Home > Publications database > Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods > print |
001 | 189741 | ||
005 | 20210129215428.0 | ||
024 | 7 | _ | |a 10.1016/j.jmr.2015.03.003 |2 doi |
024 | 7 | _ | |a 0022-2364 |2 ISSN |
024 | 7 | _ | |a 1090-7807 |2 ISSN |
024 | 7 | _ | |a 1096-0856 |2 ISSN |
024 | 7 | _ | |a 1557-8968 |2 ISSN |
024 | 7 | _ | |a WOS:000355071100015 |2 WOS |
037 | _ | _ | |a FZJ-2015-02773 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Maximov, Ivan I. |0 P:(DE-HGF)0 |b 0 |e Corresponding Author |
245 | _ | _ | |a Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods |
260 | _ | _ | |a Amsterdam [u.a.] |c 2015 |b Elsevier |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1429767112_1892 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy.The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. |
536 | _ | _ | |a 573 - Neuroimaging (POF3-573) |0 G:(DE-HGF)POF3-573 |c POF3-573 |x 0 |f POF III |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Vinding, Mads S. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Tse, Desmond H. Y. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Nielsen, Niels Chr. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 4 |u fzj |
773 | _ | _ | |a 10.1016/j.jmr.2015.03.003 |g Vol. 254, p. 110 - 120 |0 PERI:(DE-600)1469665-4 |p 110 - 120 |t Journal of magnetic resonance |v 254 |y 2015 |x 1090-7807 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/189741/files/1-s2.0-S1090780715000658-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:189741 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131794 |
913 | 0 | _ | |a DE-HGF |b Gesundheit |l Funktion und Dysfunktion des Nervensystems |1 G:(DE-HGF)POF2-330 |0 G:(DE-HGF)POF2-332 |2 G:(DE-HGF)POF2-300 |v Imaging the Living Brain |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |2 G:(DE-HGF)POF3-500 |v Neuroimaging |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-82)080010_20140620 |k JARA-BRAIN |l JARA-BRAIN |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-82)080010_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|