001     189748
005     20240712101029.0
024 7 _ |a 10.5194/acp-15-1289-2015
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/8538
|2 Handle
024 7 _ |a WOS:000349799500010
|2 WOS
037 _ _ |a FZJ-2015-02780
082 _ _ |a 550
100 1 _ |a Kaiser, J.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production
260 _ _ |a Katlenburg-Lindau
|c 2015
|b EGU
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1429770989_1332
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Ozone concentrations in the Po Valley of northern Italy often exceed international regulations. As both a source of radicals and an intermediate in the oxidation of most volatile organic compounds (VOCs), formaldehyde (HCHO) is a useful tracer for the oxidative processing of hydrocarbons that leads to ozone production. We investigate the sources of HCHO in the Po Valley using vertical profile measurements acquired from the airship Zeppelin NT over an agricultural region during the PEGASOS 2012 campaign. Using a 1-D model, the total VOC oxidation rate is examined and discussed in the context of formaldehyde and ozone production in the early morning. While model and measurement discrepancies in OH reactivity are small (on average 3.4 ± 13%), HCHO concentrations are underestimated by as much as 1.5 ppb (45%) in the convective mixed layer. A similar underestimate in HCHO was seen in the 2002–2003 FORMAT Po Valley measurements, though the additional source of HCHO was not identified. Oxidation of unmeasured VOC precursors cannot explain the missing HCHO source, as measured OH reactivity is explained by measured VOCs and their calculated oxidation products. We conclude that local direct emissions from agricultural land are the most likely source of missing HCHO. Model calculations demonstrate that radicals from degradation of this non-photochemical HCHO source increase model ozone production rates by as much as 0.6 ppb h−1 (12%) before noon.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|x 0
|f POF III
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Wolfe, G. M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bohn, B.
|0 P:(DE-Juel1)2693
|b 2
|u fzj
700 1 _ |a Broch, S.
|0 P:(DE-Juel1)7591
|b 3
|u fzj
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 4
|u fzj
700 1 _ |a Ganzeveld, L. N.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gomm, Sebastian
|0 P:(DE-Juel1)8954
|b 6
|u fzj
700 1 _ |a Häseler, R.
|0 P:(DE-Juel1)5628
|b 7
|u fzj
700 1 _ |a Hofzumahaus, A.
|0 P:(DE-Juel1)16326
|b 8
|u fzj
700 1 _ |a Holland, F.
|0 P:(DE-Juel1)16342
|b 9
|u fzj
700 1 _ |a Jäger, Julia
|0 P:(DE-Juel1)8740
|b 10
700 1 _ |a Li, Xin
|0 P:(DE-Juel1)6775
|b 11
|u fzj
700 1 _ |a Lohse, I.
|0 P:(DE-Juel1)136668
|b 12
|u fzj
700 1 _ |a Lu, K.
|0 P:(DE-Juel1)6776
|b 13
700 1 _ |a Prévôt, A. S. H.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Rohrer, F.
|0 P:(DE-Juel1)16347
|b 15
|u fzj
700 1 _ |a Wegener, R.
|0 P:(DE-Juel1)2367
|b 16
|u fzj
700 1 _ |a Wolf, R.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Mentel, T. F.
|0 P:(DE-Juel1)16346
|b 18
|u fzj
700 1 _ |a Kiendler-Scharr, A.
|0 P:(DE-Juel1)4528
|b 19
|u fzj
700 1 _ |a Wahner, A.
|0 P:(DE-Juel1)16324
|b 20
|u fzj
700 1 _ |a Keutsch, F. N.
|0 P:(DE-HGF)0
|b 21
|e Corresponding Author
773 _ _ |a 10.5194/acp-15-1289-2015
|g Vol. 15, no. 3, p. 1289 - 1298
|0 PERI:(DE-600)2069847-1
|n 3
|p 1289 - 1298
|t Atmospheric chemistry and physics
|v 15
|y 2015
|x 1680-7324
856 4 _ |u www.atmos-chem-phys.net/15/1289/2015/
856 4 _ |u https://juser.fz-juelich.de/record/189748/files/acp-15-1289-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189748/files/acp-15-1289-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189748/files/acp-15-1289-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189748/files/acp-15-1289-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189748/files/acp-15-1289-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189748/files/acp-15-1289-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189748/files/acp-15-1289-2015.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:189748
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)2693
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)7591
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)8954
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)5628
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)16342
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)6775
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)136668
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)2367
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)16346
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)4528
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)16324
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-233
|2 G:(DE-HGF)POF2-200
|v Trace gas and aerosol processes in the troposphere
|x 0
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21