001     189736
005     20230310131348.0
024 7 _ |a 10.5194/acp-14-10931-2014
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/8543
|2 Handle
024 7 _ |a WOS:000344165800002
|2 WOS
024 7 _ |a altmetric:3785808
|2 altmetric
037 _ _ |a FZJ-2015-02768
082 _ _ |a 550
100 1 _ |a Lothon, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
260 _ _ |a Katlenburg-Lindau
|c 2014
|b EGU
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1429868325_14525
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state.These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere.Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions.Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period.Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|x 0
|f POF II
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 1
|f POF III
536 _ _ |a DFG project 139819005 - Links between local scale and catchment scale measurements and modelling of gas exchange processes over land surfaces (139819005)
|0 G:(GEPRIS)139819005
|c 139819005
|x 2
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Lohou, F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pino, D.
|0 0000-0002-4512-0175
|b 2
700 1 _ |a Couvreux, F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pardyjak, E. R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Reuder, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vilà-Guerau de Arellano, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Durand, P.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hartogensis, O.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Legain, D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Augustin, P.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gioli, B.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Lenschow, D. H.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Faloona, I.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Yagüe, C.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Alexander, D. C.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Angevine, W. M.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Bargain, E.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Barrié, J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Bazile, E.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Bezombes, Y.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Blay-Carreras, E.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a van de Boer, A.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Boichard, J. L.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Bourdon, A.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Butet, A.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Campistron, B.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a de Coster, O.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Cuxart, J.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Dabas, A.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Darbieu, C.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Deboudt, K.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Delbarre, H.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Derrien, S.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Flament, P.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Fourmentin, M.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Garai, A.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Gibert, F.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 38
700 1 _ |a Groebner, J.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Guichard, F.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Jiménez, M. A.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Jonassen, M.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a van den Kroonenberg, A.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Magliulo, V.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Martin, S.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Martinez, D.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Mastrorillo, L.
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Moene, A. F.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Molinos, F.
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Moulin, E.
|0 P:(DE-Juel1)130270
|b 50
700 1 _ |a Pietersen, H. P.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Piguet, B.
|0 0000-0002-8070-7924
|b 52
700 1 _ |a Pique, E.
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Román-Cascón, C.
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Rufin-Soler, C.
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Saïd, F.
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Sastre-Marugán, M.
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Seity, Y.
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Steeneveld, G. J.
|0 0000-0002-5922-8179
|b 59
700 1 _ |a Toscano, P.
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Traullé, O.
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Tzanos, D.
|0 P:(DE-HGF)0
|b 62
700 1 _ |a Wacker, S.
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Wildmann, N.
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Zaldei, A.
|0 P:(DE-HGF)0
|b 65
773 _ _ |a 10.5194/acp-14-10931-2014
|g Vol. 14, no. 20, p. 10931 - 10960
|0 PERI:(DE-600)2069847-1
|n 20
|p 10931 - 10960
|t Atmospheric chemistry and physics
|v 14
|y 2014
|x 1680-7324
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/189736/files/acp-14-10931-2014.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/189736/files/acp-14-10931-2014.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/189736/files/acp-14-10931-2014.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/189736/files/acp-14-10931-2014.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/189736/files/acp-14-10931-2014.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/189736/files/acp-14-10931-2014.pdf?subformat=pdfa
856 4 _ |u https://juser.fz-juelich.de/record/189736/files/acp-14-10931-2014.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:189736
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 38
|6 P:(DE-Juel1)129461
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21