001     189760
005     20210129215431.0
024 7 _ |a 10.1103/PhysRevLett.113.126801
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 2128/8550
|2 Handle
024 7 _ |a WOS:000344244200004
|2 WOS
024 7 _ |a altmetric:2168511
|2 altmetric
037 _ _ |a FZJ-2015-02790
082 _ _ |a 550
100 1 _ |a Engels, S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Limitations to Carrier Mobility and Phase-Coherent Transport in Bilayer Graphene
260 _ _ |a College Park, Md.
|c 2014
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1430231242_26974
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We present transport measurements on high-mobility bilayer graphene fully encapsulated in hexagonal boron nitride. We show two terminal quantum Hall effect measurements which exhibit full symmetry broken Landau levels at low magnetic fields. From weak localization measurements, we extract gate-tunable phase-coherence times τϕ as well as the inter- and intravalley scattering times τi and τ∗, respectively. While τϕ is in qualitative agreement with an electron-electron interaction-mediated dephasing mechanism, electron spin-flip scattering processes are limiting τϕ at low temperatures. The analysis of τi and τ∗ points to local strain fluctuation as the most probable mechanism for limiting the mobility in high-quality bilayer graphene.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Terrés, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Epping, A.
|0 P:(DE-Juel1)145909
|b 2
700 1 _ |a Khodkov, T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Watanabe, K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Taniguchi, T.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Beschoten, B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stampfer, C.
|0 P:(DE-HGF)0
|b 7
|e Corresponding Author
773 _ _ |a 10.1103/PhysRevLett.113.126801
|g Vol. 113, no. 12, p. 126801
|0 PERI:(DE-600)1472655-5
|n 12
|p 126801
|t Physical review letters
|v 113
|y 2014
|x 1079-7114
856 4 _ |u http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.126801
856 4 _ |u https://juser.fz-juelich.de/record/189760/files/PhysRevLett.113.126801.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189760/files/PhysRevLett.113.126801.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189760/files/PhysRevLett.113.126801.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189760/files/PhysRevLett.113.126801.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189760/files/PhysRevLett.113.126801.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189760/files/PhysRevLett.113.126801.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/189760/files/PhysRevLett.113.126801.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:189760
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164397
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145909
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)142024
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21