001     189755
005     20210129215430.0
024 7 _ |a 10.1103/PhysRevX.4.041019
|2 doi
024 7 _ |a 2128/8549
|2 Handle
024 7 _ |a WOS:000347012200001
|2 WOS
024 7 _ |a altmetric:2062342
|2 altmetric
037 _ _ |a FZJ-2015-02785
082 _ _ |a 530
100 1 _ |a Couto, Nuno J. G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices
260 _ _ |a College Park, Md.
|c 2014
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1430230767_26982
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We perform systematic investigations of transport through graphene on hexagonal boron nitride (hBN) substrates, together with confocal Raman measurements and a targeted theoretical analysis, to identify the dominant source of disorder in this system. Low-temperature transport measurements on many devices reveal a clear correlation between the carrier mobility μ and the width n of the resistance peak around charge neutrality, demonstrating that charge scattering and density inhomogeneities originate from the same microscopic mechanism. The study of weak localization unambiguously shows that this mechanism is associated with a long-ranged disorder potential and provides clear indications that random pseudomagnetic fields due to strain are the dominant scattering source. Spatially resolved Raman spectroscopy measurements confirm the role of local strain fluctuations, since the linewidth of the Raman 2D peak—containing information of local strain fluctuations present in graphene—correlates with the value of maximum observed mobility. The importance of strain is corroborated by a theoretical analysis of the relation between μ and n that shows how local strain fluctuations reproduce the experimental data at a quantitative level, with n being determined by the scalar deformation potential and μ by the random pseudomagnetic field (consistently with the conclusion drawn from the analysis of weak localization). Throughout our study, we compare the behavior of devices on hBN substrates to that of devices on SiO2 and SrTiO3, and find that all conclusions drawn for the case of hBN are compatible with the observations made on these other materials. These observations suggest that random strain fluctuations are the dominant source of disorder for high-quality graphene on many different substrates, and not only on hexagonal boron nitride.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Costanzo, Davide
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Engels, Stephan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ki, Dong-Keun
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Watanabe, Kenji
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Taniguchi, Takashi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)142024
|b 6
700 1 _ |a Guinea, Francisco
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Morpurgo, Alberto F.
|0 P:(DE-HGF)0
|b 8
|e Corresponding Author
773 _ _ |a 10.1103/PhysRevX.4.041019
|g Vol. 4, no. 4, p. 041019
|0 PERI:(DE-600)2622565-7
|n 4
|p 041019
|t Physical review / X
|v 4
|y 2014
|x 2160-3308
856 4 _ |u http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.041019
856 4 _ |u https://juser.fz-juelich.de/record/189755/files/PhysRevX.4.041019.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189755/files/PhysRevX.4.041019.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189755/files/PhysRevX.4.041019.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189755/files/PhysRevX.4.041019.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189755/files/PhysRevX.4.041019.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189755/files/PhysRevX.4.041019.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189755/files/PhysRevX.4.041019.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:189755
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21