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Relativistic dynamical spin excitations of magnetic adatoms
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We present a first-principles theory of dynamical spin excitations in the presence of spin-orbit coupling.

The broken global spin rotational invariance leads to a new sum rule. We explore the competition between the

magnetic anisotropy energy and the external magnetic field, as well as the role of electron-hole excitations,

through calculations for 3d-metal adatoms on the Cu(111) surface. The spin excitation resonance energy and

lifetime display nontrivial behavior, establishing the strong impact of relativistic effects. We legitimate the use of

the Landau-Lifshitz-Gilbert equation down to the atomic limit, but with parameters that differ from a stationary

theory.
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I. INTRODUCTION

The understanding and design of new technologies based on

magnetic materials, in the fields of spintronics and magnonics,

begets and profits from quantitative theoretical approaches.

Recently, the central role played by spin-orbit coupling (SOC)

has been serendipitously revealed. It underlies many concepts

for the generation, manipulation, and detection of spin currents

[1], also at the nanoscale: spin dynamics, current-induced

magnetization switching, and magnetic stability [2–4]. The

energy gap in the spin excitation spectrum, from extended

materials down to a single adatom, is the result of SOC being

measurable, for instance, with ferromagnetic resonance (FMR)

[5] or inelastic scanning tunneling spectroscopy (ISTS) [6–11].

Physical intuition suggests a connection between the gap and

the magnetic anisotropy energy (MAE), while application of

a dc external magnetic field (Bext) should lead to a gap change

of gµBBext (Zeeman shift). Stoner (electron-hole) excitations,

together with SOC, contribute to the spin dynamics, their

impact on the energy gap, Zeeman shift, and excitation lifetime

being expected but fairly unexplored.

Up to now, all ab initio studies on transverse dynamical

spin excitations have neglected SOC. Furthermore, the ad-

dressed magnetic states are collinear (e.g., ferromagnetic),

since the complexity, both theoretical and computational,

increases dramatically in the general case: charge excitations,

longitudinal, and transverse spin excitations may couple in

a nontrivial manner (see discussion in Ref. [12]). From the

tight-binding perspective, the work of Costa et al. [13] has

proven invaluable in characterizing the impact of SOC on

the spin-wave dispersion and lifetime, going beyond the adia-

batic approximation [14]. Two kinds of theoretical approaches

build upon first-principles electronic structure calculations.

One type is based on many-body perturbation theory (MBPT)

[15–17], constructing the noninteracting Green function (GF)

from the density functional theory (DFT) eigenstates. The

other type is based on time-dependent DFT (TDDFT) [18,19],

and has been applied to bulk systems [16,17,20–23], thin films

[24], and adatoms on surfaces [25–27], with pioneering work

on SOC [28], but still not starting from a spin-polarized ground
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state [29]. Recently we provided a connection between MBPT

and TDDFT to describe the interaction between electrons and

spin excitations [30]; this link was also found for the theory of

spin-fluctuation-mediated superconductivity [31].

Here we present a method for the calculation of dy-

namical magnetic response functions based on TDDFT and

incorporating SOC. This new scheme is implemented within

the Korringa-Kohn-Rostoker (KKR) GF approach [32]. Of

interest is the ability to treat an external magnetic field

( �Bext) in any direction, to investigate nontrivial orientations

of the magnetic moments, and the role of the MAE. We

derive a magnetization sum rule that constrains the exchange

and correlation (xc) kernel when SOC is present, which is

essential for the theory and the calculations. By investigating

3d metal adatoms on the Cu(111) surface, with a focus on

the experimentally studied Fe adatom [8], we demonstrate

that the gap in the excitation spectrum is connected to the

MAE through spin dynamics parameters, with electron-hole

excitations taking center stage. We also show that, varying

the orientation of �Bext, the properties of the spin excitations,

i.e., excitation energies, lifetimes, and g factors, are nontrivial

and anisotropic, depending on the orientation of the magnetic

moment.

Our paper is organized as follows. In Sec. II the formalism

for the dynamical magnetic susceptibility is presented, as is

the new magnetization sum rule that applies for the SOC case.

Section III describes the computational details. The results

for 3d adatoms on Cu(111) are discussed in Sec. IV, and

the interplay between MAE and SOC is explained in Sec. V.

Our conclusions are given in Sec. VI, while three Appendixes

provide further details.

II. DYNAMICAL SUSCEPTIBILITY

We begin by seeking the change of the spin density

matrix δρ = δn σ0 + δ �m · �σ due to an external time-dependent

potential of the same form δV ext = δV ext
0 σ0 + δ �Bext · �σ . In

linear response,

δρ(�r ; t) =

∫
d�r ′

∫
dt ′ χ (�r,�r ′; t − t ′) · δV ext(�r ′; t ′), (1)

with �σ the vector of Pauli matrices and σ0 the 2 × 2 unit matrix.

Within TDDFT, after Fourier transforming in time, the full

response function χ is given in terms of the Kohn-Sham (KS)
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response χKS and the Hartree-exchange-correlation (Hxc)

kernel KHxc through

χ (ω) = [1 − χKS(ω) KHxc(ω)]−1χKS(ω) (2)

(here and in the following spatial dependence and integrations

are omitted for brevity). We add SOC [33] and spin and

orbital Zeeman couplings to an external static field to the KS

Hamiltonian, self-consistently,

HKS = HKS
0 σ0 + �σ · �Bxc + ξ �L · �σ + ( �L + �σ ) · �Bext. (3)

The KS response is written in terms of the KS GF, G(E) =
(E − HKS)−1, as

χKS
αβ (ω) = −

1

π

∫ EF

dE Tr[σα G(E + ω + i0) σβ Im G(E)

+ σα Im G(E) σβ G(E − ω − i0)], (4)

with α,β = x,y,z. The trace is over the spin components, and

2i Im G(E) = G(E + i0) − G(E − i0). KHxc(ω) is the sum

of the Hartree kernel 2/|�r − �r ′| and of the xc kernel, which

contains the many-body effects. In the adiabatic local spin

density approximation (ALSDA), adopted in this work, the xc

kernel is local in space and frequency independent, being a

function(al) of the particle and spin densities only.

In the absence of SOC, the full response function decouples

into a transverse and a longitudinal part. The former describes

damped precessional motions of the magnetization, while

excitations that change the magnitude of the charge or spin

densities are in the latter. Global SU(2) invariance implies

the existence of a Goldstone mode: the spin density is an

eigenfunction of χ−1(ω = 0) with vanishing eigenvalue. This

is of utmost importance in numerical calculations, as small

inaccuracies in the KS susceptibility and in the xc kernel

shift the Goldstone mode to a finite frequency, in the meV

range [25,26], where the gap opened by SOC is expected.

Corrective schemes were proposed [23,25,26] by adjusting

one or both of these quantities to place the Goldstone mode

at zero frequency, when SOC is neglected. Next we derive a

new sum rule, connecting the spin density to the xc magnetic

field, SOC, and external magnetic field, so that the gap arises

unambiguously from the latter two.

Suppose that the xc magnetic field �Bxc lies in the z direction,

defining the local spin frame of reference [34]. Then the spin

density is given by (see Appendix A)

mz = −
1

π
Im Tr

∫ EF

dE G↑↑(E) �(E) G↓↓(E). (5)

The effective spin splitting is [cf. Eq. (3) and Appendix A]

� = HKS
↑↑ − HKS

↓↓ + HKS
↑↓ G̃↓ H

KS
↓↑ − HKS

↓↑ G̃↑ H
KS
↑↓, (6)

where the auxiliary GFs are G̃σ (E) = (E − HKS
σσ )−1, with σ =

↑ , ↓. Identifying the spin-flip KS susceptibility via Eq. (4),

χ+− = (χxx − iχxy + iχyx + χyy)/4, we can relate the spin

density to the xc magnetic field mz = 2 χKS
+−(ω = 0) Bxc +

δmz, where δmz arises from all contributions to �, excluding

the xc part. The transverse xc kernel in the ALSDA is just

K⊥ = 2Bxc/mz, yielding the magnetization sum rule

mz(�r ) −

∫
d�r ′ χKS

+−(�r,�r ′; 0) K⊥(�r ′) mz(�r
′) = δmz(�r ). (7)

When δmz(�r ) = 0 (no SOC or external field), the denominator

of Eq. (2) vanishes and the Goldstone mode is recovered.

If only an external field is applied, the spin excitation is

located at ω ∼ 2Bext
z (Zeeman shift), while SOC gives rise

to a gap even in zero field. If Eq. (7) is not satisfied due to

numerical inaccuracies, K⊥(�r ) is adjusted such that the sum

rule holds, using as input the calculated δmz(�r ), mz(�r ), and

χKS
+−(�r,�r ′; ω = 0).

Next we briefly summarize the computational details,

before presenting results of our TDDFT formalism for adatoms

on Cu(111).

III. COMPUTATIONAL DETAILS

The GFs are evaluated by the KKR method [32] where

the electronic structure of the adatoms is computed in two

steps. First the electronic structure of a 22 layer Cu slab is

calculated. Then each adatom is self-consistently embedded

on the surface of this slab, in real space, together with 12

nearest-neighbor sites. We consider the Fe adatom relaxed to

the surface by 10% of the interlayer distance of Cu and use,

for the sake of comparison, the same vertical distance for all

adatoms. We employ the rigid spin approximation, whereby

the direction of the spin density is taken to be collinear inside

each atomic sphere [35]. To tackle canting of the spin moment

due to perpendicular external magnetic field and anisotropy

easy axis, its direction is updated during the iterations until

self-consistency is achieved. The MAE is calculated by band

energy differences following the magnetic force theorem [36]:

Ea ≈ Eband[Bxcêx] − Eband[Bxcêz]. (8)

For the susceptibility calculations, the proposal of Lounis et al.

[25,26] is extended to an spdf basis built out of regular

scattering solutions evaluated at two or more energies, by

orthogonalizing their overlap matrix (see Appendix B for

details). This basis can reproduce ground state data reliably

and is used to include SOC in the GFs, self-consistently The

spatial dependence of the susceptibility is restricted to the

magnetic adatom; tests including neighboring copper atoms

show no significant impact on the transverse spin excitations.

The energy integration in Eq. (4) is performed as detailed in

Refs. [25,26].

IV. SPIN EXCITATIONS OF Cr, Mn, Fe, AND Co ADATOMS

ON THE Cu(111) SURFACE

As an application of our method, we explore the spin

excitation spectra of 3d adatoms on the Cu(111) surface.

The ground state properties and the dynamical spin excitation

spectra are described separately.

A. Ground state properties

The adatom-projected local density of states for Cr, Mn,

Fe, and Co adatoms on the Cu(111) surface is shown in Fig. 1,

while ground state properties are listed in Table I. The spin

moment ms is maximum for Cr and Mn, and then decreases

steadily for Fe and Co. The orbital moment mo is small for

Cr and Mn, a consequence of the almost half-filled d states,

and large for Fe and Co, due to partial occupation of the

minority d states. As expected, Cr and Mn adatoms with nearly
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FIG. 1. (Color online) Atom-projected total density of states for

Cr, Mn, Fe, and Co adatoms on the Cu(111) surface (positive for

majority and negative for minority spin). Energy measured from the

Fermi energy of the substrate.

half-filled d shells have larger spin magnetic moments (ms)

and lower orbital magnetic moments (mo) than those of Fe and

Co adatoms. The small magnitude of the orbital moments for

Cr and Mn correlates with small MAEs, the converse being

true for Fe and Co. The preferred orientation of the magnetic

moments of Fe and Co is normal to the surface while Cr and

Mn lie in-plane.

B. Dynamical spin excitations

Now we proceed to the calculations of the dynamical

magnetic susceptibility. Equation (2) is solved using the full

basis expansion of the GFs, but for discussion we define an

adatom-averaged quantity, corresponding to the net response

to a site-dependent TD external magnetic field:

χαβ(ω) =

∫
d�r

∫
d�r ′ χαβ(�r,�r ′; ω). (9)

First we discuss the impact of SOC on the adatom-averaged

KS susceptibility. χKS
+−(ω) is linear for small frequencies.

Figure 2(a) shows Im χKS
+−(ω), describing spin-flip excitations

between occupied and empty states (Stoner excitations). SOC

is found to have a negligible impact on χKS
+−(ω) for the Cr and

Mn adatoms, in line with their low orbital magnetic moments

and MAEs. For Fe, SOC causes a noticeable change only on

χKS
+−(ω = 0) (∼0.2%), while for Co there is also an increase

in the slope of Im χKS
+−(ω) by 12%.

Consider now the full response function. The longitudinal

and transverse parts of the magnetic susceptibility are weakly

coupled by SOC. The imaginary part of the dominant eigen-

value of χ (ω) corresponds to the density of states of the main

TABLE I. Spin (ms) and orbital (mo) moments for Cr, Mn, Fe, and

Co adatoms on the Cu(111) surface, and MAE, see Eq. (8). All values

for the easy axis configuration (in-plane for Cr and Mn, out-of-plane

for Fe and Co).

Cr Mn Fe Co

ms (µB) 4.07 4.31 3.23 1.97

mo (µB) −0.02 0.02 0.55 0.52

Ea (meV) −0.29 −0.33 4.96 2.25
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FIG. 2. (Color online) Density of transverse spin excitations for

Cr, Mn, Fe, and Co adatoms on the Cu(111) surface (Bext = 0). (a)

From Im χKS
+−(ω), Eq. (4). (b) From Im χ+−(ω), Eq. (2). Dashed lines

show the result of the estimate based on the adiabatic approximation

(see main text).

magnetic excitation, and is shown in Fig. 2(b) for all adatoms.

Although the resonance energies (Bext = 0) follow the trend

of the adatoms’ MAE (Table I), their positions are strongly

shifted from what is expected from a simple approximation

[dashed lines in Fig. 2(b); discussed in the following].

We characterize the main resonance in χ(ω) through a

simple model of the spin dynamics, the Landau-Lifshitz-

Gilbert (LLG) equation [37], widely used for larger magnetic

systems:

d �ms

dt
= −γ �ms × �Beff + η

�ms

ms
×

d �ms

dt
, �Beff = −

∂E

∂ �ms
,

(10)

with �ms the spin moment, ms its length, γ the gyromagnetic

ratio (equal to 2µB/� for a free electron), and η the damping

parameter. We set � = 1 and absorb µB in �Beff , so γ = 2. As

discussed by Kittel [38] and found from our calculations, the

orbital moment mostly follows the spin moment �mo ∝ �ms so

it is not considered independently.

Suppose �ms = ms êz in equilibrium, so �Beff = Beff êz,

and we linearize Eq. (10) adding a small time-dependent

perturbation in the xy plane. From Im χ+−(ω) the resonance

location ωmax is given by (Appendix C)

ωmax =
γ Beff

√
1 + η2

, Beff =
2Ea

ms
+

(
1 +

mo

ms

)
Bext, (11)

with a model energy of the form

E = −
Ea

(ms)2
( �ms · êz)

2 − ( �ms + �mo) · �Bext. (12)

The spectroscopic g factor is defined as

g =
dωmax

dBext
=

γ√
1 + η2

(
1 +

mo

ms

)
. (13)

A nonzero orbital moment (SOC) implies an effective g ∝
γ (1 + mo

ms ), which is the usual explanation for g 
= 2 found

experimentally (for instance in FMR [5]). Damping renormal-

izes g further by a factor 1/
√

1 + η2 , so that a shift can be

expected even without SOC (mo = 0). Lastly, the inverse of the

full-width at half maximum (FWHM, Ŵ) of the spin excitation
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TABLE II. Spin dynamics parameters for Cr, Mn, Fe, and Co

adatoms on the Cu(111) surface, obtained by fitting the transverse

susceptibility [Eq. (9)] to the LLG model. Equation (11) defines Ēa .

The g factor [Eq. (13)] distinguishes �ms · �Bext or ( �ms + �mo) · �Bext

couplings. τ for Mn is hard to extract, due to a very narrow spin

excitation peak.

Cr Mn Fe Co

Ēa (meV) 0.14 0.02 4.51 1.37

γ 1.63 1.74 1.73 2.36

η 0.07 0.05 0.33 0.80

g (spin only) 1.63 1.74 1.64 1.84

g (spin+orb) 1.62 1.75 1.92 2.33

τ (ps) 22 1200 0.11 0.091

resonance can be used to estimate the corresponding lifetime

τ ≈ �/(2Ŵ). All model parameters are extracted by fitting the

LLG form of χ+−(ω) given in Eq. (C4) to the first-principles

data in Fig. 2(b), and are collected in Table II.

If we neglect dynamical corrections (γ = 2, η = 0), the

MAE leads to a resonance at 4Ea/ms [dashed lines in Fig. 2(b);

Ea is taken from Table I]. The downward shift of the resonance

energy is due to γ 
= 2 and an effective Ea smaller than the

force theorem estimate (see Table II). γ 
= 2 is determined

by the electronic structure, as discussed in Refs. [9,25,26,39].

The discrepancy in Ea may originate from the following: The

value obtained from Eq. (8) is an energy difference between

two orthogonal magnetic orientations, while the LLG model,

see Eq. (10), suggests the dynamics depend on the variation

of the energy around the equilibrium direction of the adatom

spin. An alternative explanation would be the large DOS peak

for Fe and Co at the Fermi energy: The MAE computed from

Eq. (8) is sensitive to peak shifts between the two orientations,

which may arise from the frozen potential approximation.

The damping parameter η plays a minor role for Cr and

Mn adatoms, but reduces g for Fe and Co by 5% and 22%,

respectively. The spin excitation lifetimes are much shorter

for the Fe and Co adatoms than for the Cr and Mn adatoms.

This is due to the Ŵ ∝ ωmax scaling of the FWHM, and to the

connection between η and the slope of Im χKS
+−(ω) [Fig. 2(a)].

SOC enhances η only for the Co adatom for the same reason

[see discussion of Fig. 2(a) in the main text].

V. INTERPLAY BETWEEN MAGNETIC ANISOTROPY

AND MAGNETIC FIELD

Next we focus on the effect of �Bext on the spin excitations

of the Fe adatom. First we apply the field parallel to the

MAE easy axis, resulting in the linear Zeeman shift. ωmax is

shown in Fig. 3(a) for the spin-only (squares) and spin+orbital

(diamonds) Zeeman couplings, see Eq. (3). In the spin-only

case g = 1.70 (1.64 using the LLG model, Table II). This

does not depend on SOC and is related to details of the

electronic structure [9]. When the orbital coupling is included,

g rises from 1.70 to 1.97, close to the factor (1 + mo

ms )

from Eq. (11). Using mo

ms = 0.17 and the data in Table II,

g = 1.92 from the LLG model, in good agreement with the

first-principles data. In Ref. [8] this system was studied by

ISTS. The measured gap (∼1 meV) is lower than the one
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FIG. 3. (Color online) (a) Frequency ωmax at which Im χ is

maximum vs applied external magnetic field Bext for the Fe adatom

on Cu(111). The static field was applied normal to the surface, with

spin-only (s, squares) or spin and orbital coupling (s+o, diamonds);

and in the surface plane, with spin-only (s, down triangles) or spin

and orbital coupling (s+o, up triangles). (b) FWHM vs resonance

energy, as extracted from the Im χ curves (s+o). The spin moment is

normal to the surface (diamonds), canted (down triangles), or in the

surface plane (up triangles). Linear fits also shown.

found in our calculations (∼4.6 meV), which may indicate

we overestimated the MAE. The experimental g value (∼2.1)

is quite close to the one computed including spin and orbital

Zeeman couplings (g = 1.97). The linewidth is proportional

to the resonance energy [Fig. 3(b) (diamonds)], but the slope

is larger in the experimental data.

When the field is applied perpendicular to the MAE easy

axis, the equilibrium direction of the Fe spin moment progres-

sively cants away from the surface normal, becoming parallel

to �Bext (when ωmax ≈ 0). Figure 3(a) shows that ωmax slowly

decreases for small Bext, dipping near the critical field, beyond

which it increases again, recovering the linear dependence on

Bext for ωmax > 5 meV. In this regime, g = 1.81 (spin Zeeman)

or g = 1.93 (full Zeeman) differ from the values obtained in

the previous linear case. This arises from the different values

of mo, γ , and η, making the spin dynamics anisotropic. The

FWHM is still linear in ωmax [Fig. 3(b) (triangles)], but it

does not extrapolate to zero as in the out-of-plane case. For

the same ωmax, the lifetime of the spin excitation strongly

depends on the orientation of the spin moment. From Fig. 3(b),

with ωmax ∼ 4.6 meV, τ ≈ 110 fs (out-of-plane) and τ ≈ 85 fs

(in-plane), which is a 20% change.

VI. CONCLUSIONS

In this paper we presented a detailed first-principles analysis

of the spin dynamics of magnetic adatoms, made possible by an

extension of TDDFT to spin-polarized systems including SOC.

We found an invaluable sum rule connecting the spin density to

the xc splitting in the presence of SOC. The key spin dynamics

parameters have been extracted from the dynamical magnetic

susceptibility, including SOC and spin and orbital Zeeman

terms, after mapping to the LLG model, thus legitimating

its use down to the atomic limit. Deviations from standard

assumptions in spin dynamics models have been found for
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the MAE (different from the one computed by the force

theorem), the gyromagnetic ratio (γ 
= 2, which may indicate

spin pumping [40]), and the origin and role of the Gilbert

damping η (dominated by Stoner excitations, not by SOC).

We also find a nontrivial behavior for g and the spin excitation

lifetime upon application of a magnetic field along the easy and

hard axes of the magnetic anisotropy. The anisotropic nature of

the spin dynamics was established, arising from SOC and �Bext.
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APPENDIX A: DERIVATION OF THE MAGNETIZATION

SUM RULE FOR A NONSPIN-DIAGONAL HAMILTONIAN

We start from the Kohn-Sham Hamiltonian as given in

Eq. (3) of the main text,

HKS(�r ) = HKS
0 σ0 + �Bxc · �σ + ξ �L · �σ + ( �L + �σ ) · �Bext,

(A1)

and the KS Green function G(E) = (E − HKS)−1, where the

inverse abbreviates the solution of

∑

s1

(

E δss1
− HKS

ss1
(�r )

)

Gs1s ′ (�r,�r ′; E) = δ(�r − �r ′) δss ′ .

(A2)

The summation is over spin components s = {↑ , ↓}. For a

nonlocal Hamiltonian an integration over the intermediate real-

space coordinates would also be present, and the remaining

derivation is unaffected.

The z component of the spin density is given by

mz(�r ) = −
1

π
Im

∫ EF

dE (G↑↑(�r,�r ; E) − G↓↓(�r,�r ; E)),

(A3)

so we must solve for the diagonal (in spatial coordinates and

spin labels) parts of the KS GF.

Expanding Eq. (A2) we find the following relations among

the spin blocks:

(E − HKS
↑↑(�r )) G↑↑(�r,�r ′; E)

= δ(�r − �r ′) + HKS
↑↓(�r ) G↓↑(�r,�r ′; E), (A4a)

(E − HKS
↓↓(�r )) G↓↑(�r,�r ′; E)

= 0 + HKS
↓↑(�r ) G↑↑(�r,�r ′; E), (A4b)

(E − HKS
↓↓(�r )) G↓↓(�r,�r ′; E)

= δ(�r − �r ′) + HKS
↓↑(�r ) G↑↓(�r,�r ′; E), (A4c)

(E − HKS
↑↑(�r )) G↑↓(�r,�r ′; E)

= 0 + HKS
↑↓(�r ) G↓↓(�r,�r ′; E). (A4d)

Defining auxiliary GF blocks G̃↑(E) = (E − HKS
↑↑)−1 and

G̃↓(E) = (E − HKS
↓↓)−1, solutions of

(E − HKS
↑↑(�r )) G̃↑(�r,�r ′; E) = δ(�r − �r ′), (A5a)

(E − HKS
↓↓(�r )) G̃↓(�r,�r ′; E) = δ(�r − �r ′), (A5b)

the previous set of equations can be rewritten as follows:

G↑↑(�r,�r ′; E)

= G̃↑(�r,�r ′; E)+

∫
d�r1 G̃↑(�r,�r1; E)HKS

↑↓(�r1) G↓↑(�r1,�r
′; E),

(A6a)

G↓↑(�r,�r ′; E)

= 0 +

∫
d�r1 G̃↓(�r,�r1; E)HKS

↓↑(�r1) G↑↑(�r1,�r
′; E), (A6b)

G↓↓(�r,�r ′; E)

= G̃↓(�r,�r ′; E)+

∫
d�r1 G̃↓(�r,�r1; E)HKS

↓↑(�r1) G↑↓(�r1,�r
′; E),

(A6c)

G↑↓(�r,�r ′; E)

= 0 +

∫
d�r1 G̃↑(�r,�r1; E)HKS

↑↓(�r1) G↓↓(�r1,�r
′; E). (A6d)

After using Eqs. (A6b) and (A6d) in Eqs. (A6a) and (A6c),

respectively, we obtain

G↑↑(�r,�r ′; E)

= G̃↑(�r,�r ′; E)

+

∫
d�r1

∫
d�r2 G̃↑(�r,�r1; E)HKS

↑↓(�r1) G̃↓(�r1,�r2; E)

× HKS
↓↑(�r2) G↑↑(�r2,�r

′; E), (A7a)

G↓↓(�r,�r ′; E)

= G̃↓(�r,�r ′; E)

+

∫
d�r1

∫
d�r2 G̃↓(�r,�r1; E)HKS

↓↑(�r1) G̃↑(�r1,�r2; E)

× HKS
↑↓(�r2) G↓↓(�r2,�r

′; E), (A7b)

and the solution of these two equations can be represented in

an abbreviated form as

G↑↑(E) = (E − HKS
↑↑ − HKS

↑↓ G̃↓(E)HKS
↓↑)−1, (A8a)

G↓↓(E) = (E − HKS
↓↓ − HKS

↓↑ G̃↑(E)HKS
↑↓)−1. (A8b)

Here the inverse operation is for the (�r,�r ′) dependence, as in

Eq. (A5); the spin dependence was already solved for.

By the following operator identity:

A−1 − B−1 = A−1(B − A) B−1 = B−1(B − A) A−1,

(A9)
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the difference between the two GF blocks of interest is given

by

G↑↑(�r,�r ′; E) − G↓↓(�r,�r ′; E)

=

∫
d�r1

∫
d�r2 G↑↑(�r,�r1; E) �(�r1,�r2; E) G↓↓(�r2,�r

′; E)

=

∫
d�r1

∫
d�r2 G↓↓(�r,�r1; E) �(�r1,�r2; E) G↑↑(�r2,�r

′; E),

(A10)

with the energy dependent splitting defined by

�(�r,�r ′; E) = (HKS
↑↑(�r ) − HKS

↓↓(�r )) δ(�r − �r ′)

+HKS
↑↓(�r ) G̃↓(�r,�r ′; E)HKS

↓↑(�r ′)

−HKS
↓↑(�r ) G̃↑(�r,�r ′; E)HKS

↑↓(�r ′). (A11)

Now the concrete form of the splitting is given, making use of

the terms in Eq. (A1). This is especially meaningful if the xc

field points along the z direction and is responsible for most

of the spin splitting:

�(�r,�r ′; E)

= 2 (Bxc(�r )+ ξ (r) Lz + Bext
z (�r )) δ(�r − �r ′)

+ (ξ (r)L−+Bext
− (�r ))G̃↓(�r,�r ′; E)(ξ (r ′)L++Bext

+ (�r ′))

− (ξ (r)L++Bext
+ (�r ))G̃↑(�r,�r ′; E)(ξ (r ′)L−+Bext

− (�r ′)),

(A12)

with the combinations L± = Lx ± iLy and Bext
± = Bext

x ±
iBext

y . Defining the spin flip KS susceptibilities as

χKS
+− = 1

4

(
χKS

xx − iχKS
xy + iχKS

yx + χKS
yy

)
, (A13)

χKS
−+ = 1

4

(
χKS

xx + iχKS
xy − iχKS

yx + χKS
yy

)
, (A14)

from the definition in terms of GFs and Pauli matrices

χKS
αβ (ω) = −

1

π

∫ EF

dE Tr[σα G(E + ω + i0) σβ Im G(E)

+ σα Im G(E) σβ G(E − ω − i0)], (A15)

we arrive at the magnetization sum rule

mz(�r ) = 2

∫
d�r ′ χKS

+−(�r,�r ′; 0) Bxc(�r ′) + �mz(�r )

= 2

∫
d�r ′ χKS

−+(�r,�r ′; 0) Bxc(�r ′) + �mz(�r ), (A16)

where the two equivalent variants follow from the two forms

of the operator identity [Eq. (A9)], and the small correction

�mz(�r ) arises from the spin-orbit coupling and external

magnetic field contributions to �(�r,�r ′; E) (i.e., excluding the

xc part).

APPENDIX B: KOHN-SHAM SUSCEPTIBILITY IN A BASIS

DERIVED FROM KKR SCATTERING SOLUTIONS

In the atomic sphere approximation (ASA), the KKR GF

has the form [32]

Gs
ij (�r,�r ′; E) =

∑

LL′

YL(r̂) Gs
iL,jL′ (r,r

′; E) YL′(r̂ ′), (B1)

with

Gs
iL,jL′ (r,r

′; E) = Rs
iℓ(r; E) Gs

iL,jL′(E) Rs
jℓ(r ′; E)

+ δij δLL′Rs
iℓ(r<; E) H s

iℓ(r>; E). (B2)

The position arguments of the GF are measured from the

nearest atomic site, labeled i. The orientation is denoted r̂ and

the length r; furthermore, r< = min{r,r ′} and r> = max{r,r ′}.
The angular dependence is expanded in spherical harmonics

YL(r̂), with composite index L = (ℓ,m), and the two spin

components are labeled by s. The radial functions Rs
iℓ(r; E)

and H s
iℓ(r; E) are solutions of the Schrödinger equation for

the KS potential centered in site i for a given energy E, which

are regular and irregular at the nuclear position, respectively.

The structural GF Gs
iL,jL′ (E) contains the information about

the geometrical arrangement of the atomic sites and the

multiple scattering contributions. We assumed a collinear

magnetic state and no SOC, for simplicity of presentation.

We use a basis of radial functions constructed from

normalized regular scattering solutions computed at several

energies Eb within the range of the valence states (four energy

values are sufficient for the basis construction):

φs
iℓb(r) =

Rs
iℓ(r; Eb)

∫ R

0
dr r2 Rs

iℓ(r; Eb)2
. (B3)

For fixed i and ℓ, by orthogonalizing the overlap matrix

O iℓ
bb′ =

∫ R

0

dr r2 φs
iℓb(r) φs

iℓb′(r) (B4)

and keeping only the two largest eigenvalues, we form two

linear combinations of the reference basis functions by using

the respective eigenvectors, which become the basis functions

for atom i and angular momentum channel ℓ.

The most general form of the KS GF (with SOC and

noncollinear magnetism), in the KKR representation and in

our chosen basis, is thus

Gss ′

iL,jL′(r,r
′; E) =

∑

bb′

φs
iℓb(r) Gss ′

iLb,jL′b′ (E) φs ′

jℓ′b′ (r
′). (B5)

The KS susceptibility [Eq. (4)] is then also naturally

expressed in this basis,

χKS
αβ (�r,�r ′; ω) =

∑

L1s1b1···

YL1
(r̂)YL2

(r̂)φ
s1

iℓ1b1
(r)φ

s2

iℓ2b2
(r)

×χ
KS, s1s2s3s4

αβ, iL1L2b1b2, jL3L4b3b4
(ω)

×φ
s3

jℓ3b3
(r ′)φ

s4

jℓ4b4
(r ′)YL3

(r̂ ′)YL4
(r̂ ′).

(B6)

The size of the matrices involved is as follows. For the

GF, the number of rows or columns is Na × NL × Ns × Nb =
1 × (ℓmax + 1)2 × 2 × 2 = 64 when taking only an adatom

into account (Na = 1), with ℓmax = 3 and two radial basis

functions. For the KS susceptibility matrix, the number

of rows or columns is Nα × Na × (NL × Ns × Nb)2 = 4 ×
642 = 16 384, as we have four Pauli matrices (α = x,y,z,0),

with the same assumptions as for the previous example.
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APPENDIX C: DYNAMICAL MAGNETIC

SUSCEPTIBILITY FROM THE

LANDAU-LIFSHITZ-GILBERT EQUATION

The aim is to linearize the LLG equation,

d �m

dt
= −γ �m × �Beff + η

�m

m
×

d �m

dt
, (C1)

with the effective field

�Beff = −
∂E

∂ �m
= Beff êz + bx(t) êx + by(t) êy, (C2)

where Beff êz is the static part, and bx(t) êx + by(t) êy is the

small time-dependent transverse part. Under these assump-

tions, the same applies to the magnetization,

�m(t) = mx(t) êx + my(t) êy + Mz êz, (C3)

with mx,my ≪ M .

After Fourier transforming d
dt

→ −iω, the dynamical

transverse magnetic susceptibility can be extracted from the

LLG equation as

χ+−(ω) =
Mzω0

2Beff

(1 + η2)ω0 − ω + iηω

(ω − ω0)2 + (ηω0)2
, ω0 =

γBeff

1 + η2
.

(C4)

This form can be used to fit the first-principles TDDFT data

and extract all the parameters.

The resonance peak location is obtained from

d

dω
Im χ+− = 0

=⇒ (ω − ω0)2 + (ηω0)2 − 2ω(ω − ω0) = 0

=⇒ ωmax =
γBeff

√
1 + η2

, (C5)

which is the result quoted in the main text.
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[17] E. Şaşıoğlu, A. Schindlmayr, C. Friedrich, F. Freimuth, and
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