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Abstract. Due to the major role of the sun in heating the

earth’s surface, the atmospheric planetary boundary layer

over land is inherently marked by a diurnal cycle. The after-

noon transition, the period of the day that connects the day-

time dry convective boundary layer to the night-time stable

boundary layer, still has a number of unanswered scientific

questions. This phase of the diurnal cycle is challenging from

both modelling and observational perspectives: it is transi-

tory, most of the forcings are small or null and the turbulence

regime changes from fully convective, close to homogeneous

and isotropic, toward a more heterogeneous and intermittent

state.

These issues motivated the BLLAST (Boundary-Layer

Late Afternoon and Sunset Turbulence) field campaign that

was conducted from 14 June to 8 July 2011 in southern

France, in an area of complex and heterogeneous terrain.

A wide range of instrumented platforms including full-size

aircraft, remotely piloted aircraft systems, remote-sensing

instruments, radiosoundings, tethered balloons, surface flux

stations and various meteorological towers were deployed

over different surface types. The boundary layer, from the

earth’s surface to the free troposphere, was probed during

the entire day, with a focus and intense observation periods

that were conducted from midday until sunset. The BLLAST

field campaign also provided an opportunity to test innova-

tive measurement systems, such as newminiaturized sensors,

and a new technique for frequent radiosoundings of the low

troposphere.

Twelve fair weather days displaying various meteorologi-

cal conditions were extensively documented during the field

experiment. The boundary-layer growth varied from one day

to another depending on many contributions including sta-

bility, advection, subsidence, the state of the previous day’s

residual layer, as well as local, meso- or synoptic scale con-

ditions.

Ground-based measurements combined with tethered-

balloon and airborne observations captured the turbulence

decay from the surface throughout the whole boundary layer

and documented the evolution of the turbulence characteris-

tic length scales during the transition period.

Closely integrated with the field experiment, numerical

studies are now underway with a complete hierarchy of mod-

els to support the data interpretation and improve the model

representations.

1 Introduction

At interface between the earth’s surface and the atmosphere,

the planetary boundary layer (PBL) is a critical component

of the earth system. It mediates the transfer of heat, mo-

mentum, humidity and trace gases between the surface and

the atmosphere. The PBL over land has a strong diurnal

cycle. On a fair weather day, as the sun rises, the surface

heating warms the air above, which mixes by turbulent pro-

cesses within an increasingly deep layer, engulfing air from

the free atmosphere above (Stull, 1988; Garratt, 1992). Con-

versely, during the night, the radiatively cooled surface strat-

ifies the air above, which forms a stable nocturnal boundary

layer. Both midday and nocturnal periods, when in a station-

ary state, have been relatively successfully modelled, even

if several issues remain open (see the reviews by Angevine,

2008; Cuxart, 2008; and Holstlag et al., 2013). Morning and

evening transitions remain difficult to observe and model,

in large part due to their inherent transience. The late af-

ternoon transition typically starts from a well-mixed con-

vective boundary layer (CBL) and transforms to a residual

layer overlying a stably-stratified surface layer. This evolving

boundary layer exhibits complex characteristics such as tur-

bulence intermittency and enhancement of anisotropy, hori-

zontal heterogeneity, rapidly changing conditions and com-

binations of weak forcing mechanisms.

The evolution of the PBL has been studied since the 1950s.

An extensive knowledge of the diurnal evolution of the PBL

and its influence on the pollutant distribution has been ob-

tained since then (Vilà-Guerau de Arellano et al., 2004,

2009; Casso-Torralba et al., 2008). The increasing knowl-

edge of PBL processes has been based on two main types of

studies: the application of the theoretical concepts of turbu-

lence (Batchelor, 1967; Tennekes and Lumley, 1973; Pope,

2000; Wyngaard, 2010) to perform numerical simulations

of atmospheric characteristics (Lilly, 1967; Deardorff, 1972;

Lenschow, 1974; Stull, 1976; Moeng, 1984; Jacobson, 2000;

Pielke, 2002; Stensrud, 2007), and detailed field observations

(e.g. Wangara: 1967, Kansas: 1968 or Minnesota: 1973, de-

scribed in Hess et al., 1981 and Kaimal and Wyngaard, 1990,

remain fundamental references). There have been a large

number of intensive field experiments since then, and in ad-

dition, systematic observations now made at some observa-

tories allow the exploration of the PBL on a long-term basis

as well: for example, at Lindenberg, Germany (Beyrich and

Engelbart, 2008), Cabauw, the Netherlands (Van Ulden and

Wieringa, 1996; Hurley and Luhar 2009; Baas et al., 2009;

Bosveld et al., 2014) and CIBA, Spain (Yagüe and Cano,

1994), as well as flux monitoring networks worldwide.

Most PBL studies were previously devoted to investigat-

ing the PBL characteristics and the relevant processes during

midday, when unstable or neutral conditions usually prevail

(Kaimal et al., 1976; Mahrt and Lenschow, 1976; Stull, 1988;

Moeng and Sullivan, 1994; Cuijpers and Holtslag 1998), or

at night when a stable atmosphere is typically found (Nieuw-

stadt, 1984; Debyshire, 1990; Garratt 1992; Cuxart et al.,

2000; Poulos et al., 2002 van de Wiel et al., 2003; Mahrt,

2014). Limited-area and global meteorological models, as

well as air quality models have largely benefited from these
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investigations by introducing new process-based parameteri-

zations.

As early as the late 1970s, though, André et al. (1978)

compared a third-order moment model with ground-based

measurements and soundings of the boundary layer during

an entire diurnal cycle. Difficulties were found in the noctur-

nal conditions and during the late afternoon transition. Sev-

eral recent studies have attempted to simulate the entire diur-

nal cycle both with large-eddy simulation (LES) and single-

column parameterized models (SCM). These include Kumar

et al. (2006), Basu et al. (2008) or Svensson et al. (2011),

who made use of realistic conditions based on the Horizontal

Array Turbulence Study (HATS, Horst et al., 2004), Wangara

and CASES-99 campaigns, respectively. Beare et al. (2006)

and Edwards et al. (2006) compared surface observations at

Cardington, UK, with respectively a LES and a SCM from

early afternoon to the next morning. The late afternoon tran-

sition decay was delayed in the LES relative to the observa-

tions, but a large improvement was found when assimilating

the observations. The single-column model had difficulties

for correctly representing turbulence diffusion during the af-

ternoon transition, which affected the mean profiles. Most of

the numerical simulations quoted above are able to reproduce

the multi-layering that occurs in the evening and the genera-

tion of a nocturnal jet, but the transition timing remains hard

to catch for several important variables (including surface

fluxes, mean wind and temperature, and friction velocity).

In addition, most of the simulations described above could

only be compared with surface measurements of fluxes and

turbulence and with vertical profiles of mean variables, but

rarely with turbulence observations up to the PBL top.

There are still relatively few observational studies dedi-

cated to the transitory processes in the cloud-free or shallow-

convective PBL, e.g. Grant (1997) (in Cardington, UK),

Brazel et al. (2005) (Phoenix Air Flow Experiment), Fer-

nando et al. (2004), Fernando et al. (2013) (The Phoenix

Evening Transition Flow Experiment). Also notable are the

LIFT/FLATLAND experiment (Cohn et al., 2002) in the

plains of Illinois, LITFASS (Beyrich et al., 2006) over het-

erogeneous surface in Germany, and CASES-99 (Poulos et

al., 2002) in Kansas for the study of the nocturnal stable

boundary layer. Without being specifically dedicated to the

afternoon and evening transitions, these observational cam-

paigns were the basis of key studies on the late afternoon or

evening transitions.

The results based on the previously mentioned campaigns

and on numerical experiments revealed some key issues of

the late afternoon transition, which were chosen as the guide-

line for the Boundary-Layer Late Afternoon and Sunset Tur-

bulence (BLLAST) project. In the following section, we

present in more detail the issues raised by the afternoon tran-

sition, based on the background of previous studies. Section

3 describes in detail the experimental set-up and strategy that

were chosen to address those issues, and Sect. 4 points out

the potential of the BLLAST data set to bring some answers.

This general manuscript therefore introduces the deeper anal-

yses made on specific issues that are made in the other arti-

cles of the special issue.

2 Addressed issues

This section reviews the previous studies that are address-

ing the afternoon transition and turbulence decay. We first

remind several definitions proposed in the literature for the

period and layers of interest, then investigate the past results

on the turbulence decay process and finally discuss the po-

tential impacts of the transition and benefits from improved

understanding.

2.1 “Convective”, “mixed” or “residual” layers?

Definition and scaling

Definitions of the afternoon transition (AT) and the evening

transition (ET) (and distinctions between them) may vary

according to previous studies. In the study by Nadeau et

al. (2011), the AT starts as soon as the surface sensible heat

flux begins to decrease and ends when it becomes negative.

Grimsdell and Angevine (2002) have used different subjec-

tive criteria based on UHF wind profiler measurements, in

order to analyse the behaviour of the CBL top (estimated

from the reflectivity) with respect to the depth of the layer

with a significant amount of turbulence (estimated from the

spectral width). In their study, the AT start is defined as (i)

the time when the vertical structure close to the top begins to

“decouple” or the turbulence starts to decay at the top or (ii)

the time when the CBL top starts to descend. (i) or (ii) were

considered on distinct days, depending on the behaviour of

the CBL top: (i) was used for cases with an “inversion layer

separation” and (ii) for cases with a descent of the CBL top.

Defined as such, the AT usually lasts several hours. Grims-

dell and Angevine (2002) found that the transition was grad-

ual and not sudden, from a CBL-top perspective. The ET is

usually defined as the period of time from zero surface sensi-

ble heat flux to a well-established nocturnal stable layer, with

quasi-steady depth.

In the context of the AT and ET, the definitions of the sur-

face layer, the mixed layer (and CBL), the residual layer and

the nocturnal stable boundary layer have to be carefully re-

visited.

Criteria typically used to define the depth of the CBL

during midday are, among others, the depth of well-mixed

scalars, the depth of significant turbulence, the depth of in-

creasing relative humidity, the height of the capping inver-

sion or of minimum buoyancy flux (Angevine et al., 1994;

Moeng and Sullivan, 1994; Seibert et al., 2000; Zhu and Al-

brecht, 2002; Brooks and Fowler, 2011). These criteria all

find approximately the same depth in a well-defined CBL,

but they start to evolve differently during the AT and may

separate from each other as observed, e.g. by Grimsdell and
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Angevine (2002): the depth of the CBL may decrease, while

the residual inversion remains level or evolves on its own de-

pending on advection and subsidence.

In unstable conditions, the surface layer is mainly gov-

erned by shear and buoyancy, and the outer layer above is

governed by buoyancy. Consequently, during the day, in con-

vective conditions, most of the boundary-layer processes in

the outer layer can typically be scaled based on the surface

buoyancy flux and the boundary-layer height (Deardorff scal-

ing, Deardorff, 1970; Willis and Deadorff, 1976). In the sur-

face layer, the Monin–Obukhov similarity theory (MOST,

Monin and Obukhov, 1954) has been widely used. Both scal-

ings are the basis for robust parameterizations in bulk and

mesoscale models. However, during the afternoon transition,

the surface buoyancy flux decreases toward zero, and the in-

fluence of other competing processes as radiation, advection,

entrainment or wind shear become relatively more important.

So neither the convective scaling, nor the MOST-based sta-

ble boundary-layer scaling, are valid. It is therefore necessary

to explore the validity of convective and stable scalings, and

how to represent the transition using non-dimensional anal-

ysis or new scalings. In this context, van Driel and Jonker

(2011), based on an idealized LES and 0-D model study of

a non-stationary PBL, suggest considering the time it takes

for the energy to travel from the surface up to the top of the

boundary layer. McNaughton et al. (2007), Sorbjan (2010,

2012) and Kumar et al. (2006) also proposed new scalings

that could be tested in the context of transitory phases, like

the local Richardson number and Nieuwstadt scalings. A

question that is still poorly understood is the following: how

long does the CBL remain quasi-stationary during the AT, or,

equivalently, for how long does the convective scaling apply

as the surface flux decreases?

2.2 Turbulence decay process

2.2.1 Turbulence kinetic energy (TKE) decay

Several authors have previously studied the transition

regimes of turbulence with laboratory experiments

(e.g. Monin and Yaglom, 1975; Cole and Fernando,

1998). The first LES study of the decaying atmospheric

convective mixed layer was performed by Nieuwstadt and

Brost (1986). The authors analyzed an academic case of a

sheared, clear mixed layer, in which turbulence decayed as

a result of a sudden shut-off of the upward surface sensible

heat flux. In both the LES simulations and the laboratory

experiments, the turbulent kinetic energy is found to decay

following a power law t−n of time t .

Later, Sorbjan (1997) considered a gradual change of the

heat flux with time, in response to the decreasing of the eleva-

tion of the sun. The evolution of the decaying sheared mixed

layer was shown to be governed by two timescales: the ex-

ternal (or “forcing”) timescale τf – that is the timescale of

the gradually changing of the heat flux – and the convective

timescale t∗ = Zi/w∗, where Zi is the CBL depth, and w∗

is the convective velocity scale (Deardorff, 1970; Willis and

Deardorff, 1976). In this context, the power coefficient n is a

function of τf/t∗.

Recently, Nadeau et al. (2011) considered a realistic de-

crease of the surface sensible heat flux, based on observa-

tions of the LITFASS-2003 experiment (Beyrich and Men-

gelkamp, 2006). They showed that the TKE decay phase can

be separated in two stages: first, a slow decay during the

AT followed by a rapid collapse of turbulence during the

ET. Also Nadeau et al. (2011) were able to model the de-

cay observed in the surface layer with a model based on a

mixed-layer parameterization, rather than on a surface-based

parameterization. Based on the CASES-99 data set, Rizza et

al. (2013) performed a LES study of the decay phase whose

results corroborate the findings of Nadeau et al. (2011).

In both laboratory experiments and numerical studies,

such as those mentioned above, the decay of the turbulent ki-

netic energy is found to depend on the formulation of the de-

crease in the surface–atmosphere energy exchanges (e.g. ei-

ther expressed as prescribed surface sensible heat fluxes or

surface temperature), but with no consensus on the exact re-

lationship between the forcing and the power law.

On the observational side, Fitzjarrald et al. (2004) pro-

vided aircraft measurements of the turbulence decay within

the PBL, and revealed a sharper and more systematic de-

cay of the wind vertical velocity relative to the horizontal

components. Most of the other previous observational stud-

ies have focused on the decay of the TKE in the surface layer

(e.g. Fernando et al., 2004; Brazel et al., 2005), with little

quantification of how turbulence is decaying in the upper lev-

els, and how the different levels interact with each other.

2.2.2 The evolution of length scales

Characteristic scales of turbulence are relevant for under-

standing and quantifying PBL processes and their represen-

tation in meteorological models. Various length scales can

be considered to characterize turbulence processes, with dif-

ferent ways to estimate them including the wavelength of

the energy spectrum peak (energy production), the integral

scale (energy-containing eddies) or other scales defined with

a weighted integral of the spectrum, and also the buoyancy

length scale, the Ozmidov scale (that is the scale where the

buoyancy forces affecting the vertical momentum are equal

to the inertial forces; Fernando, 1991), etc. During midday,

those are often proportional (Lenschow and Stankov, 1986),

but this is not expected to remain valid in the late after-

noon. As parts of the boundary layer become stably stratified,

the buoyancy length and Ozmidov scale (Fernando, 1991),

etc., become relevant. For the Phoenix Airflow Experiment,

the observations of Pardyjak (2001) indicate that these two

scales decrease quite linearly in the hours following ET.

Indeed, there is a lack of agreement in the evolution of the

vertical velocity characteristic length scale during the late
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afternoon transition, partly due to the difficulty of address-

ing the issue, both with numerical studies and observations.

Vertical motions up to 1m s−1 extending horizontally over

several km have been observed, weaker but of larger scale

than the midday eddies (Aupetit, 1989). Possible explana-

tions for those include growth of boundary-layer scales, or

surface variability and orography that can induce mesoscale

circulations.

By using LES, Nieuwstadt and Brost (1986) found that the

length scale of the vertical velocity spectrum peak remained

constant during the decay process. The study by Sorbjan

(1997) mentioned previously reflected that small eddies had

a tendency to decay earlier than large eddies. Consequently,

organized convection persisted in the decaying mixed layer

even when the buoyancy flux at the surface became nega-

tive, and a nocturnal inversion was being developed near the

earth’s surface. These results were later confirmed by the di-

rect numerical simulation of Shaw and Barnard (2002).

Pino et al. (2006) have shown that the characteristic length

scale, based on a weighted integral of the energy spectrum,

has a different evolution during the decay. They found that

the characteristic length scales increase with time, for all

variables but the vertical velocity, for which the scale re-

mained almost constant. Based on tethered-balloon observa-

tions, Grant (1997) showed that the peak of the vertical ve-

locity spectra shifts to smaller length scales during the ET in

the surface layer, and remains steady above.

With the TKE decay itself, the evolution of the character-

istic length scales has been one of the main questions ad-

dressed in the past studies on the afternoon transition. How-

ever, the scale issue remains unclear and only partly under-

stood. A thorough investigation of whether the scales in the

mixed (and then residual) layer really increase or decrease

is necessary. In addition, it must be understood whether the

characteristic length scales decrease in the surface layer as

the nocturnal boundary layer starts to build, as stated by

Kaimal and Finnigan (1994).

Another important related question is the anisotropy of the

turbulence. Fitzjarrald et al. (2004) with flux towers and air-

craft measurements and Pino et al. (2006) by means of LES

showed that the turbulence does not relax to an isotropic

state during the decay process. Contrarily, Monin and Ya-

glom (1975) found in laboratory experiments that the turbu-

lence maintains the initial isotropy during the decay. Lothon

et al. (2006) have found with midday lidar observations in the

CBL that the ratio between longitudinal (i.e. along the sam-

pling direction) and transverse (i.e. perpendicular to the sam-

pling direction) vertical velocity integral scales was smaller

than it would be in isotropic turbulence, i.e. the turbulence is

“squashed”. The surface layer data from Pardyjak (2001) also

indicated that vertical turbulence was damped and isotropy

rapidly increased. However, it remains unclear how squashed

it remains later and until sunset.

2.2.3 Competing influences: “the unforced transition”

The decay of turbulence and the evolution of the characteris-

tic length scales need to be related to the relevant forcing

mechanisms, not only to the rate of surface buoyancy de-

crease, but also to competitive forces or processes generated

by clouds, entrainment, radiative processes, shear and advec-

tion. Angevine (2008) suggests the term of “unforced tran-

sition”, because those processes are usually weak during the

later part of the AT, but all may come into play.

The following questions are raised by the AT and ET peri-

ods:

– How does entrainment evolve during the AT?What is its

role in the afternoon transition? Nieuwstadt and Brost

(1986) suggested that large eddies are still active for

some time in driving entrainment at the top of the resid-

ual layer, in spite of the decoupling from the surface.

This was corroborated numerically by Pino et al. (2006),

but still needs to be confirmed by observations and fur-

ther study. Canut et al. (2012) with a LES, found an in-

crease in the entrainment rate in the late afternoon. The

evolution of entrainment has to be linked to the evolu-

tion of scales. Van Heerwaarden et al. (2009) and Lo-

hou et al. (2010) have shown how entrainment can have

impact down to the surface, with signatures on evapora-

tion or integral scales, respectively. Thus, the evolution

of the entrainment process needs to be linked with the

evolution of length scales throughout the entire depth of

the boundary layer.

– What is the influence of radiation in the decay process?

Since the surface buoyancy flux is weak, radiation di-

vergence can make a significant contribution during this

period, both at the surface and at the top of the mixed

layer (Steeneveld et al., 2010).

– What is the role of land-use and surface heterogeneity in

the evolution of turbulence intensity and scales? How do

the heat storage in the ground or vegetation canopy and

radiative long-wave and short-wave components come

into play? Pardyjak and Fernando (2009) and Nadeau

et al. (2011) have studied the turbulence decay in the

surface layer over several types of surface and proposed

a simple model for the decay in the convective surface

layer. But the role of surface heterogeneity on the dy-

namics of the decaying CBL has still not been suffi-

ciently addressed.

– How do the processes of the AT and ET interact

with the flow reversal that occurs in mountainous or

coastal areas, forced by mesoscale pressure and tem-

perature gradients? Recently, the TRANSFLEX (The

Phoenix Evening transition Flow Experiment; Fernando

et al., 2013) and MATERHORN (Fernando and Pardy-

jak, 2013) experiments addressed the issue of the flow

www.atmos-chem-phys.net/14/10931/2014/ Atmos. Chem. Phys., 14, 10931–10960, 2014
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reversal over mountain slopes during the evening tran-

sition. With tethered-balloon observations and tracers

along the slopes, Fernando et al. (2013) showed the

complexity of the flow adjustment, with the generation

of multiple fronts in the flow reversal process. The AT

and ET in complex terrain need to be specifically ad-

dressed, since they precede the shifting of a valley wind

circulation, or sea breeze.

2.3 Potential impacts

Finally, the AT and ET may have important impacts on the

transport, mixing and distribution of trace species, the set-up

of a nocturnal jet, or on the daytime growth of the following-

day PBL.

What is the impact of this transition on

the transport of scalar species?

During the evening transition, Acevedo and Fitzjarrald

(2001) reported occurrences of specific humidity jumps, and

drops in surface temperature, accompanied by an abrupt de-

cay in wind velocity. Similarly, Mahrt et al. (1999) observed

that the latent heat flux during evening events decreased more

slowly than the strength of turbulence and the boundary-layer

depth. This led to the significant moistening of the surface

layer. This was also recently reported by Bonin et al. (2013)

with unmanned aerial systems.

Recent studies (Vilà-Guerau de Arellano et al., 2004;

Casso-Torralba et al., 2008) have shown that morning and

afternoon transition are also important for the exchange of

species. In early morning, when high entrainment rates have

been observed, the remaining pollutants of the residual layer

are introduced in the shallow boundary layer, thus increasing

or decreasing their concentration. In the evening, the residual

part overlying the stable layer can be incorporated in the free

troposphere, so that water vapour and chemical components

emitted at the surface and diluted into the convective layer

during the day can be introduced in the free atmosphere and

transported at larger scale, and in several layers (Banta et al.,

1998; Berkowitz et al., 1998).

How do the AT and ET interact with the

appearance of the nocturnal jet?

Mahrt (1981; 1999) pointed out that the evolution of the

stress divergence during evening transitions increased the

ageostrophic wind, and led to the development of a low-level

jet (wind speed maximum), accompanied by decoupling of

the flow just above the surface.

The large number of studies originating from the CASES-

97, CASES-99 and SABLES-98 experiments (Cuxart et al.,

2000, Poulos et al., 2002) provide a comprehensive docu-

mentation of the stable and very stable boundary layers and

their turbulence regimes (van de Wiel et al., 2003; Sun et al.,

2012), giving a better understanding of nocturnal drainage

flows (Soler et al., 2002) and of the nocturnal jet (Banta et al.,

2003), and proposing explanations for turbulence intermit-

tency (van de Wiel et al., 2002a, b; Sun et al., 2003; Cuxart

and Jiménez, 2007). CASES-99 also nicely documents the

evening transition. Lundquist et al. (2003) for example revis-

ited the explanations and occurrence of inertial oscillations.

However, the role of the AT and ET in setting auspicious or

unfavourable conditions for the appearance of the nocturnal

jet and occurrence of turbulence intermittency still needs to

be further addressed.

3 The BLLAST field experiment

The issues presented above motivated several research

groups (listed in Table 1) to plan and execute a dedicated field

experiment that focused on the afternoon and evening transi-

tions, with a dense array of complementary observations in

time and space from the mid-afternoon to the night.

The BLLAST field campaign took place in early summer,

from 14 June to 8 July 2011 in France. The site is called

“Plateau de Lannemezan”, a plateau of about 200 km2 area, a

few kilometre from the Pyrenean foothills (Fig. 1), and about

45 km from the highest peaks of the Spanish border. The

surface is covered by heterogeneous vegetation: grasslands,

meadows, crops and forest (Fig. 2). The campaign combined

in situ measurements from towers, balloons and airplanes

with ground-based remote sensing. The measurements were

intensified during the AT on days with favourable conditions

(discussed later in the text), called intensive observation pe-

riods (IOPs).

Two sites (hereafter “sites 1 and 2”) contained most of the

ground-based instruments and were the focus of flight oper-

ations. There were two main observational strategies, which

focused on (1) vertical structure and (2) spatial heterogene-

ity. A third supporting site (site 3) was instrumented to allow

the estimation of the 3-D wind circulation, advection terms

and spatial variability at the sub-mesoscale.

In the following, we first describe the observations made

continuously during the field experiment, and second, those

specifically made during the IOPs. The last subsections

present the forecast model support during the field campaign,

educational aspects, and the available data set.

3.1 Continuous observations

3.1.1 Boundary-layer profiling

Several remote-sensing instruments were deployed during

BLLAST over the 3 sites for continuous monitoring of the at-

mosphere. Vertical profiling of the wind from 10m to 16 km

a.g.l. was accomplished at site 1 with a combination of so-

dar (from 10m to 300m a.g.l.), ultra-high frequency (UHF)

radar (from 200m to 3000m a.g.l.) and very high frequency

(VHF) radar (from 1.5 km to 16 km a.g.l.) profilers. Both the

UHF and the sodar profiling systems can also measure some
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Table 1. Groups involved in the BLLAST campaign and the instrumentation they implemented.

Country, group Instrumentation

France, LA Wind profilers, surface station, tethered balloon, radiosounding

France, CNRM-GAME Wind profiler, lidar, ceilometer, scintillometer, surface station,

turbulent probe under tethered balloon, frequent radiosounding

France, SAFIRE Piper Aztec aircraft

France, LPCA Sodar, surface station, SMPS and cascade impactor

France, LMD Doppler lidar

the Netherlands, MAQ Sodar, scintillometer, surface station

USA, Utah Univ. Surface station, tethered balloon

USA, UC Davis Radiosoundings

Italy, CNR Sky Arrow aircraft

Spain, Univ. Comp. de Madrid Microbarometers

Spain, Universitat de les Illes Balears Surface station, soil measurements

Norway, Univ. Bergen SUMO RPAS, surface station

Germany, Univ. Tübingen MASC RPAS

Germany, Univ. Braunschweig M2AV RPAS

Germany, Univ. Lipp Octo-copter RPAS

Germany, Univ. Heidelberg Sirius I RPAS

Germany, Univ. Bremen BUSCA RPAS, Funjet1 RPAS, Funjet2 RPAS

Switzerland, PMOD-WRC Radiation sensors

UK, Univ. Reading Sensors on SUMO RPAS

characteristics of atmospheric turbulence (the turbulent en-

ergy dissipation rate can be estimated with a UHF profiler,

and the temperature structure coefficient with a sodar). The

UHF profiler also estimates the height of the mixed layer, or

of any strong vertical gradients in the atmosphere (Angevine

et al., 1994; Héo et al., 2003).

In addition, another UHF profiler and a sodar were de-

ployed at sites 2 and 3, respectively (Fig. 1), to build a tri-

angle of wind profilers, allowing the estimation of the 3-D

wind at the scale of the plateau.

Lidars were also extensively utilized in the campaign. Two

backscatter lidars, deployed at sites 1 and 2, monitored the

aerosol vertical structure continuously. They provided esti-

mations of the boundary-layer top and depth of aerosol lay-

ers. A Doppler lidar was also operated at site 1, and provided

profiles of the vertical wind at about 5 s time interval.

A ceilometer at site 1 supplied the cloud-base height. A

full sky camera was collocated with the ceilometer and pro-

vided a qualitative monitoring of the cloud cover with an im-

age of the entire sky every minute.

3.1.2 Surface-layer measurements on

various landscapes

During the BLLAST experiment, seven surface sites, here-

after denoted “ss1” to “ss7”, were instrumented above var-

ious vegetation types and for different objectives (Figs. 2

and 3). The sites characteristics (altitude, vegetation type

and height), the measured variables and the sensors used

are listed in Tables A1 and A2 of the Appendix. In addition

to classical meteorological measurements, all the sites had

high-frequency sensors measuring turbulence properties. All

eddy-covariance sensing systems were mounted at heights

that ensure that the instruments were in the constant flux

layer (above ∼ 3–5 times the height of the local roughness

elements), except the instruments mounted at the forest site

where this was not possible. The first aim of those stations

was to provide a thorough description of the surface fluxes

in the heterogeneous landscape of BLLAST area, while air-

borne and scintillometer measurements give access to inte-

grated estimates. Beyond this, most of the surface stations

were implemented with other dedicated objectives:

– At ss1 (at site 1) (Fig. 3a), two masts equipped for

measuring all the terms of the surface energy balance

were installed in a grass and a wheat field, respectively.

A third station with a sonic anemometer and a water

vapour and CO2 fast sensor was located at the edge be-

tween both fields. Measurements from these stations are

being used to investigate the Monin–Obukhov similar-

ity theory over a heterogeneous terrain by using a flux-

footprint model (van de Boer et al., 2013).

– The ss2 (at site 1) (Fig. 3d) was composed of two 10m

towers 20m apart. The first tower was equipped with

six sonic anemometers (at 0.85, 1.12, 2.23, 3.23, 5.27

and 8.22 m) and nine fast-response fine-wire thermo-

couples (at 0.019, 0.131, 0.191, 0.569, 1.12, 2.23, 3.23,

5.27, 8.22m). The second tower had 6 long-wave radi-

ation sensors installed at the same heights as the sonic

anemometers. The aim of this set-up was to investigate

near-surface long-wave radiation and buoyancy flux di-

vergence, and the delay between the surface flux sign
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Figure 1. Experimental area. The small frame at the top-left corner situates the BLLAST experiment area (blue square) at the larger scale of

the country. The large blue oval delimits the exploration area of the manned aircraft, and the smaller purple circle indicates the temporary

restricted area (TRA) for the operations of the remotely piloted aircraft systems (RPASs). The orange dotted triangle locates the profiler

network, and the green lines represent the paths of the two large aperture scintillometers. Instruments (other than surface stations) deployed

over the three sites are schematized on the right side of the figure.

change and the temperature gradient sign change (Blay-

Carreras et al., 2014b), as well as the formation of

extremely shallow flows (Manins and Sawford, 1979;

Mahrt et al., 2001).

– The ss3 (at site 1) (Fig. 3e) focused on a small-scale (a

few meters) surface heterogeneity study (Cuxart et al.,

2014). A flat surface (150m× 150m), covered with a

mix of bare soil, small bushes, grass and small puddles,

which constituted a very heterogeneous surface, had its

soil characteristics (temperature, humidity) extensively

mapped. The vertical air temperature profile in the first

1.5m and the energy fluxes were also monitored.

Three high-resolution micro-barometers were also de-

ployed at ss3, at each vertex of a triangle with 150m

side length, 1m a.g.l. These high-precision digital in-

struments can detect very small pressure perturbations,

of the order of 0.1 Pa, at 2Hz sampling frequency.

The objective was to study the small-scale static pres-

sure fluctuations produced in the atmospheric bound-

ary layer due to turbulent motions or the propagation

of waves of different types (Viana et al., 2009, 2010;

Sastre et al., 2012; Román et al., 2014).

– The ss4 is composed of the 60m tower (Fig. 3b) which

is a permanent platform at the Centre de Recherches At-

mosphériques (CRA). It provides year-round flux mea-

surements and a vertical profile of turbulence close to

surface. At the top of the tower, a high-resolution IR

camera (1Hz image frequency of a 45◦ × 34◦ field of

view) pointed either toward the ss2, or toward the ss3

(Garai et al., 2013).

– At site 2, eddy-covariance stations sampled three con-

tiguous large areas (about 1–2 km long) with relatively

homogeneous vegetation: forest (ss5) (Fig. 3c), maize

(ss6) and moor (ss7). The site was specifically devoted

to the study of the role of surface heterogeneity. The

turbulence characteristics and decay over the different

vegetation covers will be compared taking into account

the local circulations which may develop between the

fields during this phase of the day.

For consistency, uniform data processing was carried out for

all eddy-covariance stations mentioned above.

In addition to the previous measurements, three scintil-

lometers were used. They measured the structure parameter

of refractive index and temperature averaged along the path

between the transmitter and the receiver (Moene et al., 2009).

Therefore, and with the help of MOST, they provide an inte-

grated measurement of surface fluxes over the heterogeneous

regions sampled by the set of surface stations. A double beam

laser scintillometer with a 110m path length was deployed at

ss1 (Hartogensis et al., 2002) and two large aperture scintil-

lometers with path lengths of 3 and 4 km were aimed toward

the north and the south-east, respectively (Fig. 2).
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Figure 2. Satellite view (from Google Earth) of the area, showing the instrumented site locations. Surface sites over various vegetation are

noted ss1 to ss7: (ss1) wheat, grass and edge; (ss2) prairies; (ss3) micro-scale surface heterogeneities; (ss4) 60m tower; (ss5) forest; (ss6)

maize; and (ss7) moor. The light yellow lines represent the paths of the two large aperture scintillometers and the orange circle indicates the

limit of the TRA.

Finally, for the purpose of characterizing aerosol optical

properties and studying aerosol effects on the evolution of

the boundary layer, aerosols size distribution was monitored

at site 1, by use of a ground-based Scanning Mobility Parti-

cle Sizer (SMPS; range 10 nm–1 µm) and an optical counter

(OPC; range 0.3–20 µm). For sulfates analysis, a proxy for

secondary aerosols formation, aerosols were also collected

at 12m height, using a three-stage cascade impactor, with

cut-off diameters of 10 µm, 100 and 30 nm.

3.2 Intensive observation periods (IOPs)

Observations were intensified under fair-weather conditions,

with mostly dry convection during the day, and clear sky or

fair weather cumuli during the afternoon and evening transi-

tions. These characteristics correspond to anti-cyclonic con-

ditions (mountain–plain breeze regime), post-frontal condi-

tions, or weak-pressure gradient conditions. These situations

are not specific to the AT and ET studies but typical for con-

vective boundary-layer studies for which the influence of so-

lar radiation on surface–atmosphere interaction plays a ma-

jor role. Some IOP days were conducted the day following

a rain episode when the morning was cloudy and conditions

cleared up by midday. Over the 3.5 weeks of the field cam-

paign, there were 12 days with favourable conditions (corre-

sponding to 12 IOPs).

During the IOPs, two manned aircraft, remotely piloted

aircraft systems (RPASs), tethered and ascending balloons,

and in situ aerosol measurements were operated intensively.

Figure 4 illustrates the observational strategy utilized dur-

ing BLLAST IOPs and Table 2 summarizes the operation for

each IOP.

For the joint operations of balloons, airplanes and RPASs,

a temporary restricted airspace (TRA) was issued and acti-

vated daily from 05:00 to 21:30UTC (note that 05:00UTC

is 07:00 LT). The TRA covered an area of 4 km radius in-

cluding sites 1, 2 and 3 with an upper limit of 1.6 km a.g.l

(see Figs. 1 and 2). While activated, only the two manned

BLLAST research aircraft were allowed to enter the TRA. In

these cases all RPASs and tethered-balloon operations were
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Figure 3. Examples of surface sites during BLLAST: (a) one of the towers at the ss1 over the wheat, (b) ss4 with the 60m tower, (c) ss5 over

the forest, (d) ss2 over the prairies, and (e) ss3 over the micro-scale heterogeneous surface with the ss4 60m tower behind and the Octocopter

flying around. Authors of the pictures: (a), (d) Patrick Dumas; (b), (c) Solène Derrien; (e) Daniel Grenouillet.

limited to low-level flights, ensuring at least 150m vertical

separation between the lowest flight level of the manned air-

craft and the highest RPAS.

3.2.1 Balloons

Radiosoundings

A total of 67 standard MODEM and GRAW radiosondes

were launched from site 1 during the IOP days at least 4

times per day at 06:00, 12:00, 18:00 and 24:00UTC, and

assimilated by the Météo-France forecast operational mod-

els (Table 2). At site 2, a new technique was used for fre-

quent soundings of the lower troposphere only, during the

AT (Legain et al., 2013). Two balloons, with different sizes,

attached to the same Vaisala probe, were released. The larger

balloon allowed ascent up to about 2 km height at which time

the probe and the smaller balloon were separated from the

larger balloon. The smaller balloon brought the probe safely

to the ground. A package protecting the probe allowed its

reuse after it was recovered. A real-time model predicted the

landing area and aided in the decision of when to cut the line

that released the probe and the smaller balloon. The time in-

terval between two soundings was between 60 and 90min.

A total of 62 soundings were made with this technique, with

80% probe retrieval rate (Table 2). Additionally, a few ra-

diosondes were launched simultaneously at the three sites to

estimate the divergence at the spatial scale of the plateau on

IOPs 6, 7 and 11.

Tethered balloons

Three tethered balloons (one at site 1 and two at site 2)

operated during all the IOP days (except IOP 4, Table 2),

from early afternoon to just after sunset. One balloon was

equipped with a newly developed turbulence probe, operated

at site 1 (Canut et al., 2014). This probe was composed of a

sonic anemometer (Gill Windsonic 3-D), whose oscillations

angles were measured by an inertial platform, and a plat-

inum fine wire in a radiation shield for fast air temperature
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Figure 4. Illustration of the observing strategy during the IOPs. RS= radiosounding, RPAS= remotely piloted aircraft system, SEB= surface

energy balance. Aircraft=Sky Arrow and Piper Aztec.

measurements. The probe was maintained at a given height,

as fixed as possible, generally a few hundred metres above

the ground, filling the gap of turbulence measurements be-

tween the 60m tower and the lower leg of the aircraft, and

giving a reference for the less validated RPASmeasurements.

Two other tethered balloons, which measured mean mete-

orological variables (temperature, humidity, wind speed and

direction) were operated at site 2, over the maize and the

moor fields, with up to five probes at different heights, the

four upper ones set at 2, 3, 5 and 9m above the lowest one.

The two tethered balloons were performing the same flight

pattern: either they were maintained at a fixed low height

(the probes were within 15m height) or they profiled the first

150m. The goal was to evaluate the impact of surface het-

erogeneity on the surface-layer vertical structure.

3.2.2 Aircraft

Two aircraft were chosen to participate in BLLAST: the

French Piper Aztec from SAFIRE (Saïd et al., 2005), and

the Italian Sky Arrow from CNR (Gioli et al., 2006). The

Sky Arrow participated from 14 June to 26 June , and the

Piper Aztec stayed throughout the campaign (Table 2). Both

aircraft measured pressure, temperature, moisture, CO2 con-

centration and 3-D wind with a spatial resolution of 1m for

the Sky Arrow and around 3m for the Piper Aztec. The de-

tailed instrumentations of the Piper Aztec and the Sky Arrow

are given in Tables A3 and A4 of the Appendix, respectively.

The aircraft mainly flew in the middle-to-late afternoon. The

flight plans were chosen to capture horizontal heterogeneity,

vertical structure, the size of the turbulent eddies and their

time evolution. Flights generally included stacked level runs

in vertical planes and helical profiles. In addition, simpler

patterns, such as a large number of passes on a single track

to improve statistics, were flown. The two aircraft flew either

sequentially to entirely cover the time period from midday

to after sunset or together during the same period in order to

ensure improved spatial coverage and simultaneous measure-

ments. The levels of the horizontal flight legs were chosen ac-

cording to the boundary-layer thickness, which was updated

with UHF radar or soundings from balloons or RPASs made

before take off.

3.2.3 Remotely piloted aircraft systems

Table A5 of the Appendix lists the RPASs that flew, and ac-

quired data of interest for BLLAST (see also Table 2 for the

number of flights for the main RPASs used).

The small RPAS SUMO was mainly used for frequent

profiling up to the top of the TRA and for low-level (typi-

cally 60–80m above ground) surface temperature mapping

surveys (see an example in Fig. 5). Among all the SUMO

flights, nearly 50 were performed with a newly integrated

turbulence measurement system on board; it is based on a

five-hole pressure probe and allows the determination of the

3-D flow vector in front of the aircraft with a frequency of

100Hz (Reuder et al., 2012a, b).
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Figure 5. Surface temperature observed by the RPAS SUMO dur-

ing an exploration survey 60m above ground at site 2 on 27 June

2011 (IOP 7). At that time and that day, the forest and the maize

had similar temperatures, about 1 ◦C warmer than the moor. The

hot spot on the bottom left is a bare ground and concrete surface

of a waste disposal area (Google-bilder© 2011 COWI A/S, DDO,

DigitalGlobe, GeoEye, Scankort© Google).

M2AV (Martin et al., 2011) and MASC RPASs are suited

for flying kilometre-scale level legs with high-rate measure-

ments of wind components, temperature and humidity fluc-

tuations (van den Kroonenberg et al., 2012). Unfortunately,

some technical problems occurred to the MASC, and no data

set could be supplied.

The other RPASs only participated during the last two

weeks of the field campaign. These adjunct operations were

performed as a RPAS test and sensor intercomparison event

organized by the European COST Action ES0802 “Un-

manned Aerial Systems in Atmospheric Research”. In this

context, the Octocopter operations were devoted to map the

small-scale surface heterogeneities around the ss3 (Fig. 3e).

SIRUS, BUSCA, Funjet 1 and 2 systems provided tempera-

ture and humidity data on non-IOP days.

3.3 Forecasts

During the field campaign, specific forecast output was made

available every hour, from two numerical weather prediction

(NWP) models of Météo-France: a global model, ARPEGE

with a stretched horizontal resolution of about 10 km over

France with a 4D-Var assimilation system, and a limited area

non-hydrostatic model, AROME (Seity et al., 2011) with

a standard horizontal resolution of 2.5 km. On the vertical,

ARPEGE (Courtier and Geleyn, 1988) has about 11 lev-

els within the first kilometre (first level at 37m a.g.l.), and

AROME has about 15 levels (first level at 22m).

There were two objectives in the AROME and ARPEGE

forecast model output: (1) to help in the planning of the in-

tensive observations during the field experiment and (2) to

evaluate the behaviour of the two models, especially during

the afternoon transition (Couvreux et al., 2014).

3.4 Educational aspects

Educational activities enabled undergraduate students from

Germany and the Netherlands to participate in the field ex-

periment thanks to the practical training programs of Bonn

and Wageningen universities that were integrated into the

experimental plans. Additionally, several students also took

a course on airborne atmospheric measurements and partic-

ipated in BLLAST flights through the two associated EU-

FAR (European Facility for Airborne Research) projects

BLLATE-1 and BLLATE-2. Several early stage researchers

could participate in the campaign via the short-term scien-

tific mission (STSM) scheme provided by the COST Action

ES0802.

3.5 Data set

During the field experiment, a field catalog (http://boc.sedoo.

fr) supplied quick looks of the continuous measurements

and IOP observations, satellite images, reports, model fore-

casts and analyses, which are still available. The BLLAST

web site (http://bllast.sedoo.fr) describes the project and con-

tains the documentation, presentations and field catalog, and

also gives access to the observational and modelling data

and metadata. The data set was reserved for BLLAST par-

ticipants until 2014, and has been opened to the scientific

community since then. We encourage people to contact in-

strument principal investigators whenever using one of the

BLLAST data sets.

4 Potential of BLLAST data set

Here, we illustrate the potential of the observations made

during the field experiment to address the issues raised by

the AT and ET. We first show an overview of the conditions

that were encountered during the field experiment, followed

by a general description of some characteristics of the AT, in-

cluding the turbulence kinetic energy decay and the evolution

of turbulence length scales.

4.1 Overview

4.1.1 Meteorological conditions

Figures 6 and 7 present series of 24 h sequences for the 12

IOPs, from 14 June to 5 July 2011 of the solar irradiance, the

wind speed and direction, the sensible and latent heat flux

over different surfaces, and the evolution of Zi (PBL depth)

estimates from several sources and by the use of different

criteria.
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Table 2. Intensive observations made by the two aircraft (number of flights (FL) and hours), Remotely piloted aircraft system (RPAS)

(number of flights), radiosoundings (RS) (number of launches), and tethered balloons (TB) (duration).

AIRCRAFT RPAS RS TB

Sky Piper SUMO M2AV Octocopter Site1 Site2 Site3 Site 1 Site 2

Arrow Aztec Moor/maize

IOP00 2 FL 3 FL 8 1

14/06/2011 (2 h)

IOP01 2 FL 2 FL 21 FL 7 6 8 h 6 h/5 h

15/06/2011 (4 h) (3 h)

IOP02 2 FL 2 FL 28 FL 4 8 8 h 6 h/4 h

19/06/2011 (4 h) (4 h)

IOP03 3 FL 2 FL 23 FL 4 7 8 h 5 h/4 h

20/06/2011 (5 h) (4 h)

IOP04 2 FL 12 FL 4

24/06/2011 (4 h)

IOP05 3 FL 3 FL 19 FL 4 8 8 h 3 h/6 h

25/06/2011 (4 h) (5 h)

IOP06 2 FL 2 FL 23 FL 6 6 1 8 h 6 h/6 h

26/06/2011 (4 h) (4 h)

IOP07 2 FL 35 FL 6 2 2 8 h 6 h/5 h

27/06/2011 (2 h)

IOP08 2 FL 17 FL 2 FL 3 8 h 5 h/4 h

30/06/2011 (4.5 h)

IOP09 2 FL 11 FL 2 FL 10 FL 7 8 8 h 7 h/7 h

1/07/2011 (4.5 h)

IOP10 2 FL 12 FL 4 FL 8 FL 6 8 8 h 5 h/5 h

2/07/2011 (4 h)

IOP11 3 FL 14 FL 5 FL 14 FL 8 8 3 8 h 6 h/4 h

5/07/2011 (6 h)

Sub-Total 16 FL 22 FL 218 FL 13 FL 22 FL 67 62 6 80 h 55 h/50 h

(27 h) (41 h)

Total 38 flights 260 flights 135 launches 185 h

68 h

In contrary to the other days which were almost cloud free,

14, 15, 24 and 30 June were cloudy (Fig. 6a), either with

fair weather clouds, or starting with a stratocumulus cloud

in the morning which broke into fair weather cumuli in the

afternoon. Most of the time, those clouds were due to the

rain and moisture advected into the area by frontal systems

on previous days.

The wind at the surface was generally weak during the

field campaign, with 10min average values below 4m s−1

and daily averages < 2m s−1 for most of the IOPs (Fig. 6b). A

typical nocturnal southerly downslope wind was frequently

observed (Fig. 6c) and, during the day, either north-easterly

upslope winds (14, 15, 19, 20 and 24 June and 1, 2 and 5 July,

that are IOPs 0, 1, 2, 3, 4, 9, 10 and 11, respectively), or weak

westerly winds on 30 June (IOP 8). In weak-wind synoptic

conditions, which is the situation of most of the BLLAST

IOP days, the diurnal cycle that is imposed by the presence of

nearby mountains generates very calm conditions during the

late afternoon and evening as revealed in Fig. 6b, favourable

for the study of the AT. Of course, the diurnal cycle of the

low-level wind and the associated wind reversal needs to be

considered with the transition processes, as well as the link

between the mesoscale circulation and the PBL growth and

evolution. Note that the wind reversal typically occurs around

20:00UTC, about two hours after the buoyancy flux gets to

zero.
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Figure 6. Time series of (a) solar irradiance over the moor surface at site 2, (b) wind speed and (c) wind direction, measured over several

surfaces at the different sites (see Fig. 2). The shaded areas mark the AT period.

Surface sensible heat flux at midday during the IOPs

ranged between 100Wm−2 over grass and moor and

400Wm−2 over the forest (Fig. 7a). At 60m height, inter-

mediate values were measured, which is consistent with the

fact that at this height, the flux resulted from contributions

of several types of vegetated surfaces within the flux foot-

print area. Contrary to the sensible heat flux, the latent heat

fluxes were much more similar between the various surfaces

(Fig. 7b), reaching around 350Wm−2 at midday for all IOPs

and leading to different evaporative fraction (i.e. the ratio of

latent heat flux to the sum of latent heat flux and sensible

heat flux) values according to the vegetation. The three IOPs

5, 6 and 7 (25–27 June) represent a particular period dur-

ing the BLLAST experiment since they are characterized by

a surface wind slightly higher than that for the other IOPs

(daily average of 3m s−1) and coming from the east. This

less typical wind was due to the presence of a low pressure

area in the lower troposphere over the Gulf of Lion in the

Mediterranean Sea. Warm air occupied the low troposphere.

It led to very small sensible heat fluxes (Fig. 7a), which were

compensated by increased latent heat flux during those days

(Fig. 7b).

Figure 7c shows an overview of the PBL growth during

the IOPs over the entire field campaign. Estimates of Zi were

made from various observational sources, based on the fol-

lowing criteria: (C1) the height where the virtual potential

temperature (θv) exceeds a certain threshold based on the

value of θv at the surface, (C2) the height of maximum rel-

ative humidity, (C3) the height of maximum first derivative

of the potential temperature, (C4) the height of minimum first

derivative of specific humidity, (C5) the height of largest gra-

dient of aerosol backscatter (from wavelet analysis) and (C6)

the height of maximum air refractive index structure coef-

ficient (local maximum, with conditions on time continuity

and consistency with the previous criterion). Criteria (C1),

(C2), (C3) and (C4) were used for radiosonde and SUMO

data, criterion (C5) for site 1 aerosol lidar data and criterion

(C6) for site 1 UHF wind profiler data. Figure 7c only shows

the criteria (C1) and (C2) for radiosonde and SUMO data,

and criteria (C5) and (C6) for remote sensing. The results

first show that the PBL was usually around 1000m and did

not reach more than 1400m over the campaign. It was par-

ticularly shallow during the hot period mentioned above on

25, 26 and 27 June, due to smaller sensible heat flux. The
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Figure 7. Time series of (a) sensible heat flux H , (b) latent heat flux measured over several surfaces at the different sites (see Fig. 2) and

(c) estimates of Zi from various measurements, using criteria (C1) in dark blue, (C2) in pink, (C5) in green and (C6) in bright blue defined

in the text. The shaded areas mark the AT period. In (c), the horizontal dashed line indicates Zi = 1200m.

morning growth rate was quite variable from day to day, but

most of the time monotonic and smooth. The different esti-

mates are in general consistent, but interestingly depart from

each other on some specific days in the late afternoon. In

those cases, the mixed-layer depth detected from the thermo-

dynamical criteria decreased with time in the late afternoon,

while the residual top inversion and aerosol layer remained

approximately the same (19, 24, 30 June and 1, 2, 5 July).

This overview shows the variety of fair-weather conditions

encountered during the IOPs. The AT period as defined in

section 1 is indicated by the shaded areas for each day. Since

it depends on local surface characteristics, the longest period

is considered here: from the first time when the surface sen-

sible heat flux is maximum on any surface, to the last time

of its changing sign over any surface. It is interesting to see

that the sensible heat flux may start to decrease (and the AT

to start) before the downward solar radiation has reached its

maximum (Fig. 7a), with still growing PBL for several hours

before subsiding.

Also note that the sunrise is around 04:20UTC (06:20 LT)

during this period and at this area, and the sunset around

19:40UTC (21:40 LT).

4.1.2 Afternoon transition duration

Here, we adopt the same definitions as Nadeau et al. (2011):

the AT starts as soon as the surface sensible heat flux be-

gins to decrease and ends when it becomes negative. Figure 8

quantifies the duration of the afternoon transition (AT) as a

function of the time at which the surface sensible heat flux

starts to decrease, for all IOPs and several surface covers.

In agreement with Grimsdell and Angevine (2002), we find

that the AT can last several hours and have an early start.

This is enhanced here by the singular hot period during IOPs

5, 6 and 7, which is characterized by the shortest AT dura-

tions (3 h), because the sensible heat flux changed its sign

much earlier. Over grass and moor, characterized by larger

evaporative fractions, the maximum of sensible heat flux can

be reached early in the day, with AT durations spreading from

about 3–4 h to about 7–8 h. In contrary, over forest and wheat,

this maximum is normally reached around 12:00UTC, and
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Figure 8. Duration of the afternoon transition as a function of the

starting time of the sensible heat flux decay over several surfaces

and for all IOP days and sites (colours).

the AT lasts for about 6 h. Therefore, this figure shows how

variable the start and the duration of the AT can be accord-

ing to the vegetation coverage and the meteorological con-

ditions. It is one aim of BLLAST to further address the role

of the surface heterogeneity in the AT. The very early start

(around 10:00UTC) over some particular vegetation even re-

veals the difficulty to correctly name and define this period,

which, however, might remain quasi-steady for several hours

if the boundary layer is able to keep the equilibrium, in spite

of the decaying turbulent energy and change in the relative

contributions of the processes (buoyancy, shear, transport and

pressure forces).

Note that using buoyancy flux rather than sensible heat

flux for the definition of the AT period does not change sig-

nificantly the overall result (not shown). This is consistent

with the larger differences found in sensible heat flux than in

latent heat flux from one surface to the other (soil moisture

is not a constraint during BLLAST). When the period is de-

fined with buoyancy flux, the start time is delayed for 15min

on average and the time of zero flux is delayed for around

30min on average, with a longer delay during the hot period.

4.1.3 Classification of the diurnal evolution

of the PBL depth

The variety of forcings partly addressed in Sect. 2.2.3, in-

cluding local processes, radiative forcing, large-scale subsi-

dence and advection, etc., can lead to different PBL growth

and evolution, according to the day.

Figure 9. Evolution of the CBL top, defined here as height of the

top inversion Zi , for all IOPs. Zi is divided by its maximum value

reached the same day for day-to-day comparison, and has been

smoothed with a 1 h moving average. The estimates are made from

lidar backscatter at site 1, except for day 26 June when the UHF

radar estimates were used instead, due to missing data. One symbol

is used per IOP. Three sets of cases have been identified: (blue) rapid

growth and levelling inversion in late afternoon, (orange) more typ-

ical growth and levelling inversion and (green) slower growth and

rapidly decreasing top inversion in late afternoon.

Figure 9 shows the non-dimensional PBL growth of all

IOP days. The capping inversion of the convective boundary

layer estimated by UHF radar or lidar is normalized here by

the maximum height reached over the day. We found three

ensembles for the 12 cases: (1) frequent cases with interme-

diate growth rates and a slightly descending summit inver-

sion during the AT (15, 20, 24, 25, 30 June, 2 July); (2) cases

of rapid growth of the morning CBL, with levelling inversion

during the AT (14 June, 19 June and 1 July); (3) cases with

slow growth of the CBL during the morning and rapid de-

crease of the inversion during the AT (cases of 26 June, 27

June and 5 July). For the cases of the first “typical” class, the

growth of the CBL lasts around 4 h, while it lasts about 1 h

30min in the second class, and around 5 or 6 h in the third

class.

The evolution of the vertical structure observed in each of

the three classes defined above is shown in more detail in

Figs. 10 and 11, based on three examples. Figure 10 shows a

time–height cross section of the TKE dissipation rate that is

estimated from the UHF wind profiler Doppler spectral width

(Jacoby-Koaly et al., 2002) for 24 June, 1 July and 26 June,

which are examples of the above-mentioned (1), (2) and (3)

cases, respectively. The capping inversion is superimposed.

Figure 11 presents the vertical profiles of the potential tem-

perature obtained from a selection of radiosoundings (stan-

dard radiosoundings or afternoon frequent radiosoundings)

for the three same days. For the two first examples, Fig. 10

shows a separation during the AT between the top of the

mixed turbulent layer and the capping inversion. This is

also consistent with observations reported by Grimsdell and

Angevine (2002) and with Angevine (2008) stating that the

decaying turbulent layer gets decoupled from the inversion

as time goes by. We especially observe this for the typical
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Figure 10. Time-height section of TKE dissipation rate estimated from UHF wind profiler during (a) 24 June, (b) 1 July and (c) 26 June

2011. The evolution of the CBL top inversion (deduced from local maximum of the refractive index structure parameter) is indicated by the

black thick line.

Figure 11. Vertical profiles of potential temperature measured by radiosondes on (a) 24 June, (b) 1 July and (c) 26 June 2011. The launching

time is indicated in the top-left corner of each panel.

case (1) (Fig. 10a) and the rapid growth case (2) (Fig. 10b),

with a top-down decrease of the TKE dissipation rate that

starts between 14:00 and 16:00UTC without descent of the

inversion height. This can also be interpreted as a decrease of

the thickness of the turbulent layer as assessed by TKE dissi-

pation rate. A more rapid top-down decay of the dissipation

rate is observed between 16:00 and 18:00UTC. For the case

(3), a sharp decrease of the mixed turbulent layer is accom-

panied by a marked descent of the inversion in the first phase

of the AT.

The profiles in Fig. 11 show that for 1 July (Fig. 11b),

the rapid growth of the morning CBL is due to the presence

of a residual layer that remained close to neutral (as seen

for example by Freedman and Fitzjarrald, 2001). This resid-

ual layer is well seen in the profile of 07:20UTC, overlying

the current mixed layer of 200m depth. Once the mixing al-

lowed the potential temperature to reach that of the residual

layer above, the CBL deepened rapidly and integrated this

residual layer in the mixed layer, as seen at 11:00UTC. As

shown in Fig. 10b, this day had significant turbulence (with

also large TKE dissipation rates), and relatively deep CBL

(Fig. 7c). The frequent radiosoundings reveal the presence of

large-scale subsidence above the CBL top. Blay-Carreras et

al. (2014a) have studied this case in detail, and especially an-

alyzed the impact of the residual layer and of the presence

of subsidence in the evolution of the CBL. During the last

part of the AT, the CBL keeps warming until 18:00UTC with

a slight descent of the CBL top. At 18:00UTC, 1 h 40min
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before sunset, the profile is still very well mixed but just

beginning to stabilize. At 19:00UTC, the temperature has

decreased and the surface layer has started to stabilize.

The example of 26 June in Figs. 10c and 11c reveals a very

limited growth of the CBL that hot day, with very light tur-

bulence. Subsidence of warm air during this period made it

very difficult for the CBL to grow, with hardly any sensible

heat flux at the surface, small super-adiabatism, as well as

less shear at the CBL top than other days. The small tem-

perature jump at the top may reveal strong subsidence that

is confirmed by estimates from the forecast models. This is

found for the three days of case (3). The decay of TKE dissi-

pation rate is more synchronized with the descent of the CBL

top in the last part of the AT. Compared to 1 July, the stabi-

lization of the surface layer started earlier (at 17:00UTC), as

shown by the sounding in Fig. 11c.

The example of 24 June (Figs. 10a and 11a) for the more

typical case (1) presents several aspects similar to the 1 July,

but with a less rapid growth of the CBL and smaller TKE

dissipation rates. 25 June, in the same group (1), is studied in

detail by Piertersen et al. (2014) and found as an example of

“prototype” CBL.

This overview has shown the various types of boundary

layers that were probed during BLLAST.We have shown that

the second class of rapid growth cases corresponds to well-

mixed residual layers and a likely significant subsidence that

prevents further growing of the CBL after its rapid morn-

ing rise. We have also identified a period of hot subsiding

air mass, which lead to very small sensible heat flux and

large evaporative fraction, weak turbulence and poor CBL

growth, that corresponds to the third case. The stratification

of the early morning or night before is essential in the ob-

served evolution of the daytime CBL. The mesoscale forcing

and mountain-induced circulations also impact on the CBL

growth via subsidence or advection. For example, the large-

scale subsidence may show a diurnal cycle, as shown by pre-

vious studies (Whiteman, 1990) and confirmed by prelim-

inary analyses of BLLAST data set on this issue. Similar

results were found by Jiménez and Cuxart (2014a) based

on a mesoscale simulation in the northern Pyrénées under

similar conditions (at the end of June 2010). Several studies

have started to address those issues and take account of the

large-scale forcing in BLLAST (Blay-Carreras et al., 2013;

Pietersen et al., 2014).

The panel of various conditions shown in this subsection

allowed us to define several so-called “golden days” (like 1

July, 25 June and 20 June; see Blay-Carreras et al., 2014a;

Pietersen et al., 2014; Darbieu et al., 2014), which were se-

lected to evaluate or intercompare a complete hierarchy of

numerical models, i.e. forecast, mesoscale and large-eddy

simulation models (not addressed in this article – Jiménez et

al., 2014; Angevine et al., 2014; Jiménez and Cuxart, 2014b)

or use one or the other model for a better understanding of

specific key processes.

4.2 Turbulence decay

Turbulence decay is one of the main foci of the analyses of

BLLAST data. Here we give examples of this decay observed

at the surface and in the boundary layer above and illustrate

how BLLAST data set enables to address the questions raised

in Sect. 2.2.1.

Figure 12a presents the turbulent kinetic energy decay ob-

served from surface stations over five different surfaces and

from aircraft, on all IOP days. RPASs and the turbulence

probe carried by the tethered balloon at site 1 also measured

turbulence at heights that are complementary to those probed

by the aircraft and by the instrumented towers (not shown).

The BLLAST data set therefore provides a diverse combina-

tion of estimates for the study of turbulence decay.

Figure 12a shows the two regimes of the decay that were

presented by Nadeau et al. (2011): an initial slow decay

(starting around 15:00UTC in Fig. 12a) followed by an

abrupt decay (after 17:00UTC). Based on this gradual af-

ternoon decay, one can see the interest of considering the en-

tire AT (which may start very early as seen before), when

studying the AT TKE decay, in order to start from the initial

conditions of a fully convective and mixed boundary layer.

The change from a slow to a more abrupt decay is generally

found when the surface flux decrease rate is maximum. Note

that the increase of TKE seen with surface measurements at

the evening transition for some cases is due to the onset of

the downslope wind after the mountain–plain circulation has

reversed. Also note that the change of TKE with height is put

into evidence by the different flight levels and surface mea-

surements, with larger TKE closer to the interfaces (surface

and CBL top) than in the middle of the CBL.

The decay in Fig. 12a is purposely shown with no scaling.

The usual representation of the decay consists in a logarith-

mic diagram of the turbulence kinetic energy integrated over

height (for LES studies especially) or observed at surface, di-

vided by the square of the convective velocity scale at the ini-

tial time (midday) before the decay. Time is also normalized

by the midday convective timescale in those previous studies

(e.g. Sorbjan, 1997; Nadeau et al., 2011), that is there is no

effective normalization by a scaling factor that would evolve

with time as the surface flux decreases. Using this usual tech-

nique with our data set actually increase the scatter of the

results, especially due to the contribution of the timescaling.

However, we show in Fig. 12b the surface TKE normalized

by either the convective velocity scale w∗, taking account

that w∗ varies with time or the convective velocity scale w∗0

taken at the time of the maximum buoyancy flux. Figure 12b

shows that at surface, TKE/w∗ remains relatively constant

until 15:00UTC, revealing quasi-steadiness until that time in

the surface layer. After 15:00UTC, the decrease of the nor-

malized TKE points out that the scaling laws may not be ap-

propriate anymore or the quasi-steadiness put into question.

Later on, such a scaling becomes ill-defined at the time of

zero-buoyancy flux.
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Figure 12. (a) Evolution of TKE decay observed during all IOP

days (shaded area) over five different surfaces and (symbols) from

the legs flown by the Piper Aztec and Sky Arrow aircraft. Note that

a logarithmic scale is used on both axes. The shaded area represents

the quartiles from 25 to 75% of surface estimates. The symbols

for the airplane legs differ according to altitude (see inserted leg-

end). (b) Evolution of reduced TKE over the afternoon for all IOP

days over five different surfaces. Like in (a), the shaded area repre-

sents the quartiles from 25 to 75% of surface estimates. The dark

grey shaded area corresponds to TKE/w∗, and the light grey shaded

area corresponds to TKE/w∗0 , wherew∗0 , is the convective velocity

scale at the time of maximum buoyancy flux.

The TKE decay process occurs throughout the whole

depth of the boundary layer during the AT as seen in Fig. 12a.

This general decay is consistent with the results of Nadeau

et al. (2011) who were able to model the decay observed in

the surface layer with a model that included mixed-layer pa-

rameters, rather than surface-based parameterization; it also

supports the normalization proposed by van Driel and Jonker

(2011).

However, a further combined observations-LES analysis

of the time delay of the TKE decay according to the height

should give clues about the way this decay propagates with

height and on the evolution of forcings throughout the AT.

Figure 13. Time evolution of (a) the vertical wind integral scales

and (b) the ratio of the integral scales to the wavelength of maxi-

mum spectral energy during all IOP days. The shaded area repre-

sents the quartiles from 25 to 75% of ground-level estimates over

four different surfaces and the symbols are used for legs flown at

various heights by the Piper Aztec aircraft (see inserted legend).

With the decrease of the surface fluxes and therefore the

buoyancy, a decoupling might appear between the lower part

of the still well-mixed CBL and the upper part, within which

the TKE starts to decrease, as suggested by the remote-

sensing observations shown in Fig. 10. This is further ad-

dressed by Darbieu et al. (2014) on a BLLAST case study.

However, this is without considering strong shear and en-

trainment at the CBL top which might be able to partly main-

tain the TKE, increasing the relative contribution of the trans-

port term in the TKE budget, as underlined by Grant (1997).

Preliminary analysis of the decay observed as a function of

the synoptic conditions reveals the role that wind shear might

play in delaying the abrupt decay phase (not shown), which

supports the results found by Pino et al. (2006) with LES

and by Goulart et al. (2010) with a theoretical model. The di-

versity of the conditions observed during BLLAST, together

with measurements at different heights during the AT, will

allow a sensitivity analysis of the TKE decay with respect to
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the various forcing influences. Further analysis of BLLAST

data set should also allow us to determine for how long the

CBL remains quasi-steady in its whole depth, and whether

unsteadiness and departure from usual scaling occur simul-

taneously with the decoupling of the upper and lower part of

the CBL.

4.3 Evolution of integral scales

The BLLAST experiment can bring new insight on the tur-

bulence scale evolution during the AT and ET by combining

in situ measurements in the surface layer (from 2 to 60m),

in situ high frequency measurements under tethered balloon

at around 300m height, a succession of aircraft flights from

noon to sunset in the whole mixed layer and Doppler lidar

vertical profiles of the vertical velocity.

Figure 13a shows the evolution of the integral scale Lw

of the vertical wind during all IOPs, based on the Piper

Aztec flights and on surface measurements. The integral

scale, which gives a characteristic eddy size, is estimated by

integrating the vertical wind autocorrelation function from

zero lag to the lag at which it drops to zero (Lenschow

and Stankov, 1986). Another scale is the wavelength of the

maximum spectral energy, which is estimated by fitting the

observed spectra with a simple analytical model of type

S(n) ∝
1

1+ 32

(

n
n0

)5/3 , where S is the spectral energy density,

n is the frequency and n0 is the frequency of maximum en-

ergy. As expected, the integral scale increases with height: it

is lower than 10m near the surface and larger than 100m in

the mixed layer. Close to the surface, the integral scale de-

creases after 14:30UTC, whereas it increases in the mixed

layer slightly after 17:00UTC. That is it varies little for a

long part of the AT. This result partly agrees with Nieuw-

stadt and Brost (1986) or Pino et al. (2006) who pointed out

a quite constant turbulence length scale of vertical velocity

during the AT, whereas the later sharper increase of the scale

that we observe rather agrees with Grant (1997). However,

it is important to note that the definitions of the turbulence

length scale may differ from one study to the other, even if

they should be proportional during convective conditions.

This is further illustrated in Fig. 13b, which shows the evo-

lution of the ratio of the integral scale to the wavelength λw
of the maximum spectral energy of the vertical velocity dur-

ing all IOPs, based on the Piper Aztec flights and on surface

measurements. This is an interesting way to normalize the in-

tegral scale, as it does not depend on Zi , which becomes am-

biguous when the turbulent mixed layer and the top inversion

have decoupled. During midday, we find a ratio of about 0.35

at surface and about 0.15 within the above CBL, in agree-

ment with Lenschow and Stankov (1986) (see the profile in

their Fig. 6). Interestingly, this ratio remains constant until

16:30 or 17:00UTC, that is until the more abrupt phase of the

TKE decay. At this time, it decreases with time at the surface

imposed by a slower change in the integral scales than in the

wavelength of the maximum spectral energy, and it increases

above, in relation with a faster change in the integral scales

than in the wavelength of the maximum spectral energy.

This raises the question of the possible decoupling with

height of the turbulence processes during the AT, which is

addressed by Darbieu et al. (2014) who also study the evolu-

tion of the turbulence structure based on a spectral analysis

of both LES and observations.

5 Conclusions

One of the main strengths of BLLAST project and field cam-

paign is its focus on a well-defined issue: turbulence decay

during the afternoon over land. Added to this, the large col-

laborative efforts that enabled assembling almost all the ob-

servational platforms that are useful for probing the PBL, as

well as a complete hierarchy of modelling tools have resulted

in a rich data set for the study of the changing characteristics

of turbulence during the AT and ET, throughout 12 IOP days.

The field campaign took place in an environment of complex

and heterogeneous terrain, which is both a challenge and an

opportunity to link the AT and ET processes with mountain–

plain flow reversal and surface heterogeneity.

The combination of manned and unmanned aircraft, to-

gether with numerous remote-sensing systems and in situ

techniques, each one with different capabilities, enable the

interested community to (i) test and validate new sensors and

techniques, (ii) gain a critical insight into (old and new) tech-

niques through redundancy and (iii) participate in the process

studies of the AT and ET.

In particular, the frequent soundings of the atmosphere,

with various techniques, have yielded a detailed description

of the rapid evolution of the vertical structure of the lower

troposphere. The numerous and complementary in situ and

remote-sensing observations of turbulence give an unprece-

dented exploration of turbulence decay during the AT, and

should enable us to make another step forward in the un-

derstanding and modelling of this process. Our preliminary

analyses indicate that, in a broad sense, the decay of TKE

within the surface layer behaves quite similarly to that in the

CBL and residual layer above, although the decay of dissipa-

tion rate is often first observed in the upper part of the CBL.

The turbulence integral scale highlights a more visible differ-

ence between the near-surface layer and above with opposite

trends in time: a decrease of the turbulence scale near the sur-

face and an increase above in late afternoon. The CBL seems

to remain in quasi-steady state in the first part of the after-

noon; although, during the second phase of the AT which one

may call the “late afternoon transition”, the turbulence struc-

ture starts to change and depart from the Deardorff scaling.

Further analysis should allow us to relate the loss of quasi-

steadiness and validity of the usual scaling with the potential

decoupling between the upper and lower part of the CBL,

and with a change in TKE budget contributions.

Atmos. Chem. Phys., 14, 10931–10960, 2014 www.atmos-chem-phys.net/14/10931/2014/



M. Lothon et al.: The BLLAST field experiment 10951

Closely integrated with the field experiment, numerical

studies are currently underway with complementary types of

models that enable us to further interpret the observations

and test our hypotheses. Some of the numerical modelling

and simulation activities include (1) using forecast models

(tested with BLLAST data set in Couvreux et al., 2014) and

mesoscale research models (Angevine et al., 2014; Jiménez

et al., 2014; Jiménez and Cuxart 2014a, b; Sastre et al., 2014)

to aid in understanding the large-scale circulation and forc-

ing within which the CBL develops, and for developing and

testing parameterizations of the CBL; (2) using mixed-layer

models for understanding basic process interactions and con-

ceptualization of the questions raised (Pietersen et al., 2014;

Blay-Carreras et al., 2014a); (3) using LES, which are able to

resolve eddies down to a few meters (Pietersen et al., 2014;

Darbieu et al., 2014; Blay-Carreras et al., 2014a), for bet-

ter understanding the turbulence processes that we observe.

Those three aspects should also help us to better understand

the potential difficulties presented by the AT for forecast or

research models. BLLAST will thus contribute to the design

of advanced high-resolution numerical simulations, by pro-

viding complementary data and allowing both more realistic

simulations and a means to evaluate them.
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Appendix A

Table A1. Surface stations deployed during BLLAST: altitude, characteristics of the vegetation and measurements heights. The instruments

used over each station are given in Table A2.

Site Land use Station height Instrumentation levels

(m a.s.l.) (m a.g.l.)

ss1

Wheat, rhye and peas 582 0.5 to 5.8

Grass 581 0.5 to 5.8

Wheat/grass edge 581 1 to 2.89

ss2 Grass 591± 5 0.1 to 8.22

ss3 Grass shrubs 601 0 to 9

ss4 Mixed (60 m tower) 602 2, 15, 30, 45, 60

ss5 Douglas Fir (20–25 m height) 620 21.8 to 31.5

ss6 Corn (0.4–1.5 m height) 645± 5 6

ss7 Moor 641± 3 2
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Table A2. List of the variables measured at the surface sites (first column), instruments used (second column) and their acquisition frequency

(third column). The abbreviation for the measured variables are T : temperature, WS: wind speed, WD: wind direction, H2O: humidity, CO2:

carbon dioxide concentration, P: pressure, Rad: radiative budget terms, ST: soil temperature, SM: soil moisture, G: ground heat flux. For

each surface station, the number of specific instruments installed is indicated (columns 4 to 12). Note that the lines in italic correspond to

high frequency instruments.

Instrument Acq. Freq. (Hz) ss1 ss2 ss3 ss4 ss5 ss6 ss7

wheat grass edge corn moor

T , H2O Campbell HMP45 0.1 5 1 1 1

T Campbell Thermocouple ASP TC 0.016 1

T , H2O Psychrometer 0.1 5 5

H2O Atexis PT1000 classe A 0.016 1 1

T Campbell Thermocouple E-TYPE FW05 20 9

WS Vector Instrument A100LK 0.016 3

WD VectorInstrument W200P 0.016 3

WS Cup anemometer 0.1 5 5 1

WD Vane 0.1 1 1 1

WS, WD Young 05103 0.016 1 1 1

T, WS, WD Campbell–scientific-CSAT-sonic-anemo 10–20 1 1 1 4 1 2 2

WS, WD Kaio Denki 10–20 2

T, WS, WD Gill master pro sonic anemometer 10 1 1 1

WD USA-1 sonic 20 1

H2O, CO2 Licor 7500A CO2/H2O analyzer 10 1 1 1 1 1 1 1

H2O Campbell KH20 hygrometer 10 1

P Vaisala PTB210 1 1 1 1

P Vaisala PTB100a 1 1 1 1

P Paroscientific microbarometers 2 3

Rad CNR1 Kipp & Zonen 1 1 1 1 1 1 1 1

Rad Hukseflux IR02 radiometers 0.1 6

Rain Rain gauge ARG100 0.1 1

Rain SPIEA raingauge 0.016 1 1 1

ST Custom-built Pt100 0.1 5 5 1 1

ST Atexis PT 1000 Classe A 0.016 1 1

SM Delta Devices THETA PROBE ML2X 0.001 1 1 1 30 1 1

G Hukseflux HFP01 0.1 1 1 2 3 3 3
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Table A3. Instrumentation of the Piper Aztec aircraft.

Parameters Instruments Accuracy Acquisition/computation

frequency

Position (lat., long. and alt.) GPS+ Inertial Navigation System 5m 1Hz

3-D ground speed (IXSEA AIRINS) 0.03m s−1 100Hz

Height above the ground Radar altimeter till 2500 ft 50m 1Hz

Attitude angles (roll, pitch & IXSEA AIRINS 0.005◦, 0.02◦ 100Hz

true heading) for heading

Horizontal wind Gust probe+ IXSEA AIRINS 2m s−1 25Hz

3-D turbulent wind 0.01m s−1

Static pressure Rosemount 1221 0.2 hPa 200Hz

Temperature Rosemount 102E2 thermometer 0.5 ◦C 200Hz

Relative humidity capacitive sensor (CORECI Humicor 5000) ≤ 5% 50Hz

Dew point temperature Buck Research 1011B ±0.5 ◦C 25Hz

H2O concentration (fluctuation) Licor 7500 open-path gaz analyser 0.003 g kg−1 10Hz

CO2 concentration (fluctuation) 0.1 ppb 10Hz

Table A4. Instrumentation of the Sky Arrow aircraft.

Parameters Instruments Accuracy Acquisition

frequency

Position (lat, long and alt) GPS (Novatel RT 20, single freq.) extended to 10 cm accuracy 10Hz

3-D ground speed 50Hz with probe accelerometers ±1 cm s−1 accuracy 10Hz

Attitude angles (pitch,

roll & true heading)

Systron Donner C-MIGITS III GPS-INS ex-

tended to 50Hz with differential accelerometers

±0.05◦ (Pitch, Roll) ±0.08◦

(Heading)

50Hz

3-D wind (mean and

turbulence)

Best aircraft turbulence (BAT) probe Turbulence acc. ±2 cm s−1

mean wind acc. ±0.5m s−1
50Hz

Humidity (abs. Humidity

and dew point)

EdgeTech Model 200 Chilled Mirror ±0.5 ◦C 50Hz

Temperature Reference thermistor (mod YSI 4400) coupled

to fast response thermocouple

±0.2 ◦C 50Hz

Surface temperature Everest 4000.4GL infrared radiometer 15◦ viewing angle, 8–14 µm,

±0.5 ◦C accuracy

50Hz

Radiation PAR up and down-welling (mod. Licor LI190) ±5% 50Hz

REBS Q*7 net radiometer

CO2 concentration Licor 7500 open-path gas analyzer 1% 50Hz

H2O concentration Licor 7500 open-path gas analyzer 2% 50Hz
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Table A5. RPAS which participated in the BLLAST field experiment. RPAS Weight, cruise velocity and measured variables are indicated.

T , q, LST, Imagery, rad. and elec. stand for air temperature (◦C), specific humidity (g kg−1), land surface temperature (◦C), downward

short-wave radiation (W m−2), and electric charges, respectively. Note that the RPAS Syrius Busca, Funjet1 and Funjet2 do not appear in

Table 2, as they did not fly during IOP days.

Airframe Reference Weight Acquisition frequency (Hz) of the measured variables

Cruise velocity

T and q 3-D wind LST imagery rad. elec.

SUMO Reuder et al. (2012b) 0.6 kg 2 100 2 10 10

Nicoll and Harrison (2012) 54 kmh−1

MASC Van den Kroonenberg 5 kg 100 100

et al. (2012) 90 kmh−1

M2AV Martin et al. (2011) 6 kg 100 100

80 kmh−1

Octo-copter 1.7 kg 50 50

18 kmh−1

Sirius I 2.7 kg 8 8 About 0.5–1∗

65 kmh−1

BUSCA 1.6 kg 2

60 kmh−1

Funjet1 0.7 kg 2

Funjet2 54 kmh−1

∗ Triggered by autopilot to ensure 85% image overlap.
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