are VM, MVS, Test VM and Test MVS. They are

weightend in the following manner:

Operating System Weighting

Production VM 280

Production MVS 100

Test VM 100

Test MVS 100

Table 1 LPAR weighting at ES9000/620

This 580 entities have to be spawned over the available 4 cpus of the IBM mainframe,

which has two operating systems running in a production environment, as seen in the

table above.

The FDDI attached IBM RS6000/350 has been out of production and has only been used

for this test purposes. The CRAY supercomputers and the Cisco-AGS+ router have been

in real production. The test scenario has been shown above.

The tested programs have been TCPSPRAY, FTP and TSOCK (TCP and OSI/TP4

communication). Some UDP tests have been made too.

15

The test constellations have been (if possible, always in both directions and to all

destinations):

• Direct Ultra connection MVS to CRAY/YMP

• Direct Ultra connection MVS to CRAY/M94

• Direct Ultra connection CRAY/YMP to CRAY/M94

• FDDI to Ultra connection IBM-RS6000/350 to MVS

• FDDI to Ultra connection IBM-RS6000/350 to YMP

• FDDI to Ultra connection IBM-RS6000/350 to M94

In general the listed values in the following tables have been produced, taking the average

of five tests in succession.

Oscilating values have been rounded, ignoring values, which correspond to high network

or cpu load. If there have been great oscilations, control test series have been made. The

tables use column headings 6000, MVS, YMP, M94 and Cisco with arrows showing the

direction of the data traffic. In this context the headings have the following meanings:

Table entry /

Abbreviation
System description

6000 IBM Risc System 6000 model 350 with AIX 3.2.1

MVS IBM ES9000 model 620 with MVS/ESA 1.1 and TCP/IP 2.2.1

YMP CRAY YMP/832 with UNICOS 7.0

M94 CRAY YMP/M94 with UNICOS 7.0

Cisco Cisco AGS+ router

Table 2 Abbreviations used in throughput tables

16

5.2 TCPSPRAY

The TCPSPRAY program is a socket based C-program. A source code version of tcpspray

can be obtained by anonymous ftp from nic.funet.fi. It was compiled on IBM-ES9000/620

for MVS/ESA, CRAY for Unicos and IBM/RS6000 for AIX. The source program is

public domain (see copyright).

For the Unix systems the program could be compiled without any changes. For MVS

we had to do some minor changes.

usage: TCPSPRAY [-v] [-e] [-h] [-b blksize] [-n nblks] [-f file] host

—v verbose

—e use echo service for full duplex transfer

—h print this message

—b blocksize in bytes (default 1024)

—n number of blocks (default 100)

—f file to preload buffer (zero buffer by default)

Figure 6 Usage of TCPSPRAY command

The paramters and options possible with the TCPSPRAY program are displayed above.

The test series have been done always using —b and —n. Always the discard daemons

was used.

Example:

tcpspray -b64 -n50000 zam003.zam.kfa-juelich.de

All listed speeds are shown in KByte/sec.

17

5.2.1 TCPSPRAY (Ultra+FDDI)

The following table lists the speeds with the tcpspray program measured from or to the

IBM-RS6000/350 connected to the FDDI network. The datablocks had to cross the Ultra

Hub and the FDDI network.

The test series could not be done to MVS, since there is no echo or discard daemon

on MVS available.

Kon-

stellation /

Block-

width

6000

#
(FDDI)

#
Cisco

#
(Ultra)

#
MVS

6000

#
(FDDI)

#
Cisco

#
(Ultra)

#
YMP

6000

#
(FDDI)

#
Cisco

#
(Ultra)

#
M94

MVS

#
(Ultra)

#
Cisco

#
(FDDI)

#
6000

YMP

#
(Ultra)

#
Cisco

#
(FDDI)

#
6000

M94

#
(Ultra)

#
Cisco

#
(FDDI)

#
6000

64 - 390 400 40 580 430

128 - 460 460 80 590 500

1024 - 1950 1950 400 1870 1650

1460 - 2230 2200 420 1970 1800

4096 - 2800 2600 460 2030 1800

8192 - 2500 2400 460 2100 1850

32768 - 2400 2300 - 1000 1900

Table 3 Throughput TCPSPRAY (Ultra + FDDI)

Annotation: All transmission speeds are listed in KBytes/sec.

18

5.2.2 TCPSPRAY(Ultra)

The following table lists the transmission speeds with the tcpspray program measured

between the systems connected directly to the Ultra HUB. The datablocks had to cross

only the Ultra Hub. No other network has been involved.

The test series could not be done to MVS, since there is no echo or discard daemon

on MVS available. The tests with blockwidth 32K from MVS systems to the CRAY

supercomputers have not been made, since buffers in MVS tcpspray program are limited

to 16Kbyte and the MVS MTU size is limited to 8400 Byte.

Kon-

stellation /

Block-

width

YMP

#
(Ultra)

#
MVS

M94

#
(Ultra)

#
MVS

MVS

#
(Ultra)

#
YMP

MVS

#
(Ultra)

#
M94

YMP

#
(Ultra)

#
M94

M94

#
(Ultra)

#
YMP

64 - - 30 30 440 350

128 - - 60 70 630 520

1024 - - 330 560 1660 1080

1460 - - 410 740 1830 1270

4096 - - 540 1340 2020 1660

8192 - - 550 1420 3800 1820

32768 - - - - 3700 2430

Table 4 Throughput TCPSPRAY (Ultra)

Annotation: All transmission speeds are listed in KBytes/sec.

19

5.3 FTP

The File Transfer Protocol (FTP) is designed to transfer files between two systems.

Establishing the session the user has to be authorized at the remote system. This is

done by prompting for destination userid and password and checking this values at the

remote system.

The general format of the ftp command is:

usage: ftp [-d] [-g] [-i] [-n] [-v] [host]

—d enable debugging

—g disable expansing of metachars in filenames

—i turns off interactive prompting during multiple file transfers

—n prevents an automatic login on initial connection

—v verbose

—host name of the host machine to which files will be transfered

Figure 7 Usage of FTP command

We always used the ftp put subcommand, which implies, that the disk read operation

is done by the client process. The client has been an unprivileged account at the local

system.

The test series could have been done using the ftp get subcommand too, but because all

tests have been started from all systems, all directions and servers have been tested.

20

5.3.1 FTP (Ultra+FDDI)

The following table lists the ftp transfer rates measured from or to the IBM-RS6000/350

connected to the FDDI network. The datablocks had to cross the Ultra Hub and the

FDDI network.

As recommended by Ultra the test series to /dev/null to the MVS system could be done

by specifying the destination file as file nullfile, after changing the directory to root.

This can be achieved by typing “cd ..”. Transferring the file this way causes an FTP

software crash.

Kon-

stellation

/

Block-

width

6000

#
(FDDI)

#
Cisco

#
(Ultra)

#
MVS

6000

#
(FDDI)

#
Cisco

#
(Ultra)

#
YMP

6000

#
(FDDI)

#
Cisco

#
(Ultra)

#
M94

MVS

#
(Ultra)

#
Cisco

#
(FDDI)

#
6000

YMP

#
(Ultra)

#
Cisco

#
(FDDI)

#
6000

M94

#
(Ultra)

#
Cisco

#
(FDDI)

#
6000

6MByte

auf Disk

Ascii

50 500 500 210 620 600

6MByte

auf Disk

Binary

50 700 740 210 640 610

6MByte

/dev/null

Ascii

- 530 530 210 650 610

6MByte

/dev/null

Binary

- 720 740 210 650 620

Table 5 Throughput FTP (Ultra + FDDI)

Annotation: All transmission speeds are listed in KBytes/sec.

21

5.3.2 FTP (Ultra)

The following table lists the transmission speeds with the ftp program measured between

the systems connected directly to the Ultra HUB. The datablocks had to cross only the

Ultra Hub. No other network has been involved.

Regarding the test series to /dev/null to the MVS system see the annotations in the

section above.

Kon-

stellation /

Block-

width

YMP

#
(Ultra)

#
MVS

M94

#
(Ultra)

#
MVS

MVS

#
(Ultra)

#
YMP

MVS

#
(Ultra)

#
M94

YMP

#
(Ultra)

#
M94

M94

#
(Ultra)

#
YMP

6MByte

auf Disk

Ascii

440 600 950 980 4300 3800

6MByte

auf Disk

Binary

430 700 970 960 7700 7000

6MByte

/dev/null

Ascii

- - 600 1050 4400 4000

6MByte

/dev/null

Binary

- - 640 1070 7500 7500

Table 6 Throughput FTP (Ultra)

Annotation: All transmission speeds are listed in KBytes/sec.

22

5.4 TSOCK

The tsock program is a Ultra test program, based on the ttcp program originally developed

by T.C.Slattery, USNA, and improved by Mike Muuss and Terry Slattery. Due to the

large number of changes, however (asynchio, data checking, random length and offset,

fake-data option, ...), it has effectively been completely rewritten. The processing logic

is as follows:

fetch and validate parameters

miscellaneous initialization

define socket

rest depends on options

datagram

trans rcvr

connection-oriented

open connection

asynch i/o

sinkmode filemode

trans rcvr

normal i/o

sinkmode filemode

trans transtrans rcvrrcvr rcvr

Figure 8 TSOCK processing logic

A general description of the Tsock command can be found in the appendix. A short

description is shown in the following usage figure.

23

usage: tsock [-options] [host] > out

-r operate as receiver (passive initiation, X receive dara)

-t operate as transmitter (active initiation, X transmit data)

-s source/sink mode (generate and discard a data pattern)

-l## length of network buffer (default 1024)

-n## number of messages to transmit (with -s only, default 1024)

-m## mark progress with ’X’ for every ## bytes transferred

-?l use random length messages <= -l## value (without -d only)

-?s use random starting location (i.e., random byte boundary)

-?r do NOT seed random number generator (for repeatability)

-p## port number for connection or datagram path (default 2000)

-B only transmit full blocks, as specified in -l## (for TAR)

-d use datagrams (with -s only)

-a## use asynch network I/O (eg. UNICOS reada) with ## buffers

-f set ’fake data’ option

-c check received data (receiver with -s only)

-u## set TPDU size to 2ˆ##bytes (eg. 12=4K; default 15)

-x## run ##processes in parallel (via fork)

-z## same as -x## but fork both receivers and transmitters

-Pxpat use alternate pattern hsx ’xpat’ (default 0x00-0xff)

-Ffile use alternate pattern from file

host host name (optional local for -r, required remote for -t)

Figure 9 Usage of TSOCK command

The calling syntax at the source system has been:

tsock —t —s —lbuflen —nnumberofbufs host

The calling syntax at the destination system has been:

tsock —r —s —lbuflen

The number of buffers has been choosen, so that the overall communication time for a

request does not need more than 15 seconds.

Communicating to the MVS system with a bufferlength greater than 1024 Byte caused

an Ultra software crash.

The communication path, the TSOCK program uses, depends on the destination host.

Ultra defines two types of communication paths. First the Ultra TCP path (host stack or

uh-path) and second the Ultra TP4 path (native path) can be used. Since the Ultra Hub

internally uses the TP4 path, and many of the communication parts are fully implemented

24

in hardware, this communication path should be the faster. The way of communication,

TCP or TP4, will be choosen by the Ultra socket library.

5.4.1 TSOCK (Ultra TCP-communication)

The following table shows the transmission speeds measured transfering data with

different bufferlength via the Ultra host stack (uh-path) to directly connected Ultra hosts.

The communication pathes from and to the MVS system could not be tested, since the

MVS-software had not been linked with the required Ultra software components. This

tests have not been done later on, since the overall communication throughput showed

nonacceptable values.

Kon-

stellation

/

Buffer-

length

YMP

#
(Ultra)

#
MVS

M94

#
(Ultra)

#
MVS

MVS

#
(Ultra)

#
YMP

MVS

#
(Ultra)

#
M94

YMP

#
(Ultra)

#
M94

M94

#
(Ultra)

#
YMP

64 ? ? ? ? 560 370

128 ? ? ? ? 850 850

1024 ? ? ? ? 2900 2800

1460 ? ? ? ? 3200 3700

4096 ? ? ? ? 4700 4400

8192 ? ? ? ? 5500 5000

32768 ? ? ? ? 5700 5800

1MByte ? ? ? ? 5700 5700

Table 7 Throughput TSOCK (Ultra TCP-communication)

Annotation: All transmission speeds are listed in KBytes/sec.

25

5.4.2 TSOCK (Ultra TP4-communication)

The following table shows the transmission speeds measured transfering data with

different bufferlength via the Ultra native path (TP4-path) to directly connected Ultra

hosts.

Communicating to the MVS system with a bufferlength greater than 1024 Byte caused

an Ultra software crash. We did not try to fix the problem, because of limited time.

The transmission speeds we see here between the two CRAY systems show, which data

throughput can be achieved using aggregate bufferlength. The Ultra Hub and IBM HiPPI

implementation seems really not to be designed for common TCP/IP communication

protocols like Telnet and FTP.

Kon-

stellation

/

Buffer-

length

YMP

#
(Ultra)

#
MVS

M94

#
(Ultra)

#
MVS

MVS

#
(Ultra)

#
YMP

MVS

#
(Ultra)

#
M94

YMP

#
(Ultra)

#
M94

M94

#
(Ultra)

#
YMP

64 10 10 10 10 33 40

128 26 24 26 20 66 83

1024 260 190 170 150 570 3500

1460 Error Error 245 290 750 3700

4096 Error Error 680 680 2130 4300

8192 Error Error 1400 1300 3850 5000

32768 Error Error 6800 4300 11200 11000

1MByte Error Error 19800 18300 30500 26300

Table 8 Throughput TSOCK (Ultra TP4-communication)

Annotation: All transmission speeds are listed in KBytes/sec.

26

6 Conclusion

To achieve consistent HiPPI performance, the cpu running the HiPPI has to be dedicated.

Running under LPAR will lead to degraded data transfer rates on the inbound HiPPI

channel than in a non-LPAR environment. The cpu’s in the KFA production environment

cannot be dedicated, since the free cpu capacities of the VM system at night times will

be used for MVS batch jobs running, and since only the cpu capacities at day times,

which will not be used at VM, may be used by MVS jobs.

It may be possible to achieve acceptable HiPPI performance without dedicated CPs by

weighting the HiPPI partition so that its weight is 4 times the sum of the weights of other

partitons. However, this type of shared environment is not recommended. [IBM-02]

At KFA this weighting would lead to an unacceptable favour of the MVS batch system,

if the HiPPI is located to this system. The cpu performance of the CMS interactive

system running in another logical partition will be degraded extremely, since there are

MVS jobs queued, which have to consume the rest of the available cpu power. If no

HiPPI activity is done, this batch jobs would use 80% of the 4 cpu’s.

HiPPI interrupts are directed to a fixed CP (usually CP2 for a HiPPI installed on side 0

and CP4 for a HiPPI installed on side 1). When LPAR assigns a HiPPI partition to run on

a CP other than the one receiving the HiPPI interrupt, the interrupt must be redirected.

This interrupt redirection takes time and can cause a reduction in the sustained data

transfer rates on the inbound HiPPI channel.[IBM-02] Since the HiPPI adapter at KFA

is directly attached to one cpu, using PR/SM leads to the reduction in transfer rates.

The most significant fact effecting the data throughtput is the HiPPI packet size. Since

each packet causes an interrupt, small packet sizes will cause a greater drop in perfor-

mance than larger packet sizes.

Performance estimates indicate, that there is a performance degradation on the HiPPI

channel, if a small packet size is used of up to 5% loss in throughput, if the packet size

is 32 KB. If there is a 4 KB packet size the loss in throughput is 32% [IBM-07]. Other

IBM sources mention a loss of throughput for 32 KB packet sizes of up to 42%. So the

loss for 8KB packet sizes will be up to or more than 50%. Since Ultra limits the TCP/IP

maximum transmission unit size (MTU) to 8400 Bytes, 8192 Bytes data plus headers

etc., this loss of throughput related to the packet size can be assumed.

Another performance degradation will be the data moves in main storage. The HiPPI

performance for a 3090/H0 HiPPI interface can be estimated to 98 MBytes/s, if no data

moves in main storage take place. If one data move appears, the performance degrades

to 50–60 MBytes/s. If data moves are greater equal two, the transmission speed can be

estimated to 15–30 MBytes/s [IBM-08].

The measured throughputs for the experienced applications TCPSPRAY, FTP and

TSOCK lead to the result, that only an application using the TP4 protocol, direct Ultra

connection, can use the bandwidth associated with the UltraHub and the HiPPI MVS

27

interface. Though the data rates using the HiPPI at MVS with TP4 are much better than

using TCP-protocol, nevertheless the data rates are not satisfactory.

The first assumption the HiPPI MVS interface in connection with the UltraHub could be

used as a data collector of low bandwidth ethernets and therefore maximize the throughput

to the MVS system has been an error. The experiences we made show no better data

rates than using an gateway solution with IBM-RS6000 workstations [KFA01, KFA02]

or an IBM 3172 model 1, sometimes lower than an IBM 8232.

The applications using the HiPPI performance between the MVS system and the Cray

supercomputers are not in sight. Backup of Cray disks will go to the storage tek robot

at KFA and do not need Ultranet. Archiving, backing up or restoring files via ADSM

can only be done, if a ADSM client is available on the Cray supercomputers, which is

not implemented until now. The interaction of MVS and Cray users is currently limited.

Some datasets will be fetch from MVS and stored to the MVS system, but the usage

degrades. If the MVS system will not become a raised value in the near future and will

not home an important server with high bandwidths requirements, the installation and

usage of the MVS HiPPI interface can not be recommended.

The software errors we found will be solved in the next time or have been solved until

now, but we have to consider, that every new error we will find, has to be solved by Ultra

Networks Technologies in conjunction with IBM. Taking into account the low number of

installations using a MVS Hippi connection to an UltraHub in a production environment,

getting solutions for software errors will become more difficult. Here we have to consider

too, that IBM stopped the development of HiPPI. Support will only be done on an “as

is” base. Further development will be done on Fiber Channel Standard (FCS).

Furthermore tests using an Ultra-BMC (Block-Multiplexer-Channel) connection for the

IBM ES9000 MVS-Operating system have shown the same data throughput, than using

an Ultra HiPPI interface. The price/performance ratio leads to the use of the Ultra-BMC

solution.

Taking into account the various limitating factors like LPAR, PR/SM, IBM TCP/IP

software implementation, many software components (TCP/IP, HiPPI, Ultra), many

different connected systems with various required and recommended parameter settings,

Disk I/O, Batch Operating System and so on, it does not surprise , that the IBM ES9000

MVS connection via the Ultra HiPPI interface does not provide an aggregate data

communication throughput.

As a consequence the KFA decided to renounce the use of the IBM HiPPI interface

and instead of this implement the Ultra-BMC solution. Because of the persuading

performance of the IBM RS6000 gateway solution, we have seen in 1993, regarding

maintenance and throughput, in future the Ultra-BMC communication path will only be

used for backup purposes or for special CRAY to MVS communications.

28

7 Appendix

7.1 MVS/ESA Definitions

7.1.1 MVS-Ultra Definitions

7.1.1.1 Ultra HiPPI Profile (UPROFILH)

--

KFA Ultra startup parms for the single HiPPI adapter

on the IBM host.

--

command_name sub_cmd_name function

-------- -------- --------------------------------

unetdb set debug options

hippicf define config info for HiPPI driver

unetcf madd add mapping info

unetcf mdis display mapping info

unetcf radd add route info

unetcf rdis display route info

unetcf aadd add adapter into

unetcf adis display adapter into

--

unetdb trace off

unetdb error uerror err_rb

--

en/disable IP broadcast: Format: broadcast on|off

broadcast on

--

unetcf madd -f ’KFA1.UH390M20.PARMLIB(KFASTAT)’

--

cmd input_driver_devid HiPPI_id

hippicf 01 0

--

unetcf aadd hippi0 zam003-b 0101 0101

--

hippidb +trace

--

unetcf adis

--

unetcf radd zam003-b hippi0 0xffffff00 zam003-b

unetcf radd zam003-uh hippi0 0xffffff00 zam003-uip -i

--

unetcf rdis

--

29

7.1.1.2 Ultra Stations file (STATIONH)

#===

KFA Stations file for the single HiPPI

adapter on the IBM host.

#

#=========================== MVS ===========

zam003-ultra 5/33

zam003-b 5/33

zam003-uip 5/33

zam003-uh 5/33

zam003-u 5/33

mvs-ultra 5/33

#=========================== M94 ===========

zam013-a 5/35

zam013 5/35

zam013-uip 5/35

zam013-uh 5/35

zam013-u 5/35

zam013-usl 5/35

zam013-uap 5/35

sn225 5/35

m94 5/35

#=========================== YMP ===========

zam005-a 5/40

zam005-b 5/40

zam005 5/40

zam005-uip 5/40

zam005-uh 5/40

zam005-u 5/40

zam005-usl 5/40

zam005-uap 5/40

ymp 5/40

sn1011 5/40

#=========================== Cisco =========

zam047-uap 6/33

zam047-usl 6/33

zam047-u 6/33

zam047-uh 6/33

zam047-uip 6/33

zam047 6/33

#===

30

7.1.2 TCP/IP Version 2.2 (Definitions)

7.1.2.1 PROFILE TCPIP

;--

; KFA PROFILE TCPIP file for the single HiPPI

; adapter on the IBM host.

;--

LARGEENVELOPEPOOLSIZE 900 16384

DATABUFFERPOOLSIZE 160 16384

SMALLDATABUFFERPOOLSIZE 256

;--

INFORM OPERATOR ENDINFORM

OBEY OPERATOR SNMPQE SNMPD ENDOBEY

;--

; Set Telnet timeout to 10 minutes

INTERNALCLIENTPARMS TIMEMARK 600 ENDINTERNALCLIENTPARMS

;--

DEVICE UHIP HIPPI 1

LINK ULT1 HIPPI 1 UHIP

HOME 134.94.72.4 ULT1

GATEWAY

134.94 = ULT1 8400 0.0.255.0 0.0.72.0

134.94 134.94.72.10 ULT1 4470 0.0.255.0 0.0.76.0

134.94 134.94.72.10 ULT1 4470 0.0.255.0 0.0.100.0

134.94 134.94.72.10 ULT1 4096 0.0.255.0 0.0.96.0

134.94 134.94.72.10 ULT1 4096 0.0.255.0 0.0.112.0

134.94 134.94.72.5 ULT1 8400 0.0.255.0 0.0.68.0

DEFAULTNET 134.94.72.10 ULT1 1500 0

START UHIP

;--

AUTOLOG

FTPHIP ; FTP server

ENDAUTOLOG

;--

PORT

; Values from RFC 1010, "Assigned numbers"

21 TCP FTPHIP ; FTP server

20 TCP FTPHIP NOAUTOLOG ; FTP default data port

23 TCP INTCLIEN ; Telnet server

111 UDP PORTMAP

111 TCP PORTMAP

;--

31

; Define the VTAM parameters required for the TELNET server

BEGINVTAM

; Define logon mode tables to be the defaults shipped

; with the latest level of VTAM

3278-3-E NSX32703 ; 32 line screen - default of NSX32702 is 24

3279-3-E NSX32703 ; 32 line screen - default of NSX32702 is 24

3278-4-E NSX32704 ; 48 line screen - default of NSX32702 is 24

3279-4-E NSX32704 ; 48 line screen - default of NSX32702 is 24

3278-5-E NSX32705 ; 132 col screen - default of NSX32702 is 80

3279-5-E NSX32705 ; 132 col screen - default of NSX32702 is 80

; Define the LUs to be used for general users

DEFAULTLUS

TCP00001 TCP00002 TCP00003 TCP00004 TCP00005

TCP00006 TCP00007 TCP00008 TCP00009 TCP00010

TCP00011 TCP00012 TCP00013 TCP00014 TCP00015

TCP00016 TCP00017 TCP00018 TCP00019 TCP00020

TCP00021 TCP00022 TCP00023 TCP00024 TCP00025

TCP00026 TCP00027 TCP00028 TCP00029 TCP00030

ENDDEFAULTLUS

;--

ALLOWAPPL *

;--

ENDVTAM

SYSCONTACT F.J. Schoenebeck ENDSYSCONTACT

SYSLOCATION KFA-ZAM 02461-61/6432 ENDSYSLOCATION

;--

32

7.2 Participating Systems

CRAY Y-MP8/832

Central processors 8

CPU cycles 6 ns

Performance 2666 MFLOPS

Main storage 256 MB

I/O-Processors 4

Schnellspeicher (SSD) 1024 MB

Operating System UNICOS 7.0

Number of UserId’s ca. 390

CRAY Y-MP M94

Central processors 4

CPU cycles 6 ns

Performance 1333 MFLOPS

Main storage 2048 MB

I/O-Processors 2

Operating System UNICOS 7.0

Number of UserId’s ca. 420

IBM ES/9000 Model 620

CPU’s 4

Performance 84 MIPS

Main storage 512 MB

Expanded storage 512 MB

Parallel channels 80

Fiber channels 32

Vector engines 2

Performance 138 MFLOPS/Vector engine

Operating System VM/ESA with CMS and

MVS/ESA in logical partitions

Number of UserId’s VM: ca. 2250

MVS: ca. 2000

33

IBM RISC System/6000 Model 350

Central processors 1

CPU Cycles 24 ns

Performance (Speckfp92) 65 MFLOPS

Main storage 32 MB

Data cache 32 KB

Instruction cache 8 KB

Memory bus 64 bit

DASD 400 MB

Operating System AIX V3.2

Number of UserId’s ca. 10 (System users)

Cisco AGS+ Router

Central processors 1 csc/4

cBus cbus I

Main storage 16 KB

Multibus Memory 64 KB

Non Volatile Config Memory 64 KB

Software Version 9.03

Interfaces 4 Serial

4 Ethernet

1 FDDI

1 HSCI (High Speed Channel Interface)

34

7.3 Man page TCPSPRAY

TCPSPRAY(1) (23 October 1991) TCPSPRAY(1)

NAME

tcpspray - print average throughput for a tcp connection

SYNOPSIS

tcpspray [-v] [-e] [-h] [-b blksize] [-n nblks]

[-f filename] hostname

DESCRIPTION

tcpspray sends data to either the discard or echo TCP

service on the specified host and prints the average

throughput.

OPTIONS

-v Prints a dot for each block sent. Will also

print a backspace for each block received in

echo mode. Note: the I/O required for this

option will affect the throughput rates.

-e Use the TCP echo service instead of discard

(the default) and print throughput rates for

both transmission and reception.

-h Print a usage description.

-b blksize Sets the size of a block (the internal

buffer) in bytes. Defaults to 1024.

-n nblks Sets the number of blocks to transfer.

Defaults to 100.

-f filename Copy the contents of the specified file into

the internal buffer (sized by -b option).

The buffer is zeroed by default. If the file

is larger than the buffer, only the first

blksize bytes will be used. If the file is

35

smaller than the buffer, the remaining bytes

are zeroed.

This option is useful in determining the

relationship of the data transferred to

throughput. E.g., if data compression is

used on any of the intermediate links

comprising the TCP connection, preloading the

buffer with a text file will produce greater

throughput than with a file that has already

been compressed.

ping(8), spray(8)

AUTHOR

Greg Christy (gmc@quotron.com)

36

7.4 Man page FTP

ftp Command

Purpose

Transfers files between a local and a remote host.

Syntax

ftp [-d] [-g] [-i] [-n] [-v] [HostName]

Description

The ftp command is the interface to the File Transfer

Protocol (FTP). This command uses FTP to transfer

files between the local host and a remote host or

between two remote hosts.

The FTP protocol allows data transfer between hosts

that use dissimilar file systems. Although the protocol

provides a high degree of flexibility in transferring

data, it does not attempt to preserve file attributes

(such as the protection mode or modification times of

a file) that are specific to a particular file system.

Moreover, the FTP protocol makes few assumptions about

the overall structure of a file system and does not

provide or allow such functions as recursively copying

subdirectories.

Note: If you are transferring files between AIX systems

and need to preserve file attributes or to recursively

copy subdirectories, use the rcp command.

At the ftp> prompt, you can enter subcommands to perform

tasks such as listing remote directories, changing the

current local and remote directory, transferring multiple

files in a single request, creating and removing direc-

tories, and escaping to the local shell to perform shell

commands.

Security and Automatic Login

37

The ftp command also provides for security by sending

passwords to the remote host and permits automatic login,

file transfers, and logoff.

If you execute the ftp command and specify the host name

(HostName) of a remote host, the ftp command tries to

immediately establish a connection to the specified host.

If the ftp command connects successfully, the ftp command

searches for a local $HOME/.netrc file in your current

directory or home directory. If the file exists, the ftp

command searches the file for an entry that initiates

the login process and command macro definitions for the

remote host. If the $HOME/.netrc file or autologin entry

does not exist or if your system has been secured with the

securetcpip command, the ftp command prompts the user for

a user name and password. This occurs regardless of

whether the HostName parameter is specified on the command

line.

Note: The queuing system does not support multibyte host

names.

If the ftp command finds a $HOME/.netrc autologin entry

for the specified host, the ftp command attempts to use

the information in that entry to automatically log in

to the remote host. The ftp command also loads any

command macros defined in the entry. In some cases (for

example, when the required password is not listed in an

autologin entry), the ftp command prompts for the

password before displaying the ftp> prompt.

Once the ftp command completes the autologin process, the

ftp command executes the init macro if the macro is

defined in the autologin entry. If the init macro does

not exist or does not contain a quit or bye subcommand,

the ftp command then displays the ftp> prompt and waits

for a subcommand.

Note: The remote user name that you specify either at the

prompt or in a $HOME/.netrc file must exist and have a

password defined at the remote host. Otherwise, the ftp

command fails.

Flags

The following flags can be entered on the shell command

38

line:

-d Enables debugging by turning on the logging feature.

See the debug subcommand.

-g Disables the expansion of metacharacters in file

names. Interpreting metacharacters can be referred

to as expanding (sometimes called globbing) a file

name. See the glob subcommand.

-i Turns off interactive prompting during multiple file

transfers. See the prompt, mget, mput, and

mdelete subcommands for descriptions of prompting

during multiple file transfers.

-n Prevents an automatic login on the initial connection.

Otherwise, the ftp command searches for a $HOME/.netrc

entry that describes the login and initialization

process for the remote host. See the user subcommand.

-v Displays all the responses from the remote server and

provides data transfer statistics. This is the default

display mode when the output of the ftp command is to

a device, such as the console or a display. However,

if output is redirected, such as to a file, or if

the ftp command is started by a daemon, such as the

cron daemon, verbose mode is not in effect unless the

-v flag or the verbose subcommand is used.

Parameter

HostName The name of the host machine to which files

will be transferred.

Subcommands

If you execute the ftp command and do not specify the Host-

Name of a remote host, the ftp command immediately displays

the ftp> prompt and waits for an ftp subcommand. To connect

to a remote host, you then execute the open subcommand.

When the ftp command connects to the remote host, the ftp

command then prompts for the login name and password before

displaying the ftp> prompt again. The ftp command fails if

no password is defined at the remote host for the login name.

The ftp command interpreter, which handles all subcommands

39

entered at the ftp> prompt, provides facilities that are not

available with most file-transfer programs, such as:

* Handling file-name parameters to ftp subcommands.

* Collecting a group of subcommands into a single sub-

command macro.

* Loading macros from a $HOME/.netrc file.

These facilities help simplify repetitive tasks and allow

you to use the ftp command in unattended mode.

The command interpreter handles file-name parameters accor-

ding to the following rules:

* If a - (hyphen) is specified for the parameter, stan-

dard input is used for read operations and standard

output is used for write operations.

* If the preceding check does not apply and file-name

expansion is enabled (see the -g command or the

glob subcommand), the interpreter expands the file

name according to the rules of the C shell. When

globbing is enabled and a pattern-matching character

is used in a subcommand that expects a single file

name, results may be different than expected.

For example, the append and put subcommands perform file-

name expansion and then use only the first file name

generated. Other ftp subcommands, such as cd, delete,

get, mkdir, rename, and rmdir, do not perform file-name

expansion and take the pattern-matching characters

literally.

* For the get, put, mget, and mput subcommands,

the interpreter has the ability to translate and map

between different local and remote file-name syntax

styles (see the case, ntrans, and nmap subcommands)

and the ability to modify a local file name if it is

not unique (see the runique subcommand). Additio-

nally, the ftp command can send instructions to a

remote ftpd server to modify a remote file name if it

is not unique (see the sunique subcommand).

Note: The ftp command interpreter does not support pipes.

40

To end an ftp session when you are running interactively,

use the quit or bye subcommand or the End of File (Ctrl-D)

key sequence at the ftp> prompt. To end a file transfer

before it has completed, press the Interrupt key sequence.

The default Interrupt key sequence is Ctrl-C. The stty

command can be used to redefine this key sequence.

Transfers being sent (from the local host to the remote

host) are normally halted immediately. Transfers being

received (from the remote host to the local host) are halted

by sending an FTP ABOR instruction to the remote FTP server

and discarding all incoming file transfer packets until

the remote server stops sending them. If the remote

server does not support the ABOR instruction, the ftp>

prompt will not be displayed until the remote server has

sent all of the requested file. Additionally, if the

remote server does something unexpected, the local ftp

process may need to be ended manually.

List of Subcommands

...........

Examples

...........

Implementation Specifics

This command is part of the TCP/IP Facility in Network

Facilities of AIX for RISC System/6000

Files

$HOME/.netrc Specifies automatic login information for

the ftp command and the rexec command.

/usr/bin/ftp Command executable file.

/usr/lpp/tcpip/samples/.netrc Sample .netrc file.

Suggested Reading

41

Prerequisite Information

Network Overview .

Related Information

How to Copy Files Using the ftp Command.

The csh command, rcp command, tftp command, stty command.

How to Copy Files Using the ftp Command

...........

Suggested Reading

Prerequisite Information

Glossary Terms: host, local host, permissions, remote host.

The cd command, dir command.

Related Information

The ftp command, rcp command.

The ftpd daemon.

42

7.5 Man page TSOCK

TSOCK(8)

NAME

tsock - UltraNet socket-based network exerciser

SYNOPSIS

tsock [-r] [-t] [-s] [-lbuflen] [-nnbufs] [-mnby]

[-?l] [-?s] [-?r] [-pport] [-B] [-d] [-cfreq] [-Pxpat]

[-Ffile] [-aabufs] [-f] [-utpdu] [-xtimes] [-ztimes]

[host]

DESCRIPTION

tsock is a program which uses the UltraNet socket emulation

library to perform numerous network exercises. It may be

used for a variety of reasons, including timings, connec-

tivity testing, fault diagnosis, software checkout, and so

forth.

The program is a derivative of the public-domain ttcp

program developed by T.C. Slattery, USNA, as improved by

Mike Muuss, BRL.

OPTIONS

-r Operate as receiver.

-t Operate as transmitter.

-s Operate in source/sink mode, in which the transmitter

sends a standard pattern of internally-generated data

and the receiver discards all data. This avoids disk

I/O (useful for timings) and allows validation of

incoming data (see the -c option below). Alternate

patterns can also be specified (see the -P and -F

options below).

-lbuflen

Use a transmit or receive buffer of buflen bytes

[default: 1024]. If a ’K’ (or ’k’) is appended to

buflen the value is multiplied by 1024; an ’M’ (or

’m’) multiplies by 1048576; a ’G’ (or ’g’) multiplies

by 1073741824.

-nnbufs

43

Transmit a total of nbufs messages [default: 1024].

Applicable for transmitter only; ignored for receiver.

-mnby

Mark the progress of the transfer by printing an "X"

for every nby bytes sent or received [default: 10240].

A multiplication character may be appended as for

buflen. Does not work well in conjunction with the -x

or -z options.

-?l Use a random-length buffer ranging from one byte to

buflen. Applicable only in source/sink mode and, if

receiver, for nondatagrams only; ignored otherwise.

-?s Use a random starting byte location within the buffer

(that is, a random byte boundary). Applicable only in

source/sink mode; ignored otherwise.

-?r Do not seed the random number generator. Used to

produce repeatable "random" runs.

-pport

Use port number port for the connection or datagram

path [default: 2000]. Port numbers are 16 bits, and

there is a BSD convention that port numbers under

1024 are usable only by privileged programs; there-

fore, port must be between 1024 and 65535.

-B Output only full buflen-sized blocks (for TAR).

Applicable for receiver only; ignored for transmitter.

-d Use datagrams (ISO Connectionless Transport Service).

-cfreq

Check every freq incoming message for correctness; if

freq is omitted every message is checked. Applicable

only in source/sink mode and for the receiver side

only; ignored otherwise. This option will signifi-

cantly slow down the transfer, depending upon the

value of freq.

-Pxpat

Use an alternate pattern as specified by the hexa-

decimal string xpat. If no xpat is specified, an

alternate cyclical pattern is used (the default

pattern runs from 0x20 through 0x7e repetitively;

44

the alternate pattern runs from 0x00 through 0xff).

Requires -s, and must be specified on both the

receiver and the transmitter if -c is also specified.

If xpat is specified, data checking (-c) will work

only if the transmitter and receiver have identical

buffer sizes and no -? options are used. The xpat

string must contain an even number of hexadecimal

digits (0-9, a-f, or A-F) only; it does not start

with 0x.

-Ffile

Use an alternate pattern from the specified file.

Requires -s, and must be specified on both the

receiver and the transmitter if -c is also specified.

Data checking (-c) will work only if the transmitter

and receiver have identical buffer sizes and no -?

options are used.

-aabufs

Use asynchronous I/O with abufs simultaneous opera-

tions [no default; abufs must be specified].

Applicable only on systems which support asynchronous

I/O, such as Cray UNICOS; ignored otherwise.

-f Use fake data mode, in which the adapter or adapter

interface generates or discards the data instead of

accessing host memory.

Applicable only in source/sink mode and with appro-

priate hardware installed.

-utpdu

Sets maximum TPDU size to 2ˆtpdu bytes [default is

configuration-dependent, usually 15 (32Kbyte TPDUs)].

May be specified for either the transmitter or the

receiver; if specified for both, the minimum of the

two sizes will be used.

-xtimes

Run the command times times in parallel by forking.

For tsock -t, this will multiply the number of bytes

transmitted by times; for tsock -r, each receiver

process will receive approximately 1/times of the

bytes transmitted. (Approximate because there is no

coordination among the receivers; they are all in a

big free-for-all fight for messages.) This is not

the same as using multiple tsock commands, because

45

all participants share the same port numbers (that

is, share the same connection or datagram path).

This option is obviously most useful in source/sink

mode (due to the free-for-all nature of both trans-

mitting and receiving).

-ztimes

Run the command times times in parallel by forking

(same as -x) except that the forked processes will

alternate transmitter and receiver. For example,

-z4 results in two transmitters and two receivers.

This allows operating a connection or a datagram path

in true full duplex (data flowing simultaneously in

both directions). Several unique considerations must

be kept in mind when using -z; see USAGE below.

host The local (receiver) or remote (transmitter) host

name to use for the connection or datagram path;

required for transmitter, optional for receiver.

USAGE

The receiver command (tsock -r) should be issued first,

on the receiving system, followed by the transmitter

command (tsock -t) on the sending system. The receiver

takes the passive role, and either listens for an incoming

connection or issues a recvfrom() for an incoming datagram;

the transmitter takes the active role, and either initiates

a connection or starts sending datagrams. Once the

transmitter has sent the specified number of messages

(nbufs) it either closes the connection or sends a special

"end of transmission" datagram. Both the transmitter and

receiver then generate detailed timing information on

stderr (the use of stderr allows the receiver to redirect

stdout to a file).

Since message boundaries are significant for ISO Connec-

tion-Oriented Transport Service (unlike sockets), each

message which is larger than the receive buffer will

satisfy more than one read(), but each message that is

smaller than the receive buffer will satisfy a separate

read(). For example, assume a receive buffer of 1024

bytes. If the transmitter were to send a 2000-byte

message (either because buflen were 2000 or by random

choice), then the receiver’s first read() would return

1024 bytes and its second read() would return 976 bytes.

If the transmitter were to send a 5-byte message, the

46

1024-byte read() would return only the five bytes.

The maximum size for an UltraNet datagram is one TPDU

(normally 32768 bytes), and datagrams are truncated rather

than continued. In the first example above (receiver

buflen of 1024, transmitter sends 2000 bytes), only the

first 1024 bytes of the message (datagram) would be

delivered; the remaining 976 bytes would be discarded.

An alternate pattern file (specified with the -F option)

is an ASCII file containing a hexadecimal representation

of the pattern to be repeated througout each message; the

file must be less than 1000 characters in length. Each

valid hexadecimal character in the file (0-9, a-f, A-F)

is converted into binary and included in the pattern,

and all other characters are ignored (to allow inclusion

of tabs, spaces, carriage returns, and so forth).

There must also be an even number of hexadecimal

characters (the pattern is a string of bytes, not nibbles).

For example, each of the following files would result in

messages consisting of the 16 hexadecimal digits

repeating throughout:

0123456789abcdef

01 23 45 67 89 AB CD EF

01/23 45/67 89/ab cd/ef

"01234567"

"89abcdef"

When using the -z option, values for nbufs must be

specified on both commands, since otherwise the trans-

mitters and receivers will not know when to terminate;

these may be specified either with the -n option or by

using the default. Also, care must be taken to balance

the total number of transmissions and receptions. Note

that this does not mean simply that the two values of

nbufs must be the same. For one thing, nbufs is essen-

tially multiplied by the number of processes of each

type; this is particularly bothersome when times is odd

or is different on the two commands. Also, a single

transmission may satisfy several receives (e.g., one

3000-byte transmit will satisfy four 800-byte receives);

this is significant when buflen is different on the two

47

commands. Because of this, -z used with random-length

buffers (-?l) will generally not work correctly (it will

transfer data, but will generally not terminate).

Finally, note that use of -z does makes it meaningful

to specify -c along with -t.

EXAMPLES

The following pair of commands will send 1024 canned

messages of 1024 bytes each (the default values) from

host mulberry to host juniper.

on juniper: tsock -r -s juniper

on mulberry: tsock -t -s juniper

The following pair of commands will send 100000 random-

sized messages (ranging from 1 byte to 50000 bytes) from

host mulberry to host juniper, where the messages will

be received in a randomly-located, random-sized buffer

(ranging from 1 byte to 10000 bytes) and will be checked

for correctness. It will also mark every 100000 bytes

received, and will use a maximum TPDU size of 8192 bytes.

Note the use of backslash to bypass shell interpretation

of the `?’.

on juniper: tsock -r -s -l10000 -\?l -\?s -c i

-m100000 -u13 juniper

on mulberry: tsock -t -s -l50000 -\?l -n100000 juniper

The following pair of commands will send the file testdata

from host mulberry to host juniper, using 256-byte

messages.

on juniper: tsock -r -l256 juniper >testdata

on mulberry: tsock -t -l256 juniper <testdata

The following pair of commands will send 1024 datagrams of

20K (20480) bytes each from host mulberry to port 5555 on

host juniper, where they will be checked for correctness.

In addition, an "X" will be printed on mulberry for every

ten datagrams sent, and on juniper for every ten datagrams

received.

on juniper: tsock -r -s -d -p5555 -l20k -m200k

48

-c juniper

on mulberry: tsock -t -s -d -p5555 -l20K -m200K

juniper

The following pair of commands will send 1024 random-

length datagrams of up to 20000 bytes each from host

mulberry to host juniper. Note that since the receive

buffer is only 10000 bytes long, any datagrams longer

than 10000 bytes will be truncated (this should be about

half the datagrams if the random number generator is

reasonable).

on juniper: tsock -r -s -d -l10000 juniper

on mulberry: tsock -t -s -d -l20000 -\?l juniper

The following pair of commands will send 100 1024-byte

messages from each of five parallel transmitters to four

parallel receivers, using a single connection. There will

be a total of 512000 bytes transmitted (default length of

1024 times -n100 times -x5), although each of the four

receivers will probably not receive exactly one-fourth of

them; the total bytes received will be 512000.

on juniper: tsock -r -s -x4 juniper

on mulberry: tsock -t -s -n100 -x5 juniper

The following pair of commands will result in 200

1024-byte messages being sent in each direction between

juniper and mulberry (400 messages total), using a single

connection. The data will use an alternate pattern and

will be checked on both ends.

on juniper: tsock -r -s -c -P0000ffff -n100 -z4 juniper

on mulberry: tsock -t -s -c -P0000ffff -n100 -z4 juniper

The following commands are identical to the previous

pair, but use the alternate pattern specified in the

file alt-pat4.

on juniper: tsock -r -s -c -Falt-pat4 -n100 -z4 juniper

on mulberry: tsock -t -s -c -Falt-pat4 -n100 -z4 juniper

49

DIAGNOSTICS

Error messages are self explanatory. Status and timing

output is directed to stderr to allow the receiver to

redirect stdout into a

file. If invoked with no parameters, tsock prints the

following usage summary:

Usage:

tsock [-options] [host] >out

-r operate as receiver (passive initiation,

receive data)

-t operate as transmitter (active initiation,

transmit data)

-s source/sink mode (generate and discard a

data pattern)

-l## length of network buffer (default 1024)

-n## number of messages to transmit (with -s

only, default 1024)

-m## mark progress with ’X’ for every ## bytes

transferred

-?l use random length messages <= -l## value

(without -d only)

-?s use random starting location (i.e., random

byte boundary)

-?r do NOT seed random number generator (for

repeatability)

-p## port number for connection or datagram path

(default 2000)

-B only transmit full blocks, as specified in

-l## (for TAR)

-d use datagrams (with -s only)

-a## use asynch network I/O (eg, UNICOS reada)

with ## buffers

-f set ’fake data’ option

-c check received data (receiver with -s only)

-u## set TPDU size to 2ˆ## bytes (eg, 12=4K;

default 15)

-x## run ## processes in parallel (via fork)

-z## same as -x## but fork both receivers and

transmitters

-Pxpat use alternate pattern hsx ’xpat’

(default 0x00-0xff)

-Ffile use alternate pattern from file

host host name (optional local for -r, required

50

remote for -t)

BUGS

Until multiple-adapter support is implemented, whenever

the current UltraNet configuration has more than one

adapter defined, a host parameter must be specified for

the receiver. (A host parameter is always required for

the transmitter.)

See unetcf(8) for information on configuring an UltraNet.

In source/sink mode using datagrams, the sender produces

datagrams as fast as possible, and in general will overrun

the ability of the receiver to receive; some datagrams

will usually be discarded. This situation is exacerbated

by the use of the -c option. Occasionally the special

"start of transmission" or "end of transmission" datagrams

will be missed, resulting in a hung receiver. This

situation is exacerbated by using the -x option on a

datagram receiver, which is really not recommended.

The option parser is relatively stupid, and requires that

there be no spaces between an option letter and its

argument (e.g., -n1000 rather than -n 1000 and -?s rather

than -? s).

USMID @(#)man/man8/tsock.8 301.2 09/14/92 15:04:48

51

7.6 Literature

• [ANS-01] HiPPI — Framing Protocol (HiPPI-FP), preliminary draft proposed,

ANSI, X3.210–199x, X3T9/89–146, X3T9.3/89–013, Rev 4.3, 24 February 1992

• [ANS-02] HiPPI — Encapsulation of ISO 8802–2 (IEEE Std 802.2) Logical

Link Control data Units — (802.2 Link Encapsulation) (HiPPI-LE), working draft

proposed, ANSI, X3T9.3/90–119, 29 July 1991

• [ANS-03] HiPPI — Memory Interface (HiPPI-MI), preliminary draft proposed,

ANSI, Rev 2.6, 13 March 1992

• [ANS-04] HiPPI — Physical Switch Control (HiPPI-SC), working draft proposed,

ANSI, X3.222–199x, X3T9/91–139, X3T9.3/91–023, Rev 2.4, 16 December 1991

• [ANS-05] HiPPI — Mechanical, Electrical and Signalling Protocol Specification

(HiPPI-PH), preliminary draft proposed, ANSI, X3T9/88–127, X3T9.3/88–023, Rev

8.1, 24 June 1991

• [COM-01] D.E.Comer, —Internetworking with TCP/IP, Vol. I, Second Edition,

Prentice-Hall International Editions, 0–13–470188–7

• [COM-02] D.E.Comer, —Internetworking with TCP/IP, Vol. II, First Edition,

Prentice-Hall International Editions, 0–13–465378–5

• [CRA-01] Cray’s Perspective on the HiPPI Standard, John K. Renwick, CRAY

Research Inc. Eagan, Minnesota

• [CRA-02] IP and ARP on HiPPI, Internet-Draft, Internet Engineering Task Force,

Network Working Group, J.Renwick, A.Nicholson, Cray Research Inc., February

1992

• [IBM-01] Program Directory for use with IBM HiPPI SCSE for MVS/ESA,

Version 1, Release 2, Modification Level 0, Program 5799–DKW, Feature

5417/5418/5419, 27 March 1991

• [IBM-02] HiPPI — User’s Guide and Programmer’s Reference, X3.183–1991,

SA23–0369–03, IBM, February 1992

• [IBM-03] IBM, February 1992, HiPPI — HiPPI and Fiber Channel Standard —

FCS, Reiner H. Philipp, IBM-ECAN Heidelberg, EMEA HiPPI Class Heidelberg,

October 1992

• [IBM-04] IBM Visualization Solutions for scientific and Engineering Problems,

Dr. David Watson, IBM UK Scientific Centre, Winchester, UK, 1992

• [IBM-05] IBM — Power Visualization System, Dr. David Watson, IBM UK

Scientific Centre, Winchester, UK, December 1991

• [IBM-06] HiPPI — The 100 Megabyte/sec ANSI Standard, Henry R. Brandt, IBM

ES Kingston, New York, May 1992

• [IBM-07] HiPPI Hardware for the 3090J and ES/9000 Processors, Ronald A.

Linton, High Parallel Supercomputing Systems Laboratory, IBM Kingston, New

York, May 1992

• [IBM-08] S/390 HiPPI Performance, Robert Seidel, IBM ES Kingston, New York,

May 1992

52

• [KFA-01] KFAnet/INTERNET — Performance-Test der IBM-RS6000–32H als

FDDI-BMPX-Router, W.Anrath, R.Niederberger, First Edition, July 1992, KFA-

ZAM-IB-9208,

• [KFA-02] KFAnet/INTERNET — Experiences with IBM-RS6000 as FDDI ga-

teway to IBM mainframes, R.Niederberger, First Edition, November 1993, KFA-

ZAM-IB-9311,

• [MVS-01] IBM TCP/IP Version 2 Release 2.1 for MVS: Planning and Customiza-

tion, Third Edition, September 1992, SC31–6085–2

• [MVS-02] IBM TCP/IP Version 2 Release 2.1 for MVS: Installation and Mainte-

nance, First Edition, March 1991, SC31–6085–0

• [MVS-03] IBM TCP/IP Version 2 Release 2.1 for MVS: Programmer’s Reference,

Third Edition, September 1992, SC31–6087–2

• [MVS-04] IBM TCP/IP Version 2 Release 2.1 for MVS: User’s Guide, Third

Edition, September 1992, SC31–6088–2

• [MVS-05] IBM TCP/IP Version 2 Release 2.1 for MVS: Messages and Codes,

Third Edition, September 1992, SC31–6142–02

• [ULT-01] Network Addressing Manual, Part Number 06–0020–001, Revision B,

Ultra Network Technologies, 18 November 1991

• [ULT-02] Overview of Products for IBM Computers, Part Number 06–0009–001,

Revision B, Ultra Network Technologies, 24 April 1990

• [ULT-03] UtraNet IBM Host Software Release Notes, Release 3.80.05 MVS

Versions, Ultra Network Technologies, 15 November 1991

• [ULT-04] Host Software Installation Guide for MVS Systems, Part Number

06–0037–001, Revision A, Ultra Network Technologies, 4 November 1991

53

