000189772 001__ 189772
000189772 005__ 20210129215434.0
000189772 0247_ $$2doi$$a10.1016/j.jcrysgro.2014.03.043
000189772 0247_ $$2ISSN$$a0022-0248
000189772 0247_ $$2ISSN$$a1873-5002
000189772 0247_ $$2WOS$$aWOS:000336430900006
000189772 037__ $$aFZJ-2015-02802
000189772 082__ $$a540
000189772 1001_ $$0P:(DE-HGF)0$$aAhl, J.-P.$$b0$$eCorresponding Author
000189772 245__ $$aMorphology, growth mode and indium incorporation of MOVPE grown InGaN and AlInGaN: A comparison
000189772 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2014
000189772 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430374023_14349
000189772 3367_ $$2DataCite$$aOutput Types/Journal article
000189772 3367_ $$00$$2EndNote$$aJournal Article
000189772 3367_ $$2BibTeX$$aARTICLE
000189772 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189772 3367_ $$2DRIVER$$aarticle
000189772 520__ $$aWe compared InGaN- and AlInGaN-layers grown by metal-organic vapor phase epitaxy (MOVPE) in terms of morphology, growth mode and indium incorporation. The growth parameters of the AlInGaN layers only differed from InGaN growth by an additional trimethylaluminum (TMAl) flow. Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS) measurements showed that the indium incorporation in AlInGaN was significantly increased compared to InGaN. Atomic force microscopy (AFM) was used to analyze the morphology and the growth mode. The additional TMAl flow changed the growth mode from a step-flow mode to a 2-dimensional (2D) island nucleation mode, yielding a smoother layer morphology. This behavior can be explained by the low surface mobility of the Al adatoms and their nucleation on terraces between adjacent steps. Step bunching – as observed for InGaN – was avoided during AlInGaN growth. This reduced the AFM root mean square roughness by 40% compared to InGaN. Possible impacts on charge carrier localization in QWs are discussed.
000189772 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000189772 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189772 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000189772 7001_ $$0P:(DE-HGF)0$$aHertkorn, J.$$b1
000189772 7001_ $$0P:(DE-HGF)0$$aKoch, H$$b2
000189772 7001_ $$0P:(DE-HGF)0$$aGaller, B.$$b3
000189772 7001_ $$0P:(DE-HGF)0$$aMichel, B.$$b4
000189772 7001_ $$0P:(DE-HGF)0$$aBinder, M.$$b5
000189772 7001_ $$0P:(DE-Juel1)125595$$aHolländer, B.$$b6$$ufzj
000189772 773__ $$0PERI:(DE-600)1466514-1$$a10.1016/j.jcrysgro.2014.03.043$$gVol. 398, p. 33 - 39$$p33 - 39$$tJournal of crystal growth$$v398$$x0022-0248$$y2014
000189772 8564_ $$uhttp://www.sciencedirect.com/science/article/pii/S0022024814002619
000189772 8564_ $$uhttps://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.pdf$$yRestricted
000189772 8564_ $$uhttps://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.gif?subformat=icon$$xicon$$yRestricted
000189772 8564_ $$uhttps://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000189772 8564_ $$uhttps://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000189772 8564_ $$uhttps://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000189772 8564_ $$uhttps://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189772 909CO $$ooai:juser.fz-juelich.de:189772$$pVDB
000189772 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000189772 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000189772 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000189772 9141_ $$y2014
000189772 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189772 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189772 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189772 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189772 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189772 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189772 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189772 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000189772 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189772 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000189772 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000189772 980__ $$ajournal
000189772 980__ $$aVDB
000189772 980__ $$aI:(DE-Juel1)PGI-9-20110106
000189772 980__ $$aUNRESTRICTED