000189768 001__ 189768
000189768 005__ 20210129215433.0
000189768 0247_ $$2doi$$a10.1088/0957-4484/24/44/444001
000189768 0247_ $$2ISSN$$a0957-4484
000189768 0247_ $$2ISSN$$a1361-6528
000189768 0247_ $$2WOS$$aWOS:000326015600004
000189768 0247_ $$2altmetric$$aaltmetric:1332952
000189768 0247_ $$2pmid$$apmid:24113720
000189768 037__ $$aFZJ-2015-02798
000189768 082__ $$a530
000189768 1001_ $$0P:(DE-Juel1)156572$$aNeumann, C.$$b0$$eCorresponding Author
000189768 245__ $$aGraphene-based charge sensors
000189768 260__ $$aBristol$$bIOP Publ.$$c2013
000189768 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430232271_26977
000189768 3367_ $$2DataCite$$aOutput Types/Journal article
000189768 3367_ $$00$$2EndNote$$aJournal Article
000189768 3367_ $$2BibTeX$$aARTICLE
000189768 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189768 3367_ $$2DRIVER$$aarticle
000189768 520__ $$aWe discuss graphene nanoribbon-based charge sensors and focus on their functionality in the presence of external magnetic fields and high frequency pulses applied to a nearby gate electrode. The charge detectors work well with in-plane magnetic fields of up to 7 T and pulse frequencies of up to 20 MHz. By analyzing the step height in the charge detector's current at individual charging events in a nearby quantum dot, we determine the ideal operation conditions with respect to the applied charge detector bias. Average charge sensitivities of 1.3 × 10−3e Hz−1/2 can be achieved. Additionally, we investigate the back action of the charge detector current on the quantum transport through a nearby quantum dot. By varying the charge detector bias from 0 to 4.5 mV, we can increase the Coulomb peak currents measured at the quantum dot by a factor of around 400. Furthermore, we can completely lift the Coulomb blockade in the quantum dot.
000189768 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000189768 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189768 7001_ $$0P:(DE-HGF)0$$aVolk, C.$$b1
000189768 7001_ $$0P:(DE-HGF)0$$aEngels, S.$$b2
000189768 7001_ $$0P:(DE-HGF)0$$aStampfer, C.$$b3
000189768 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/24/44/444001$$gVol. 24, no. 44, p. 444001 -$$n44$$p444001 -$$tNanotechnology$$v24$$x1361-6528$$y2013
000189768 8564_ $$uhttp://iopscience.iop.org/0957-4484/24/44/444001/
000189768 8564_ $$uhttps://juser.fz-juelich.de/record/189768/files/0957-4484_24_44_444001.pdf$$yRestricted
000189768 8564_ $$uhttps://juser.fz-juelich.de/record/189768/files/0957-4484_24_44_444001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189768 909CO $$ooai:juser.fz-juelich.de:189768$$pVDB
000189768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156572$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128643$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000189768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164397$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000189768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142024$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000189768 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000189768 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000189768 9141_ $$y2014
000189768 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189768 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189768 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189768 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189768 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189768 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189768 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189768 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000189768 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189768 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000189768 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000189768 920__ $$lyes
000189768 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000189768 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000189768 980__ $$ajournal
000189768 980__ $$aVDB
000189768 980__ $$aI:(DE-Juel1)PGI-9-20110106
000189768 980__ $$aI:(DE-82)080009_20140620
000189768 980__ $$aUNRESTRICTED