001     189773
005     20210129215434.0
024 7 _ |a 10.1016/j.tsf.2013.10.078
|2 doi
024 7 _ |a 0040-6090
|2 ISSN
024 7 _ |a 1879-2731
|2 ISSN
024 7 _ |a WOS:000333968300038
|2 WOS
024 7 _ |a altmetric:21825806
|2 altmetric
037 _ _ |a FZJ-2015-02803
082 _ _ |a 070
100 1 _ |a Wirths, S.
|0 P:(DE-Juel1)138778
|b 0
|e Corresponding Author
245 _ _ |a SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435674413_745
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In this contribution, we propose a laser concept based on a double heterostructure consisting of tensile strained Ge as the active medium and SiGeSn ternaries as cladding layers. Electronic band-structure calculations were used to determine the Si and Sn concentrations yielding a type I heterostructure with appropriate band-offsets (50 meV) between strained Ge and SiGeSn. Reduced pressure chemical vapor deposition system was employed to study the laser structure growth. Detailed analyses regarding layer composition, crystal quality, surface morphology and elastic strain are presented. A strong temperature dependence of the Si and Sn incorporation has been obtained, ranging from 4 to 19 at.% Si and from 4 to 12 at.% Sn (growth temperatures between 350 °C and 475 °C). The high single crystalline quality and low surface roughness of 0.5–0.75 nm demonstrate that our layers are suitable for heterostructure laser fabrication.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 1
|e Corresponding Author
700 1 _ |a Ikonic, Z.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Harrison, P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tiedemann, Andreas
|0 P:(DE-Juel1)128639
|b 4
700 1 _ |a Holländer, B.
|0 P:(DE-Juel1)125595
|b 5
700 1 _ |a Stoica, T.
|0 P:(DE-Juel1)128637
|b 6
700 1 _ |a Mussler, G.
|0 P:(DE-Juel1)128617
|b 7
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 8
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 10
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 11
773 _ _ |a 10.1016/j.tsf.2013.10.078
|g Vol. 557, p. 183 - 187
|0 PERI:(DE-600)1482896-0
|p 183 - 187
|t Thin solid films
|v 557
|y 2014
|x 0040-6090
856 4 _ |u http://www.sciencedirect.com/science/article/pii/S0040609013016891
856 4 _ |u https://juser.fz-juelich.de/record/189773/files/1-s2.0-S0040609013016891-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189773/files/1-s2.0-S0040609013016891-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189773/files/1-s2.0-S0040609013016891-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189773/files/1-s2.0-S0040609013016891-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189773/files/1-s2.0-S0040609013016891-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189773/files/1-s2.0-S0040609013016891-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:189773
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138778
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128639
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125595
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128637
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)133840
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128609
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21