000189741 001__ 189741
000189741 005__ 20210129215428.0
000189741 0247_ $$2doi$$a10.1016/j.jmr.2015.03.003
000189741 0247_ $$2ISSN$$a0022-2364
000189741 0247_ $$2ISSN$$a1090-7807
000189741 0247_ $$2ISSN$$a1096-0856
000189741 0247_ $$2ISSN$$a1557-8968
000189741 0247_ $$2WOS$$aWOS:000355071100015
000189741 037__ $$aFZJ-2015-02773
000189741 082__ $$a550
000189741 1001_ $$0P:(DE-HGF)0$$aMaximov, Ivan I.$$b0$$eCorresponding Author
000189741 245__ $$aReal-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods
000189741 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000189741 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1429767112_1892
000189741 3367_ $$2DataCite$$aOutput Types/Journal article
000189741 3367_ $$00$$2EndNote$$aJournal Article
000189741 3367_ $$2BibTeX$$aARTICLE
000189741 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189741 3367_ $$2DRIVER$$aarticle
000189741 520__ $$aThere is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy.The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.
000189741 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000189741 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189741 7001_ $$0P:(DE-HGF)0$$aVinding, Mads S.$$b1
000189741 7001_ $$0P:(DE-HGF)0$$aTse, Desmond H. Y.$$b2
000189741 7001_ $$0P:(DE-HGF)0$$aNielsen, Niels Chr.$$b3
000189741 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b4$$ufzj
000189741 773__ $$0PERI:(DE-600)1469665-4$$a10.1016/j.jmr.2015.03.003$$gVol. 254, p. 110 - 120$$p110 - 120$$tJournal of magnetic resonance$$v254$$x1090-7807$$y2015
000189741 8564_ $$uhttps://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.pdf$$yRestricted
000189741 8564_ $$uhttps://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.gif?subformat=icon$$xicon$$yRestricted
000189741 8564_ $$uhttps://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000189741 8564_ $$uhttps://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000189741 8564_ $$uhttps://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000189741 8564_ $$uhttps://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189741 909CO $$ooai:juser.fz-juelich.de:189741$$pVDB
000189741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000189741 9130_ $$0G:(DE-HGF)POF2-332$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vImaging the Living Brain$$x0
000189741 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000189741 9141_ $$y2015
000189741 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189741 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189741 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189741 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189741 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189741 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189741 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189741 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000189741 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000189741 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189741 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000189741 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000189741 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000189741 980__ $$ajournal
000189741 980__ $$aVDB
000189741 980__ $$aI:(DE-Juel1)INM-4-20090406
000189741 980__ $$aI:(DE-82)080010_20140620
000189741 980__ $$aUNRESTRICTED