001     189772
005     20210129215434.0
024 7 _ |a 10.1016/j.jcrysgro.2014.03.043
|2 doi
024 7 _ |a 0022-0248
|2 ISSN
024 7 _ |a 1873-5002
|2 ISSN
024 7 _ |a WOS:000336430900006
|2 WOS
037 _ _ |a FZJ-2015-02802
082 _ _ |a 540
100 1 _ |a Ahl, J.-P.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Morphology, growth mode and indium incorporation of MOVPE grown InGaN and AlInGaN: A comparison
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1430374023_14349
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We compared InGaN- and AlInGaN-layers grown by metal-organic vapor phase epitaxy (MOVPE) in terms of morphology, growth mode and indium incorporation. The growth parameters of the AlInGaN layers only differed from InGaN growth by an additional trimethylaluminum (TMAl) flow. Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS) measurements showed that the indium incorporation in AlInGaN was significantly increased compared to InGaN. Atomic force microscopy (AFM) was used to analyze the morphology and the growth mode. The additional TMAl flow changed the growth mode from a step-flow mode to a 2-dimensional (2D) island nucleation mode, yielding a smoother layer morphology. This behavior can be explained by the low surface mobility of the Al adatoms and their nucleation on terraces between adjacent steps. Step bunching – as observed for InGaN – was avoided during AlInGaN growth. This reduced the AFM root mean square roughness by 40% compared to InGaN. Possible impacts on charge carrier localization in QWs are discussed.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Hertkorn, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Koch, H
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Galler, B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Michel, B.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Binder, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Holländer, B.
|0 P:(DE-Juel1)125595
|b 6
|u fzj
773 _ _ |a 10.1016/j.jcrysgro.2014.03.043
|g Vol. 398, p. 33 - 39
|0 PERI:(DE-600)1466514-1
|p 33 - 39
|t Journal of crystal growth
|v 398
|y 2014
|x 0022-0248
856 4 _ |u http://www.sciencedirect.com/science/article/pii/S0022024814002619
856 4 _ |u https://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189772/files/1-s2.0-S0022024814002619-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:189772
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)125595
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21