

Performance Study of an Amorphous-Silicon Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

April 2015 | Manuel Schumann¹, R. Engels², G. Kemmerling², E. Mauerhofer¹, M. Willenbockel²

¹Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH ²Central Institute for Engineering – Electronics and Analytics, Forschungszentrum Jülich GmbH

glied der Helmholtz-Gemeinscl

Introduction

Motivation

- Historical waste (mixed waste) is still a challenging issue
- Heterogeneous, massive and dense structural components
- Need detailed information from radiography to improve nondestructive radiological and chemo-toxic characterisation
- Neutron radiography is complementary to X-Ray radiography

Challenges

Build a compact fast neutron radiography system Focused on detector development

State of the art for neutron imaging is:

- CCD camera
 - Camera is neutron sensitive
 - Needs a mirror (huge setup)

Setup

- Commercial neutron generator from Sodern (GENIE16GT)
- D-T reaction for 14MeV neutron production
- $1.56 \cdot 10^8 \, \text{n/s} (4\pi)$
- aSi-Detector with plastic scintillator

lied der Helmholtz-Gemeinscha

Detector Design

JÜLICH FORSCHLINGSFENTRIM

aSi Flat Panel detector

Commercial X-Ray detector, PerkinElmer

40x40cm² active area, 1024x1024 pixels

Thickness of the scintillator: max. 3mm

Max. absorption: 400-700nm

Scintillator

- EJ-260 by Eljen Technology
- Thickness 3mm
- General purpose scintillator
- 5.2 · 10²² H atoms per cm³
- Max. emission at 490 nm

ied der Helmholtz-Gemeinsch

Reference Measurements

- Radiography with test samples:
 - Size: 5x8x10cm³
 - Al, C, Fe, Pb, W, concrete, PE
- PE as reference
- Combination of two samples

glied der Heimnoltz-Gemein

Summary

JÜLICH FORSCHLINGSZENTRIIM

- First radiography with test samples successful, despite low detector efficiency and neutron intensity
- Discrimination between light and heavy objects
- Correlation between detector signal and absorption properties

New scintillator

Eyebolt M52

Thank you for your attention!

See you in front of poster #115!