000189775 001__ 189775
000189775 005__ 20210129215435.0
000189775 0247_ $$2doi$$a10.1039/c3ta14816e
000189775 0247_ $$2ISSN$$a2050-7488
000189775 0247_ $$2ISSN$$a2050-7496
000189775 0247_ $$2WOS$$aWOS:000334123100048
000189775 0247_ $$2Handle$$a2128/8554
000189775 0247_ $$2altmetric$$aaltmetric:21825808
000189775 037__ $$aFZJ-2015-02805
000189775 082__ $$a540
000189775 1001_ $$0P:(DE-HGF)0$$aLeichtweiss, Thomas$$b0
000189775 245__ $$aAmorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity
000189775 260__ $$aLondon {[u.a.]$$bRSC$$c2014
000189775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430374288_14055
000189775 3367_ $$2DataCite$$aOutput Types/Journal article
000189775 3367_ $$00$$2EndNote$$aJournal Article
000189775 3367_ $$2BibTeX$$aARTICLE
000189775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189775 3367_ $$2DRIVER$$aarticle
000189775 520__ $$aOxygen-deficient titanium oxide films (TiOx) have been prepared by pulsed laser deposition at room temperature. Samples in their as-deposited state have an average composition of TiO1.6, are optically absorbing and show electronic conductivities in the range of 10 S cm−1. The films are metastable and consist of grains of cubic titanium monoxide (γ-TiO) embedded in an amorphous TiO1.77 matrix. Upon annealing in an argon atmosphere the electrical conductivity of the films increases and comes close to metal-like conductivity (1000 S cm−1) at about 450 °C whereas the local structure is changed: nanocrystalline grains of metallic Ti are formed in the amorphous matrix due to an internal solid state disproportionation. The highly conductive state can be frozen by quenching. During heat treatment in an argon atmosphere a stoichiometric rutile TiO2 surface layer forms due to oxidation by residual oxygen. The combination of a highly conductive TiOx film with such an approximately 20 nm thick rutile cover layer leads to a surprisingly high efficiency for the water-splitting reaction without the application of an external potential.
000189775 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000189775 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189775 7001_ $$0P:(DE-HGF)0$$aHenning, Ralph A.$$b1
000189775 7001_ $$0P:(DE-HGF)0$$aKoettgen, Julius$$b2
000189775 7001_ $$0P:(DE-HGF)0$$aSchmidt, Rüdiger M.$$b3
000189775 7001_ $$0P:(DE-Juel1)125595$$aHolländer, Bernhard$$b4
000189775 7001_ $$0P:(DE-HGF)0$$aMartin, Manfred$$b5
000189775 7001_ $$0P:(DE-HGF)0$$aWuttig, Matthias$$b6
000189775 7001_ $$0P:(DE-HGF)0$$aJanek, Jürgen$$b7$$eCorresponding Author
000189775 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/c3ta14816e$$gVol. 2, no. 18, p. 6631 -$$n18$$p6631-6640$$tJournal of materials chemistry / A$$v2$$x2050-7496$$y2014
000189775 8564_ $$uhttp://pubs.rsc.org/en/Content/ArticleLanding/2014/TA/c3ta14816e#!divAbstract
000189775 8564_ $$uhttps://juser.fz-juelich.de/record/189775/files/c3ta14816e.pdf$$yOpenAccess
000189775 8564_ $$uhttps://juser.fz-juelich.de/record/189775/files/c3ta14816e.gif?subformat=icon$$xicon$$yOpenAccess
000189775 8564_ $$uhttps://juser.fz-juelich.de/record/189775/files/c3ta14816e.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000189775 8564_ $$uhttps://juser.fz-juelich.de/record/189775/files/c3ta14816e.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000189775 8564_ $$uhttps://juser.fz-juelich.de/record/189775/files/c3ta14816e.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000189775 8564_ $$uhttps://juser.fz-juelich.de/record/189775/files/c3ta14816e.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000189775 8564_ $$uhttps://juser.fz-juelich.de/record/189775/files/c3ta14816e.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000189775 909CO $$ooai:juser.fz-juelich.de:189775$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000189775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000189775 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000189775 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000189775 9141_ $$y2014
000189775 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000189775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189775 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189775 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189775 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000189775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000189775 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000189775 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000189775 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000189775 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000189775 9801_ $$aFullTexts
000189775 980__ $$ajournal
000189775 980__ $$aVDB
000189775 980__ $$aUNRESTRICTED
000189775 980__ $$aFullTexts
000189775 980__ $$aI:(DE-Juel1)PGI-9-20110106
000189775 980__ $$aI:(DE-82)080009_20140620