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We report on a comprehensive study of spin- 1

2
Kondo effect in a strongly coupled quantum dot realized in a

high-quality InAs nanowire. The nanowire quantum dot is relatively symmetrically coupled to its two leads, so the

Kondo effect reaches the unitary limit. The measured Kondo conductance demonstrates scaling with temperature,

Zeeman magnetic field, and out-of-equilibrium bias. The suppression of the Kondo conductance with magnetic

field is much stronger than would be expected based on a g-factor extracted from Zeeman splitting of the Kondo

peak. This may be related to strong spin-orbit coupling in InAs.
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I. INTRODUCTION

The Kondo effect1 is one of the most vivid manifestations

of many-body physics in condensed matter. First observed

in 1930s in bulk metals through an anomalous increase in

resistivity at low temperatures, it was later associated with

the presence of a small amount of magnetic impurities.2 The

modern theoretical understanding is that the single unpaired

spin of the magnetic impurity forms a many-body state with

conduction electrons of the host metal. This many-body state

is characterized by a binding energy expressed as a Kondo

temperature (TK). When the temperature is decreased below

TK, the conduction electrons screen the magnetic impurity’s

unpaired spin, and the screening cloud increases the scattering

cross-section of the impurity. More recently, advances in

microfabrication opened a new class of experimental objects—

semiconductor quantum dots—in which a few electrons are

localized between two closely spaced tunneling barriers.3 At

the same time, it had been theoretically predicted that an

electron with unpaired spin localized in a quantum dot could be

seen as an artificial magnetic impurity and, in combination with

the electrons of the leads, would display the Kondo effect.4,5

The first observation of Kondo effect in quantum dots was

made in GaAs-based two-dimensional structures.6–10 Initially

thought to be very difficult to observe in such experiments, the

Kondo effect has now been seen in quantum dots based on a

wide variety of nanomaterials such as carbon nanotubes,11,12

C60 molecules,13,14 organic molecules,15–18 and semiconductor

nanowires,19–22 and has also been invoked to explain behavior

of quantum point contacts.23

In this paper, we present a comprehensive study of the

Kondo effect in a nanosystem of emerging interest, namely,

InAs nanowires grown by the vapor-liquid-solid (VLS)

method.24 Building on initial reports of Kondo effect in InAs

nanowires,19,20 we report Kondo valleys with conductance

near 2e2/h in multiple devices and cooldowns. This high

conductance, combined with temperature far below the Kondo

temperature, allows quantitative measurements of conductance

scaling as a function of temperature, bias, and magnetic field,

which we compare to theoretical predictions independent of

materials system. The high g-factor and small device area,

characteristic of InAs nanowires, allows measurement of the

splitting of the zero-bias anomaly over a broad range of

magnetic field, and we find that splitting is pronounced at

lower magnetic field than predicted theoretically.

II. EXPERIMENT

The quantum dot from which data are presented in this

paper is based on a 50-nm-diameter InAs nanowire suspended

over a predefined groove in a p+-Si/SiO2 substrate and held in

place by two Ni/Au (5nm/100nm) leads deposited on top of the

nanowire. The leads’ 450-nm separation defines the length of

the quantum dot. The p+-Si substrate works as a backgate. The

InAs nanowire was extracted from a forest of nanowires grown

by molecular beam epitaxy on a (011) InAs substrate using Au-

catalyst droplets. Wires from this ensemble were found to have

a pure wurtzite structure, with at most one stacking fault per

wire, generally located within 1 µm from the tip. We therefore

formed devices from sections of nanowire farther from the

wires’ end, with a reasonable presumption that the active area

of each device is free of stacking faults. Schottky barriers,

and screening of the electric field from the gate electrode

by the source and drain electrodes, together create potential

barriers next to the metal contacts. Thus electrons must tunnel

to the central part of the nanowire (the quantum dot) and

the contacts, giving rise to Coulomb blockade (CB). An SEM

image of a typical device is shown in Fig. 1(a). More details on

growth, fabrication, and charging effects have been published

previously.22

Transport experiments were carried out in a dilution

refrigerator with a base temperature Tbase ∼ 10 mK. All ex-

perimental wiring was heavily filtered and thermally anchored

to achieve electron temperature close to cryostat base temper-

ature, as verified in shot noise measurements.25 Conductance

measurements used standard lock-in techniques with a home-

built ultra-low-noise transimpedance preamplifier operated at
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FIG. 1. (Color online) (a) SEM image of a typical suspended

nanowire-based quantum dot device used in the experiment. The

scale bar corresponds to 1 µm. (b) Schematic representation of

the nanowire-based quantum dot device and its experimental setup.

(c) The temperature dependence of the nanowire-based quantum dot

conductance measured over a wide range of the backgate voltage Vg .

Five Kondo valleys are labeled I through V here. This identification

of valleys will be used throughout the paper. Discontinuities in the

temperature dependence in valley II are caused by device instability at

this particular range of Vg . (d) The gray-scale conductance plot in the

Vg-Vsd plane measured in the same range of Vg as in (c) at temperature

Tbase = 10 mK. Panels (a) and (b) are adapted with permission from

A. V. Kretinin et al., Nano Lett. 10, 3439 (2010). Copyright c© 2011

American Chemical Society.

frequencies of ∼2 kHz. Depending on the temperature T , the

ac excitation bias was set in the range of 1–10 µVrms to

keep it equal to or smaller than kBT (kB is the Boltzmann

constant). The magnetic field was applied perpendicular to

both the substrate and the axis of the nanowire. A schematic

representation of the nanowire-based device together with the

experimental setup is shown in Fig. 1(b).

III. RESULTS AND DISCUSSION

First, we would like to outline the main features associated

with the Kondo effect, which were studied in our experiment.

The conductance of a quantum dot weakly coupled to leads

is dominated by CB, seen as nearly periodic peaks in the

conductance as a function of gate voltage, with the conduc-

tance strongly suppressed between peaks. Each peak signals

a change in the dot occupancy by one electron. In contrast,

a dot strongly coupled to the leads can show the Kondo

effect, with the following signatures:6,8,26 (1) the Kondo effect

enhances conductance between alternate pairs of Coulomb

blockade peaks (that is, for odd dot occupancy). These ranges

of enhanced conductance are conventionally termed “Kondo

valleys.” (2) Conductance in Kondo valleys is suppressed by

increasing temperature. (3) Conductance in Kondo valleys is

suppressed by applied source-drain bias (Vsd), giving rise to

a zero-bias anomaly (ZBA). The full width at half maximum

(FWHM) of the zero-bias peak is of the order of 4kBTK/e (e

is the elementary charge). (4) In contrast to the conductance in

the CB regime whose upper limit is e2/h,27 the Kondo valley

conductance can reach 2e2/h, equivalent to the conductance

of a spin-degenerate 1D wire.28 In this limit, “valley” is a

misnomer, as the valley is higher than the surrounding peaks!

(5) The Kondo ZBA splits in magnetic field (B) with the

distance between the peaks in bias being twice the Zeeman

energy. (6) The dependence of the Kondo conductance on an

external parameter A such as temperature, bias, or magnetic

field can be calculated in the low- and high-energy limits.29

In the low-energy limit, kBTK ≫ A = {kBT ,eVsd,|g|µBB},
the conductance has a characteristic quadratic Fermi-liquid

behavior:14,30–32

G(A) = G0

[

1 − cA

(

A

kBTK

)2
]

, (1)

where G0 ≡ G(A = 0) and cA is a coefficient of order unity.

Its numerical value is different for each parameter A, and

depends on the definition of TK. In the present paper, we use a

convention7 used in many experimental papers and define TK

by the relation

G(T = TK) = 0.5G0. (2)

In the opposite limit of high energy, when kBTK ≪ A, the

conductance shows a logarithmic dependence. For example,

as a function of temperature:1,5

G(T ) ∝ G0/ ln2

(

T

TK

)

. (3)

There is no analytical expression for the intermediate regime,

where the parameter A ≈ kBTK, but numerical renormaliza-

tion group (NRG) calculations33 show that the connection

between one limit and the other is smooth and monotonic,

without any sharp feature at A = kBTK.

Before detailed consideration and discussion of the results,

we give a broad overview of the experimental data used in this

study. It will be followed by three subsections focusing on the

observed unitary limit of the Kondo effect (Sec. III A), conduc-

tance scaling with different external parameters (Sec. III B),

and some peculiarities observed in the Zeeman splitting (Sec.

III C).

Figure 1(c) presents the linear conductance G as a function

of the backgate voltage Vg . Different color corresponds to

different temperature, ranging from 10 to 693 mK. The Kondo

effect modifies the CB peaks so strongly that the separate

peaks are no longer recognizable and the simplest way to

identify Kondo valleys is to look at the the gray-scale plot

of differential conductance as a function of both Vg and Vsd

(“diamond plot”), Fig. 1(d). Every Kondo valley is marked

by a ZBA seen as a short horizontal line at Vsd = 0. Different

widths of ZBAs on the gray-scale plot reflect differences in the

Kondo temperature. In these same Kondo valleys, conductance

decreases with increasing temperature [see Fig. 1(c)]. Note

that Kondo valleys alternate with valleys having opposite tem-

perature dependence or almost no temperature dependence,

corresponding to even occupancy of the quantum dot. A small

unnumbered peak at about Vg = −2.95 V departs from the

general pattern of conductance observed in the experiment.
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Most likely, this feature, which occurs for even occupancy,

is associated with transition to a triplet ground state, and

thus emergence of spin-1 and singlet-triplet Kondo effect.34–36

However, it is difficult to conclusively identify the nature of

this anomaly since its temperature and bias dependencies are

weak.

All conductance peaks shown in Fig. 1(c) exceed e2/h,

reflecting Kondo-enhanced conductance and relatively sym-

metric coupling to the two leads. In particular, conductance

around Vg = −3.1 V in valley III reaches the unitary limit of

2e2/h, to within our experimental accuracy.

A. Kondo effect in the unitary limit

To realize maximum conductance in resonant tunneling, the

quantum dot should be symmetrically coupled to the leads. In

the conventional case of CB, electrostatic charging allows only

one spin at a time to tunnel, limiting the maximum conductance

through the dot to e2/h.27 The Kondo effect dramatically

changes the situation by forming a spin-degenerate many-body

singlet state, enabling both spins to participate in transport in

parallel so that Kondo conductance can reach its unitary limit

at 2e2/h.4,5 Experimentally, the unitary limit, first observed by

van der Wiel et al.28 in a GaAs-based gate-defined quantum

dot, remains the exception rather than the rule, because it

requires being far below the Kondo temperature, having

symmetric tunnel coupling to the two leads, and having

precisely integer dot occupancy.

Figure 2 presents a zoomed-in view of valley III from

Fig. 1(c), showing the Kondo effect in the unitary limit.

Note how the conductance maximum gradually approaches

2e2/h with decreasing temperature. Here, the limit is reached

only at some particular Vg , showing a peak instead of an

extended plateau as reported by van der Wiel et al.28 Since

tunneling is so strong that level widths are almost as large as

the Coulomb interaction on the dot, the dot occupancy nd is

not well quantized but rather changes monotonically, passing

FIG. 2. (Color online) The Kondo effect in its unitary limit.

The main plot shows the linear conductance G in valley III, as a

function of backgate voltage Vg at different temperatures. The dark

blue curve corresponds to the lowest temperature of 10 mK. Inset:

the red triangles correspond to the temperature dependence of the

conductance at a fixed Vg = −3.107 V (marked by the red triangle in

the main graph). The blue curve represents the result of approximation

with Eq. (4) where G0 = 1.98e2/h and TK = 1.65 K.

through nd = 1 (n↑ = n↓ = 1/2) at Vg ≈ −3.1V, where the

unitary limit is observed. In accordance with the Friedel sum

rule, the conductance of the dot is predicted to depend on the

dot occupancy n↑,↓ as G(↑ , ↓) = (e2/h) sin2(πn↑,↓). So the

sum of the conductances is 2e2/h when nd = 1. Note that

the Kondo conductance shown in Fig. 1(c) always exceeds

1.3 e2/h for different dot occupancies, showing that the

wave-function overlap with the two leads is rather equal:

the two couplings are within a factor of four of each other

over this whole range, suggesting that disorder along the

nanowire and especially at the tunnel barriers is quite weak.

To extract the Kondo temperature, we apply a widely used

phenomenological expression6 for the conductance G as a

function of temperature:

G(T ) = G0[1 + (T/T ′
K )2]−s, (4)

where G0 is the zero-temperature conductance, T ′
K =

TK/(21/s − 1)1/2, and the parameter s = 0.22 was found to

give the best approximation to NRG calculations for a spin-1/2

Kondo system.33 Here, the definition of TK is such that

G(TK) = G0/2. The inset of Fig. 2 shows the conductance

for different temperatures at Vg = −3.107 V (marked by the

red triangle in the main figure). The blue curve in the inset rep-

resents the result of the data approximation using Eq. (4) where

the fitting parameters G0 and TK are (1.98 ± 0.02)e2/h and

1.65 ± 0.03 K,37 respectively, showing that the system is in the

“zero-temperature” limit at base temperature, TK/Tbase ≈ 165.

B. Conductance scaling with temperature,

magnetic field, and bias

As noted above, the Kondo conductance as a function of

temperature, bias or magnetic field should be describable by

three universal functions common for any system exhibiting

the Kondo effect. Before discussing expectations for universal

scaling we describe in detail how temperature, magnetic field,

and bias affect the Kondo conductance in our experimental

system.

1. Kondo conductance and Kondo temperature

at zero magnetic field

For a more detailed look at the spin-1/2 Kondo effect

at B = 0, we select the two Kondo valleys IV and V [see

Fig. 1(c)]. The zoomed-in plot of these two valleys is shown

in Figs. 3(a) and 3(b). The coupling to the leads, and hence

the Kondo temperature, is much larger in valley V than in

valley IV. Valley IV shows a typical example of how two wide

Coulomb blockade peaks merge into one Kondo valley as the

temperature decreases below TK.7,8,28 Valley V, in contrast,

does not evolve into separate CB peaks even at our highest

measurement temperature of 620 mK. Also, as seen from

Fig. 3(b), the width of the ZBA, which is proportional to

TK, is larger for valley V. To illustrate this, in Figs. 4(a) and

4(b), we plot the conductance as a function of Vsd at different

temperatures for two values of Vg [marked by red triangles

in Fig. 3(a)] corresponding to the two valleys. In addition to

the ZBA of valley IV being significantly narrower than that of

valley V, at the highest temperatures, the ZBA of valley IV is

completely absent, while the ZBA of valley V is still visible,

pointing to a significant difference in TK. To quantify this
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FIG. 3. (Color online) (a) The detailed measurement of the

conductance temperature dependence shown in Fig. 1(c), valleys

IV and V. The red triangles mark two values of Vg = −2.835 and

−2.680 V for which the conductance as a function of Vsd is plotted in

Figs. 4(a) and 4(b), respectively. (b) The gray-scale conductance plot

in the Vg-Vsd plane was measured in the same range of Vg as in (a),

at temperature T = 10 mK.

observation, we found TK as a function of Vg for both valleys by

fitting the temperature-dependent conductance using Eq. (4).

The result of this fit is presented in Figs. 4(c) and 4(d). TK

shows a parabolic evolution across each valley, with TK ranging

from 0.3 to 1 K for valley IV and from 1.3 to 3 K for valley V.

This significant difference in TK correlates with the difference

in the ZBA width shown in Figs. 4(a) and 4(b). However, the

relation between the FWHM of the ZBA peak and TK is more

ambiguous due to out-of-equilibrium physics.38

To understand the dependence of TK on Vg and to extract

some relevant parameters of the system, we use an analytic

prediction for the dependence of the Kondo temperature based

on the microscopic parameters in the Kondo regime of the

single-impurity Anderson model:39

TK = η
NRG

√
ŴU

2
exp

[

πε0(ε0 + U )

ŴU

]

. (5)

Here, Ŵ is the width of the resonant tunneling peak, U =
e2/Ctot is the charging energy (Ctot is the total capacitance of

the dot), and ε0 is the energy of the resonant level relative to the

Fermi level. As TK is derived from the conductance [c.f. text

following Eq. (4)], the prefactor η
NRG

in Eq. (5) of order unity

was calibrated using the NRG. To this end, we calculated the

conductance G(T ) for the single-impurity Anderson model

at ε0 = −U/2, for fixed U/Ŵ ≃ 4.5. The requirement that

G(T = TK)/G(0) = G0/2 fixes the prefactor in TK to η
NRG

≃
1.10, which we took constant throughout. η

NRG
does vary as

a function of U/Ŵ within a few tens of percent, due to the

exponential sensitivity of Eq. (5), however, since U and Ŵ

are already pretty well constrained in our case, this results in

negligible variations in our fitted U , ε0, or Ŵ.

FIG. 4. (Color online) Nonlinear conductance as a function of

Vsd around zero bias for different temperatures at Vg = −2.835 V (a)

and Vg = −2.680 V (b), near the centers of Kondo valleys IV and V.

The color scale is as in Fig. 3(a). (c) and (d) The Kondo temperature

TK, plotted on a semi-log scale, as a function of Vg for these same

valleys. Panel (c) corresponds to valley IV and panel (d) to valley V.

Blue curves in both panels show fits of Eq. (5) to data, with ŴIV ≈ 176

µeV for valley IV and ŴV ≈ 435 µeV for valley V.

To determine the parameters U , ε0, and Ŵ, we proceed as

follows. The value of U ≈ 400 µeV was found from Fig. 3(b)

for valley IV (we assume the value is equal for valley V, though

it may be slightly lower, given the stronger tunnel coupling

there). To relate ε0 and Vg , we used a simple linear relation

Vg − Vg0 = αε0 with the lever arm α = Ctot/Cg , where Vg0

is the position of the Coulomb peak and Cg is the gate

capacitance. Here, Ctot = e2/U and Cg = e/�Vg where �Vg

is the CB period. Ŵ was determined by fitting the curvature

of ln TK with respect to gate voltage in Figs. 4(c) and 4(d),

yielding ŴIV ≈ 176 µeV and ŴV ≈ 435 µeV for valleys IV

and V, respectively.

As noted above, the predicted dependence of TK in Eq. (5)

is based on the Anderson model in the Kondo regime (ε0/Ŵ <

−1/2).39 The fitting of the data with Eq. (5), however, gave

ε0/ŴIV ∼ −1.1 and ε0/ŴV ∼ −0.5 in the centers of valleys

IV and V, respectively. So the Kondo regime {|ε0|,|ε0 + U |} >

Ŵ/2 is reached only near the center of valley IV and only at

the very center of valley V. The rest of the gate voltage range

in these valleys is the mixed valence regime, where charge

fluctuations are important and Kondo scaling should not be

quantitatively accurate.40 Note that our NRG calculations show

that the deviations from universal scaling up to ε0 ∼ −Ŵ/2

should be small for T < TK . In any case, we have not attempted

to take into account multiple levels in our calculations, which

could quantitatively but not qualitatively modify the predicted

behaviors.

2. Kondo conductance at nonzero magnetic field

The Kondo effect in quantum dots at nonzero magnetic

field is predicted and observed to exhibit a Zeeman splitting

of the ZBA by an energy � = 2|g|µBB6,8 (g is the g-factor
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FIG. 5. (Color online) The Zeeman splitting of the Kondo ZBA

measured at T = 10 mK. (a) The gray-scale conductance plot of

Kondo valley IV [see Fig. 3(a)] measured at B = 0. (b) The same

as in (a) but at B = 100 mT. (c) Gray-scale conductance plot in

the Vsd-B plane measured at fixed Vg = −2.835 V denoted by the

cross in panel (a). The red dashed lines represent the result of the

fitting with expression Vsd = ±|g|µBB/e, where |g| = 7.5 ± 0.2.

Vertical blue dashed line marks magnetic field value 0.5kBTK/|g|µB

as a reference for the onset of Zeeman splitting (here TK = 300 mK).

While |g| = 7.5 gives the best match to linear Zeeman splitting, |g| =
18 (green dotted lines) could account for the fact that Zeeman splitting

is resolved at very low field. (d) Conductance at Vsd = 0 as a function

of T (blue squares) and as a function of the effective temperature

TB ≡ |g|µBB/kB (red triangles). The solid blue curve shows G(T )

from NRG, the solid red curve G(B) from NRG, and the dashed black

curve G(B) from exact Bethe ansatz (BA) calculations for the Kondo

model.44,45 These assume |g| = 7.5. For NRG and BA calculations

of magnetic field dependence, additional curves (solid green and

dashed brown) are plotted for |g| = 18, showing better match to

linear conductance data—though not to the differential conductance

in (c) above.

and µB is the Bohr magneton), which is a direct consequence

of the (now broken) spin-degeneracy of the many-body Kondo

singlet.41,42

To analyze the Zeeman splitting in our nanowire-based

quantum dot, we focus on Kondo valley IV. The Kondo ZBA

at zero field, seen in a zoom-in in Fig. 5(a), is suppressed

at B = 100 mT, but recovers once a bias of ∼40 µV is

applied [Fig. 5(b)]. Contrary to earlier observations in InAs

nanowires,20 we find that the g-factor at a given field is

independent of Vg as illustrated by the parallel slitlike shape of

the Zeeman splitting [see Fig. 5(b)]. (The g-factor measured for

valley III at Vg = −3.12 V is |g| = 7.5 ± 0.2. Unfortunately,

it was problematic to extract the g-factor reliably for valley

V due to large ŴV and it was hence assumed to be the

same as for valley IV. The g-factor for valley I measured

at Vg = −3.5 V [see Fig. 1(c)] turns out to be somewhat

larger |g| = 8.7 ± 0.2.) The gray-scale conductance plot in

Fig. 5(c) presents the evolution of the Zeeman splitting with

magnetic field at fixed Vg = −2.835 V, marked by the cross in

Fig. 5(a) [for the associated ZBA measured at B = 0 refer to

Fig. 4(a)]. The plot shows the splitting in bias �/e to be almost

linear in magnetic field, which allows us to deduce the value

of the g-factor by fitting the data with a linear dependence

Vsd = ±|g|µBB/e for 30 mT< B < 100 mT. Two red lines in

Fig. 5(c) show the result of fitting with |g| = 7.5 ± 0.2 (the

meaning of the dotted green lines will be discussed below).

This number is smaller by a factor of two than the InAs bulk

value of |g| = 15, possibly due to the reduced dimensionality

of the nanowire device,43 and it is consistent with previous

measurements.19

We now compare the dependence of the Kondo conductance

on the temperature and magnetic field, respectively. In order

to do so, we plot on the same graph G(T ,B = 0) and

G(T = Tbase,B) both taken in equilibrium at Vg = −2.835 V

[see Fig. 5(d)]. In order to quantitatively compare the effect

of magnetic field to that of temperature, we associate each

magnetic field value with an effective temperature TB(B) ≡
|g|µBB/kB, where |g| = 7.5 is extracted from the linear

Zeeman splitting of peaks in differential conductance. The

comparison of the linear conductance data is presented in

Fig. 5(d), where G(T ) is shown by the blue squares, G(B)

by the red triangles. In this same plot, theoretical predictions

are shown as curves: blue for G(T ) and red for G(B). Note

that for |g| = 7.5 (this value extracted from the splitting

of the differential conductance peaks), the blue and red

curves differ substantially for essentially all nonzero values

of their arguments, with magnetic field having a much weaker

predicted effect than temperature. Surprisingly, in light of this

theoretical prediction, the two sets of experimental data lie

almost on top of one another up to about 200 mK ≈ TK.

The NRG results for G(T = 0,B)42,44 have been checked

against exact Bethe ansatz calculations42,45 for G(T = 0,B)

[dashed black curve in Fig. 5(d)] and are seen to be in

excellent agreement, so the disagreement between theory

and experiment is not related to a particular calculational

framework. Were we to assume |g| = 18, we could explain the

experimental magnetic field dependence of linear conductance

G(T = 0,B), as shown by alternative curves (solid green and

dashed brown) plotted in Fig. 5(d). This value of g is within

the realm of possibility for InAs nanowires.20 However, we

are inclined to rely on the g value of 7.5 extracted from the

splitting of the peaks in the differential conductance. With

|g| = 18 we would have the puzzling result that the splitting

of peaks in differential conductance would be less than half the

expected 2|g|µBB [see dotted green lines in Fig. 5(c)], which

would be hard to explain. Regardless, the mismatch between

the strength of magnetic field effects on linear and differential

conductance is a conundrum. We hope this work will stimulate

further theory and experiment to address this issue.

3. Universal conductance scaling

In testing universal conductance scaling, we concentrate

first on the scaling of the linear conductance with T and

B. In the case of temperature dependence, the universal

scaling function has the form of Eq. (4). This expression

has been applied to a wide variety of experimental Kondo

systems7,11,14,19 and after expansion in the low-energy limit
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(T/TK ≪ 1) it becomes Eq. (1) describing the quadratic

dependence on temperature:32

G ≈ G0[1 − cT (T/TK)2], (6)

where cT = cA = s(21/s − 1) = 4.92 and s = 0.22 is taken

from Eq. (4). Note that this coefficient cT is about 10% smaller

than the more reliable value cT = 5.3830,33,46,47 found from

the NRG calculations on which the phenomenological form

of Eq. (4) is based. (This slight disagreement stems from the

fact that the phenomenological expression given by Eq. (4)

was designed for the intermediate range of temperatures and

does not necessarily describe the dependence accurately at

asymptotically low T ≪ TK or asymptotically high T ≫ TK

temperatures. Hereafter, for the low-temperature analysis, we

use the theoretically predicted value cT = 5.38, see Table I)

Since Eq. (4) is independent of the particular system, it can

be used as the universal scaling function G/G0 = f (T/TK).

Figures 6(a) and 6(b) show the equilibrium Kondo conductance

(1 − G/G0) of valleys IV and V [see Fig. 3(a)] plotted as

a function of T/TK, taken at different Vg . Here, the values

of G0 and TK are found by fitting the data with Eq. (4) for

T � 200 mK (for higher temperatures the conductance starts

to deviate from the expected dependence due to additional

high-temperature transport mechanisms). As seen in Figs. 6(a)

and 6(b), all the data collapse onto the same theoretical curve

(dashed) regardless of the values of Vg or TK. In the low-

energy limit T/TK < 0.1, the conductance follows a quadratic

dependence set by Eq. (1) with coefficient cA = cT = 5.38 as

shown by the dotted line. As noted above, in the low-energy

limit, the phenomenological expression Eq. (4) is less accurate

and shows a quadratic dependence with cT = 4.92. This

explains why the dashed and dotted curves in Figs. 6(a) and

6(b) do not coincide at T/TK < 0.1.

It should also be possible to scale G(B) as a function of a

single parameter TB/TK. As an example, we present in Fig. 6(a)

scaled G(B) data from Fig. 5(d). At low fields, the measured

conductance is found to depend on B according to Eq. (1),

with the coefficient cA = cB ≈ cT . This equality has also been

independently checked by fitting the G(B) and G(T ) data for

T/TK,TB/TK < 0.1 with Eq. (1). The ratio between the two

fit coefficients, cB/cT , is approximately 1 (cB/cT = 0.95 ±
0.2), strongly counter to the theoretical expectations where

cB = 0.55 and cB/cT = 0.101, see Table I. To illustrate this

discrepancy, we plot Eq. (1) with cA = cB = 0.55 in Fig. 6(a)

(dash-dot line). The reason for such a dramatic difference in

G(B) dependence between theory and experiment for both

low- and intermediate-field range is unclear. We speculate

that the spin-orbit interaction, previously observed in InAs

nanowire-based quantum dots,48 may play a role.

It is important to note that in order for the universal scaling

G(B) to be valid, the coefficient G0 in Eqs. (1) and (3) should

be independent of B. In the case of GaAs quantum dots7,8,26,49

with |gGaAs| = 0.44, the magnetic field required to resolve

the Zeeman splitting is high and the orbital effects of that

field contribute significantly, resulting in a B-dependent G0,

even for a field parallel to the plane of the heterostructure.

In contrast, in our InAs nanowire-based quantum dot, with

large g-factor and small dot area S = 50 nm × 450 nm, Kondo

resonances are suppressed (split to finite bias) at fields smaller

FIG. 6. (Color online) (a) and (b) The equilibrium conductance

of Kondo valleys IV (a) and V (b) at different Vg , scaled as a

function of a single argument T/TK (blue squares) and TB/TK (red

triangles), where TB ≡ |g|µBB/kB. The dashed curve shows the

universal function described by Eq. (4). The dotted line represents

the low-energy limit of Eq. (1) with cA = cT = 5.38. The dash-dotted

line shows the theoretically predicted low-field scaling of G(B) with

cB = 0.55. The values of G0 and TK were found by fitting the data

with Eq. (4), see Sec. III B 1. For values of Vg refer to Figs. 4(c),

4(d), and 5(d). (c) and (d) The scaled conductance �G/α̃ = [1 −
G(T ,Vsd)/G(T ,0)]/α̃, where α̃ = cT α/[1 + cT (γ /α − 1)](T/TK)2,

versus (eVsd/kBTK)2 taken at several Vg along Kondo valleys IV (c)

and V (d). For valley IV, the backgate voltage was chosen from the

range Vg = −2.82 to −2.85 V with 5 mV step and for valley V from

the range Vg = −2.68 to −2.72 V with 20 mV step. Different colors

of the data points represent different temperatures (9.5, 12.9, 22.4,

32.6, 46.1, and 54.2 mK). The dashed line shows the corresponding

scaling function given by Eq. (7) with α = 0.18 and γ = 1.65.

than that required to thread one magnetic flux quantum B <

(h/e)/S ≈ 180 mT, thus making the orbital effects negligible

and G0 magnetic field independent.

Now that the scaling of the linear conductance has been

established, including the stronger-than-expected effect of

magnetic field, we examine how the out-of-equilibrium con-

ductance scales as a function of bias and temperature G/G0 =
f (T/TK,eVsd/kBTK). The function used to test the universal

scaling in a GaAs quantum dot,32 and in a single-molecule

device,14 originates from the low-bias expansion of the Kondo

local density of states50 and has the following form:

G(T ,Vsd)

= G(T ,0)






1 − cT α

1 + cT

(

γ

α
− 1

)

(

T
TK

)2

(

eVsd

kBTK

)2






. (7)

The coefficients α and γ relate to the zero-temperature

width and the temperature-broadening of the Kondo ZBA,

respectively. The zero-bias conductance G(T ,0) is defined

by Eq. (6). The coefficients α and γ are independent of the
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definition of the Kondo temperature and in the low-energy

limit Eq. (7) reduces to the theoretically predicted expression

for nonequilibrium Kondo conductance:31

G(T ,Vsd) − G(T ,0)

cT G0

≈ α

(

eVsd

kBTK

)2

− cT γ

(

T

TK

)2 (

eVsd

kBTK

)2

. (8)

The independence of α and γ on the definition of Kondo

temperature is important; though we have chosen an explicit

definition for TK, consistent with the choice used for most

quantum dot experiments and NRG calculations, other defini-

tions may differ by a constant multiplicative factor.

Figures 6(c) and 6(d) show the scaled finite-bias con-

ductance [1 − G(T ,Vsd)/G(T ,0)]/α̃, where α̃ = cT α/[1 +
cT (γ /α − 1)](T/TK)2, versus (eVsd/kBTK)2, measured at dif-

ferent temperatures and a few values of Vg . The conductance

data are fit with Eq. (7) using a procedure described by

M. Grobis et al.32 with two fitting parameters α and γ . The

range of temperatures and biases used for the fitting procedure

was chosen to be close to the low-energy limit, namely,

T/TK < 0.2 and eVsd/kBTK � 0.2, which is comparable to

the ranges used in Ref. 32. Averaging over different points

in Vg gives α = 0.18 ± 0.015 and γ = 1.65 ± 0.2 for valley

IV. Despite valley V being in the mixed-valence regime, the

parameters α and γ are close to those found for valley IV.

The scaled conductance in both cases collapses onto the same

curve, shown by the dashed line, for ±(eVsd/kBTK)2 � 0.1,

though the data from valley V deviate more from the predicted

scaling. This is not surprising because the valley V data are

in the mixed-valence regime, beside that the bias can cause

additional conduction mechanisms due to proximity of the

Coulomb blockade peaks.

Overall, the value of α obtained in our experiment is

larger than previously observed in a GaAs dot32,51 (α = 0.1)

and single molecule14 (α = 0.05). The exact reason for this

discrepancy is unknown, but the smaller ratio Tbase/TK may

play a role.

There is a large number of theoretical works devoted

to the universal behavior of finite-bias Kondo conductance

based on both the Anderson33,47,52–59 and Kondo29,31,60–63

models. Early predictions based on an exactly solvable point

of the anisotropic nonequilibrium Kondo model31,60,61 yielded

a value α = cV /cT = 3/π2 ≈ 0.304. This turned out to be

in disagreement with experiment, which is not surprising,

since this coefficient is not universal and hence will not

be the same for the isotropic Kondo models. A number of

subsequent papers that used a Fermi-liquid approach to treat

the strong-coupling fixed point of the Kondo model29,64,65

or studied the U → ∞ limit of the symmetric Anderson

model,52–57 all found α = 3/(2π2) ≈ 0.152. Our measured

value of α = 0.18 is in a good agreement with this prediction.

A Bethe-Ansatz treatment of the nonequilibrium Anderson

model47 yielded a different result, α = 4/π2, but this was

obtained using some approximations and was not claimed to

be exact. Some of the more recent theoretical papers have

studied the αV coefficients for the nonequilibrium Anderson

model under less restrictive conditions, i.e., allow for a

left-right asymmetry and a noninfinite U , in an attempt to

explain the experimental results of Refs. 14,32. J. Rincón and

coauthors53–55 found that by setting U to be finite the expected

value of α is decreased from 0.152 to 0.1, but γ remains ≈0.5.

Later, P. Roura-Bas56 came to a similar conclusion considering

the Anderson model in the strong-coupling limit in both the

Kondo and the mixed-valence regimes. It was shown56 that

α reduces from 0.16 to 0.11 if some charge fluctuation is

allowed by shifting from the Kondo to the mixed-valence

regime, and the parameter γ is not necessarily temperature

independent. In an attempt to explain the small α observed in

molecular devices14 Sela and Malecki57 evaluated a model for

the Anderson impurity asymmetrically coupled to the leads.

They concluded that deep in the Kondo regime α takes the

value of 3/(2π2) ≈ 0.152 independent of coupling asymmetry.

However, if U is made finite or, in other words, some charge

fluctuations are included, the parameter can vary within the

range 3/(4π2) � α � 3/π2 (0.075 � α � 0.3) depending on

the asymmetry of the tunneling barriers. Despite the fact that

our system is far from the strong coupling limit (U ∼ Ŵ,

instead of U ≫ Ŵ, see Sec. III B 1), the observed value of

α = 0.18 is a good match to the strong-coupling prediction.

From temperature, magnetic field, and bias scaling of the

measured conductance, we are able to define a complete set

of coefficients cA to be used in Eq. (1) in order to describe the

Kondo effect in the low-energy limit:

G(T ) = G0[1 − cT (T/TK)2],

G(B) = G0[1 − cB(|g|µBB/kBTK)2],

G(Vsd) = G0[1 − cV (eVsd/kBTK)2],

where G0 is the conductance at zero temperature, magnetic

field, and bias, cT ≈ 5.6 ± 1.2, cB ≈ 5.1 ± 1.1, and cV =
cT α ≈ 1.01 ± 0.27. The substantial uncertainties originate

from the small number of experimental points satisfying the

requirement of low temperature, field, and bias used during

fitting with Eq. (1). Table I summarizes the experimental value

of these three parameters and compares to their theoretical

predictions. (The parameter α discussed above is denoted by

αV in the table.)

C. Zeeman splitting

At nonzero magnetic field, the spin degeneracy of the

Kondo singlet is lifted and the linear conductance through

the dot is suppressed.41 To recover strong transport through

the dot, a bias of ± 1
2
�/e = ±|g|µBB/e should be applied

in order to compensate for the spin-flip energy. As a result,

in experiments, the ZBA is split into two peaks separated by

e� = 2|g|µBB/e,6,8 providing information on the effective

g-factor. This is why the splitting of the Kondo conductance

feature has become a popular tool for evaluating the value

and behavior of the g-factor in quantum dots made of

different materials.12,16,17,19,20,26,72 In this section, we discuss

two unexpected features related to the Zeeman splitting. First,

the minimal value of field needed to resolve the Zeeman

splitting is lower than expected. Second, the splitting is weakly

sublinear with magnetic field at larger fields.

Some attention has been previously paid to the value of

the critical field Bc at which the splitting of the Kondo

ZBA occurs. The theory developed by one of the present
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TABLE I. Summary of theoretically predicted parameters cT , cV , cB , and Bc and their experimental values. The second column lists the

values of the parameters c′
A appearing in G(A) = G0[1 − c′

A(A/kBT0)2], using a definition for the Kondo scale that is widespread in theoretical

papers, namely, T0 = 1/(4χ0), where χ0 is the static impurity spin susceptibility at T = 0. This definition of the Kondo temperature differs

from the TK used in this paper, i.e., G(TK) = G(0)/2, by the factor TK/T0 = 0.94.66 Thus the coefficients cA defined in our Eq. (1) and listed

in the fourth column are related to those in the second by cA/c′
A = (TK/T0)2. We cite only references that are relevant for the symmetric

Anderson model in the large-U limit, where the local occupancy is one; generalizations for the asymmetric Anderson model may be found in

Refs. 53–55,57,58,63. The last row lists values for the critical magnetic field Bc beyond which the Kondo ZBA splits and it is expressed in

units of TK defined by Eq. (2) (Theory: column 2; Experiment: column 5).

Parameter Predicted c′
A αA = c′

A/c′
T cA = c′

A(TK/T0)2 Experimental value

cT π 4/16 ≈ 6.088a 1 5.38 5.6 ± 1.2b

cV 3π 2/32 ≈ 0.925c 3/(2π 2) ≈ 0.152 0.82 1.01 ± 0.27,b 0.670,d 0.304e

cB π 2/16 ≈ 0.617f 1/π 2 ≈ 0.101 0.55 5.1 ± 1.1b

|g|µBBc/kBTK 1.06,g 1.04,h 1.1i <0.5,b 0.5,j 1,k 1.5l

aReferences 29,30,33,46,47,64,65,67–69.
bPresent experiment.
cReferences 29,52–57,63–65.
dReferences 32,51.
eReference 14.
fReferences 29,47,64,65.
gReference 42.
hReference 70.
iReference 71.
jReference 72.
kReference 49.
lReference 12.

authors42 predicts the value of the critical field at T/TK <

0.25 to be Bc = 1.06kBTK/|g|µB, with similar values being

found by other authors.70,71,73 Treating nonequilibrium more

realistically gives a slightly larger value.71 Recent work by the

authors, using density matrix approaches,74,75 suggests that

a precise determination of the critical field is a numerically

difficult task, which will require further work in order to

establish this beyond any doubt. There are also somewhat

conflicting experimental data on this issue. The value of Bc

predicted by Costi42 and Hewson et al.70 seems to agree with

the experimental findings for GaAs dots,49 however, in gold

break junctions72 the onset of the splitting was measured at

0.5kBTK/|g|µB and in the case of carbon nanotubes12 at about

1.5kBTK/|g|µB. In our case, TK = 300 mK [see Fig. 4(c)],

thus the predicted Bc
42,70,71,73 is expected to be ∼60 mT

(for |g| = 7.5), more than twice as large as that observed

experimentally: as seen in Figs. 7(a) and 5(c), the splitting

is already well resolved at B = 30 mT, which corresponds

to ∼0.5kBTK/|g|µB, the same as the result for gold break

junctions.72 Such a wide deviation of Bc found for various

Kondo systems (see Table I) may be associated with a different

width of ZBA (relative to TK ) in the various experiments.

Since the conductance peak discussed here [see Fig. 4(a)] is

rather narrow, most likely due to the relatively low temperature

T/TK ≈ 1/30, it is possible to resolve the splitting onset

at lower magnetic field. The analysis of the nonequilibrium

scaling parameters, described in Sec. III B 3, confirms the

above assumption.

Finally, we discuss the evolution of the splitting � with

magnetic field. Theory predicts that the peaks in the spectral

function for spin-up and spin-down electrons should cling

closer to zero energy at relatively low magnetic fields than

might naively be expected, so that � should be suppressed by

up to ≈1/3 in the low-field limit.46,76–80 One recent experi-

mental report corroborates this predicted trend of suppressed

splitting at low field.12 But the variety of deviations from

linear splitting in experiments—especially near the onset of

splitting—is large.12,49 To make small variations in � more

visible, we plotted the normalized value δ(B) ≡ �/(2|g|µBB)

in Fig. 7(b). The value of � was deduced from a simple peak

maximum search (blue squares) and by fitting the data with the

sum of two asymmetric peak shapes and some background (red

triangles). To fit G as a function of Vsd we used a combination

of two Fano-shape asymmetric peaks on a cubic background:

G(Vsd) = A1

(

− Vsd+V1

Ŵ1
+ q1

)2

1 +
(

− Vsd+V1

Ŵ1

)2
+ A2

(

Vsd+V2

Ŵ2
+ q2

)2

1 +
(

Vsd+V2

Ŵ2

)2

+B|Vsd|3 + C. (9)

Here, A1 and A2 are the amplitudes, Ŵ1 and Ŵ2 are the

widths, q1 and q2 are the asymmetry parameters of the two

Fano resonances positioned at dc bias V1 and V2, respectively.

Parameters B and C characterize the cubic conductance back-

ground. Without the cubic background, the positions of the

conductance peaks, which correspond to Fano resonances at

V1 and V2 would be Vp1 = V1 + Ŵ1/q1 and Vp2 = V2 + Ŵ2/q2.

The peak separation is deduced from the fit according to the

equation �/e = Vp2 − Vp1. The quality of this fit is shown in

Fig. 7(a) by red solid curves. It is clear that at B > 100 mT,

the splitting is sublinear in magnetic field. Coincidence of the

splitting data extracted by two different methods [blue triangles

and red squares in Fig. 7(b)] makes us believe that this effect

is genuine and not an artifact due to weakly bias-dependent
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FIG. 7. (Color online) (a) The nonequilibrium Kondo conduc-

tance as a function of Vsd for several values of B (open blue squares).

The solid red curves represent the approximation of the data made

with the sum of two Fano-shaped peaks and a cubic background.

(b) The normalized Zeeman splitting �/[2|g|µBB] as a function

of B data acquired from the peak maximum search (blue squares)

and after fitting with two asymmetric peak shapes (red triangles).

The vertical blue and green dashed lines denote magnetic field of

0.5kBTK/|g|µB and kBTK/|g|µB correspondingly (here |g| = 7.5 and

TK = 300 mK).

background conductance. In contrast, splitting extracted from

our data at low fields B < kBTK/|g|µB is dependent on the

extraction method used, so we do not wish to make quantitative

claims for the magnitude of splitting in that field range. Our

results differ from previous observations mainly in that a

sublinear field splitting occurs also at higher fields and not

only at the onset of the splitting.12,49 We are unaware of any

theoretical predictions which would explain such sublinear

splitting or effective reduction in the g-factor at higher fields.

Previous theoretical works on the Kondo model predicted

a suppressed splitting δ(B) = �/2|g|µBB increasing mono-

tonically toward one for gµBB ≫ kBTK with logarithmic

corrections.76,80,81 For the Anderson model, similar results

have been found with δ(B) rising monotonically with increas-

ing B.77,82,83 However, in some works71,77,82 δ(B ≫ kBTK)

is found to exceed one, whereas in other works,46,83 δ(B ≫
kBTK) remains below one. This discrepancy between different

approaches is likely due to different approximations and the

extent to which universal aspects as opposed to nonuniversal

aspects are being addressed and remains to be clarified. For

example, it is known that extracting peak positions in equi-

librium spectral functions within NRG is problematic.71,83,84

Extracting a Zeeman splitting from experimental dI/dVsd at

finite bias and large magnetic fields is also complicated by the

increasing importance of higher levels and nonequilibrium

charge fluctuations.85 Nevertheless, our results for δ(B ≫
kBTK) in Fig. 7(b) exhibit a monotonically decreasing δ(B)

in the high-field limit for B > 1.5kBTK/|g|µB. This contrasts

to current theoretical predictions. As we cannot exclude the

contribution of orbital effects at higher B, the magnetic fields

used to determine the g-factor were chosen to be smaller than

100 mT (flux through dot �0.6�0).

IV. CONCLUSION

In conclusion, we have performed a comprehensive study of

the spin-1/2 Kondo effect in an InAs nanowire-based quantum

dot. This experimental realization of a quantum dot allowed

us to observe and thoroughly examine the main features of the

Kondo effect including the unitary limit of conductance and

dependence of the Kondo temperature on the parameters of

the quantum dot. Also the Kondo temperature’s quantitative

relation to the Kondo ZBA shape, Zeeman splitting of the ZBA,

and scaling rules for equilibrium and nonequilibrium Kondo

transport were studied. A previously undetected dependence of

the g-factor on magnetic field was observed. The nonequilib-

rium conductance matches the previously introduced universal

function of two parameters with expansion coefficients, α =
0.18 and γ = 1.65, in quantitative agreement with predictions

for the infinite-U Anderson model, and consistent with the

allowed range for the finite-U asymmetric Anderson model.

We conclude that InAs nanowires are promising new objects to

be used in future mesoscopic transport experiments, including

highly quantitative studies.

There is one experimental observation, however, that is

strikingly at odds with theoretical expectations: the con-

ductance G(B) at low temperatures shows a much stronger

magnetic field dependence than expected from theoretical

calculations for the single-impurity Anderson model [see

Fig. 5(d)]. As possible cause for this unexpected behavior,

we suggest spin-orbit interactions, which are known to be

strong in InAs nanowires.48 The occurrence of a Kondo effect

is compatible with the presence of spin-orbit interactions,

since they do not break time-reversal symmetry. However,

they will, in general, modify the nature of the spin states that

participate in the Kondo effect.86–89 In the present geometry,

where spin-orbit interactions are present in the nanowire (but

not in the leads), there will be a preferred quantization direction

(say �nso) for the doublet of local states. In general, �nso is not

collinear with the direction of the applied magnetic field, �B.

The local doublet will be degenerate for �B = 0, allowing a

full-fledged Kondo effect to develop as usual in the absence

of an applied magnetic field. However, the energy splitting

of this doublet with increasing field will, in general, be a

nonlinear function of | �B|, whose precise form depends on the

relative directions of �B and �nso. According to this scenario,

the magnetoconductance curves measured in the present work

would not be universal, but would change if the direction of

the applied field were varied. A detailed experimental and

theoretical investigation of such effects is beyond the scope

of the present paper, but would be a fruitful subject for future

studies.
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