000189739 001__ 189739
000189739 005__ 20210129215428.0
000189739 0247_ $$2doi$$a10.1016/j.nicl.2015.01.006
000189739 0247_ $$2Handle$$a2128/8536
000189739 0247_ $$2WOS$$aWOS:000373172600047
000189739 0247_ $$2altmetric$$aaltmetric:3743778
000189739 0247_ $$2pmid$$apmid:25685709
000189739 037__ $$aFZJ-2015-02771
000189739 082__ $$a610
000189739 1001_ $$0P:(DE-HGF)0$$aWeiss, Carolin$$b0$$eCorresponding Author
000189739 245__ $$aImproved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule
000189739 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2015
000189739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1429766673_3348
000189739 3367_ $$2DataCite$$aOutput Types/Journal article
000189739 3367_ $$00$$2EndNote$$aJournal Article
000189739 3367_ $$2BibTeX$$aARTICLE
000189739 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189739 3367_ $$2DRIVER$$aarticle
000189739 520__ $$aImaging of the course of the corticospinal tract (CST) by diffusion tensor imaging (DTI) is useful for function-preserving tumour surgery. The integration of functional localizer data into tracking algorithms offers to establish a direct structure–function relationship in DTI data. However, alterations of MRI signals in and adjacent to brain tumours often lead to spurious tracking results. We here compared the impact of subcortical seed regions placed at different positions and the influences of the somatotopic location of the cortical seed and clinical co-factors on fibre tracking plausibility in brain tumour patients.The CST of 32 patients with intracranial tumours was investigated by means of deterministic DTI and neuronavigated transcranial magnetic stimulation (nTMS). The cortical seeds were defined by the nTMS hot spots of the primary motor area (M1) of the hand, the foot and the tongue representation. The CST originating from the contralesional M1 hand area was mapped as intra-individual reference. As subcortical region of interests (ROI), we used the posterior limb of the internal capsule (PLIC) and/or the anterior inferior pontine region (aiP). The plausibility of the fibre trajectories was assessed by a-priori defined anatomical criteria. The following potential co-factors were analysed: Karnofsky Performance Scale (KPS), resting motor threshold (RMT), T1-CE tumour volume, T2 oedema volume, presence of oedema within the PLIC, the fractional anisotropy threshold (FAT) to elicit a minimum amount of fibres and the minimal fibre length.The results showed a higher proportion of plausible fibre tracts for the aiP-ROI compared to the PLIC-ROI. Low FAT values and the presence of peritumoural oedema within the PLIC led to less plausible fibre tracking results. Most plausible results were obtained when the FAT ranged above a cut-off of 0.105. In addition, there was a strong effect of somatotopic location of the seed ROI; best plausibility was obtained for the contralateral hand CST (100%), followed by the ipsilesional hand CST (>95%), the ipsilesional foot (>85%) and tongue (>75%) CST. In summary, we found that the aiP-ROI yielded better tracking results compared to the IC-ROI when using deterministic CST tractography in brain tumour patients, especially when the M1 hand area was tracked. In case of FAT values lower than 0.10, the result of the respective CST tractography should be interpreted with caution with respect to spurious tracking results. Moreover, the presence of oedema within the internal capsule should be considered a negative predictor for plausible CST tracking.
000189739 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000189739 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189739 7001_ $$0P:(DE-HGF)0$$aTursunova, Irada$$b1
000189739 7001_ $$0P:(DE-HGF)0$$aNeuschmelting, Volker$$b2
000189739 7001_ $$0P:(DE-HGF)0$$aLockau, Hannah$$b3
000189739 7001_ $$0P:(DE-Juel1)165785$$aNettekoven, Charlotte$$b4
000189739 7001_ $$0P:(DE-Juel1)131782$$aOros-Peusquens, Ana-Maria$$b5
000189739 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b6
000189739 7001_ $$0P:(DE-HGF)0$$aRehme, Anne K.$$b7
000189739 7001_ $$0P:(DE-HGF)0$$aFaymonville, Andrea Maria$$b8
000189739 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b9
000189739 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl Josef$$b10
000189739 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b11
000189739 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b12
000189739 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2015.01.006$$gVol. 7, p. 424 - 437$$p424 - 437$$tNeuroImage: Clinical$$v7$$x2213-1582$$y2015
000189739 8564_ $$uhttps://juser.fz-juelich.de/record/189739/files/1-s2.0-S2213158215000078-main.pdf$$yOpenAccess
000189739 8564_ $$uhttps://juser.fz-juelich.de/record/189739/files/1-s2.0-S2213158215000078-main.gif?subformat=icon$$xicon$$yOpenAccess
000189739 8564_ $$uhttps://juser.fz-juelich.de/record/189739/files/1-s2.0-S2213158215000078-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000189739 8564_ $$uhttps://juser.fz-juelich.de/record/189739/files/1-s2.0-S2213158215000078-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000189739 8564_ $$uhttps://juser.fz-juelich.de/record/189739/files/1-s2.0-S2213158215000078-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000189739 8564_ $$uhttps://juser.fz-juelich.de/record/189739/files/1-s2.0-S2213158215000078-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189739 8564_ $$uhttps://juser.fz-juelich.de/record/189739/files/1-s2.0-S2213158215000078-main.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000189739 909CO $$ooai:juser.fz-juelich.de:189739$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000189739 915__ $$0LIC:(DE-HGF)CCBYNCND3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
000189739 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189739 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000189739 9141_ $$y2015
000189739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165785$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000189739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131782$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000189739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000189739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000189739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000189739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000189739 9130_ $$0G:(DE-HGF)POF2-332$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vImaging the Living Brain$$x0
000189739 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000189739 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000189739 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
000189739 980__ $$ajournal
000189739 980__ $$aVDB
000189739 980__ $$aUNRESTRICTED
000189739 980__ $$aFullTexts
000189739 980__ $$aI:(DE-Juel1)INM-4-20090406
000189739 980__ $$aI:(DE-Juel1)INM-3-20090406
000189739 9801_ $$aFullTexts
000189739 981__ $$aI:(DE-Juel1)INM-3-20090406