

M. Schumann¹, R. Engels², G. Kemmerling², E. Mauerhofer¹, M. Willenbockel²

¹Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ²Central Institute for Engineering, Electronics and Analytics – Electronic Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Introduction

For non destructive characterization of nuclear waste detailed information about massive and dense structural components are needed from radiography to improve analytical results.

Setup

Detector Design

- Commercial X-Ray detector (PerkinElmer)
- Active area: 40 x 40 cm²
- Segmentation: 1024 x 1024 pixels

Fig. 1: Opened detector without scintillator. 1 Active area made from aSi. 2 Electronics

Scintillator

- General purpose plastic scintillator
- EJ-260 Eljen Technology
- Thickness: 3 mm

Fig. 2: General purpose plastic scintillator used for fast neutron detection via recoil protons.

Neutron generator

- Commercial generator Genie16GT (Sodern)
- D-T fusion for 14 MeV neutrons
- Flux determination with monitoring foils (Al, Au)
- Distance source to foils: 30 cm
- Activity measurement with HPGe detector

• Fast neutron source strength:

Reaction	A in Bq	Φ in cm ⁻² s ⁻¹	Q in s ⁻¹
¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	2.48	28.1·10¹	3.2.106
¹⁹⁷ Au(n,2n) ¹⁹⁶ Au	0.10	12.2·10 ³	1.4·10 ⁸
27 Al(n, α) 24 Na	0.38	15.5·10 ³	1.7-108

 $Q_{fast} = 15.7 \pm 2.6 \cdot 10^7 \,\text{n/s}$

Tab. 1: Analysed reactions with corresponding activities, neutron fluxes and source strengths.

Experiment

- Neutron generator within 10-20 cm PE shield
- Distance source to detector: 42 cm
- Samples on lift table

Fig. 3: Experimental setup with samples of PE and lead. Shielding lid is removed.

Image Analysis

Setup

- Pb brick and PE cylinderDistance source detector: 42 cm
- Average of 450 frames, each 2 s

Fig. 4: Photograph of the setup for the following radiographs.

Smooth

- Profiles of areas with and without objectsSet outliners to the average of the surrounded
- pixels

Fig. 5: Profiles of the area without object (red) and including the object (blue).

Profile CorrectionSet area without objects as background

Fig. 6: Profiles of the smoothed radiograph.

Signal AnalysisFit Gaussian distribution to histogram from

region of interest

Fig. 7: a) Profiles of the corrected radiograph. b) histogram of the region of interest from areas seen in c). d) Mean values of the Gaussian fits.

Results

Calibration

- Radiographs of well known test samples
 Size: 5 x 8 x 10 cm³
- Size: 5 x 8 x 10 cm³
 Al, C, Fe, Pb, W, concrete, PE
- Al, C, Fe, PbPE as reference
- Combination of two samplesAnalysis as shown before

Fig. 9: a) Radiograph of Pb (red) and PE (black) sample. b) correlation between measured and calculated signal attenuation.

Summary

First radiography with test samples successful, despite ow detector efficiency and neutron intensity

Discrimination between light and heavy objects

Correlation between detector signal and absorption properties

Fig. 10: Photograph of the experimental setup and corresponding radiograph of an eye bolt M52.

y iy 0 18=2 ≥ 3 00 4 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 ● 0 21 z

New Scintillator

Fig. 8: Test samples (AI, Graphite, Fe, Pb, W, concrete, PE).

- Stack of scintillating fibres for increased neutron
- conversion efficiencyType: SCSF-3HF(1500)MJ from Kuraray
- Thickness: 10 mm, diameter: 1 mm

Wavelength Shifting Fibres Detector

- Prototype detector
- Plastic with ZnS as scintillator
 X X crossed WLS fibros
- X-Y crossed WLS fibresFibre readout with PMT
- TDC coincidences for position reconstruction
 Active area: 4 x 4 cm² (16 x 16 fibres)

Fig. 12: a) Photomultiplier used for the detector. b) Close-up from the crossed fibres. c) Detector in light tight housing.

Outlook