001     18984
005     20200423203126.0
024 7 _ |a pmid:22194961
|2 pmid
024 7 _ |a pmc:PMC3241701
|2 pmc
024 7 _ |a 10.1371/journal.pone.0028963
|2 DOI
024 7 _ |a WOS:000298664400028
|2 WOS
024 7 _ |a 2128/11176
|2 Handle
024 7 _ |a altmetric:496957
|2 altmetric
037 _ _ |a PreJuSER-18984
041 _ _ |a eng
082 _ _ |a 500
084 _ _ |2 WoS
|a Biology
100 1 _ |0 P:(DE-Juel1)VDB103618
|a Faust, U.
|b 0
|u FZJ
245 _ _ |a Cyclic Stress at mHz Frequencies Aligns Fibroblasts in Direction of Zero Strain
260 _ _ |a Lawrence, Kan.
|b PLoS
|c 2011
300 _ _ |a 28963
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 18181
|a PLOS One
|v 6
|x 1932-6203
|y 12
500 _ _ |a The work by Samuel Safran was funded by a grant from the Isreal Science Foundation (grant number 54/08). The URL of the foundation is http://www.isf.org.il/english/. No further third party funding was received. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
520 _ _ |a Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Actin Cytoskeleton: metabolism
650 _ 2 |2 MeSH
|a Actins: metabolism
650 _ 2 |2 MeSH
|a Cell Shape
650 _ 2 |2 MeSH
|a Elasticity
650 _ 2 |2 MeSH
|a Elastomers
650 _ 2 |2 MeSH
|a Fibroblasts: cytology
650 _ 2 |2 MeSH
|a Fibroblasts: metabolism
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Mechanotransduction, Cellular
650 _ 2 |2 MeSH
|a Phosphorylation
650 _ 2 |2 MeSH
|a Phosphotyrosine: metabolism
650 _ 2 |2 MeSH
|a Stress Fibers: metabolism
650 _ 2 |2 MeSH
|a Stress, Mechanical
650 _ 2 |2 MeSH
|a Tensile Strength
650 _ 2 |2 MeSH
|a Thermodynamics
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Vinculin: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Actins
650 _ 7 |0 0
|2 NLM Chemicals
|a Elastomers
650 _ 7 |0 125361-02-6
|2 NLM Chemicals
|a Vinculin
650 _ 7 |0 21820-51-9
|2 NLM Chemicals
|a Phosphotyrosine
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)128813
|a Hampe, N.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)128837
|a Rubner, W.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB8902
|a Kirchgeßner, N.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB93416
|a Safran, S.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB27696
|a Hoffmann, B.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)128833
|a Merkel, R.
|b 6
|u FZJ
773 _ _ |0 PERI:(DE-600)2267670-3
|a 10.1371/journal.pone.0028963
|g Vol. 6, p. 28963
|p 28963
|q 6<28963
|t PLoS one
|v 6
|x 1932-6203
|y 2011
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241701
856 4 _ |u https://juser.fz-juelich.de/record/18984/files/journal.pone.0028963.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/18984/files/journal.pone.0028963.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/18984/files/journal.pone.0028963.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/18984/files/journal.pone.0028963.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/18984/files/journal.pone.0028963.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:18984
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK505
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-552
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Engineering Cell Function
|x 0
914 1 _ |y 2011
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|g ICS
|k ICS-7
|l Biomechanik
|x 0
970 _ _ |a VDB:(DE-Juel1)133702
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21