000190001 001__ 190001
000190001 005__ 20210129215511.0
000190001 037__ $$aFZJ-2015-02964
000190001 041__ $$aEnglish
000190001 1001_ $$0P:(DE-Juel1)141865$$aSteffen, Alexandra$$b0$$eCorresponding Author$$ufzj
000190001 1112_ $$a13th surface x-ray and Neutron scattering conference$$cHamburg$$d2014-07-07 - 2014-07-11$$gSXNS 13$$wGermany
000190001 245__ $$aRelation between deposition methods on magnetic depth profile of [La2/3Sr1/3]xMnyOz/SrTiO3
000190001 260__ $$c2014
000190001 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1430722374_23231$$xAfter Call
000190001 3367_ $$033$$2EndNote$$aConference Paper
000190001 3367_ $$2DataCite$$aOutput Types/Conference Poster
000190001 3367_ $$2DRIVER$$aconferenceObject
000190001 3367_ $$2ORCID$$aCONFERENCE_POSTER
000190001 3367_ $$2BibTeX$$aINPROCEEDINGS
000190001 520__ $$aIn transition metal oxide thin films the exact control of stoichiometry can explain phenomena like ferromagnetism or superconductivity at interfaces of non-magnetic materials as found in LaAlO3/SrTiO3[1]. Here, we show the influence of growth modes on the magnetic depth profile of different [La2/3Sr1/3] to Mn ratios in thin [La2/3Sr1/3]x[Mn]y[O]z layers on SrTiO3 substrates via Polarized Neutron Reflectometry.Via oxide Molecular Beam Epitaxy, it is feasible to control not only the total stoichiometry of a sample but additionally master an individual stoichiometry for each atomic layer by individual operation of effusion cell shutters for different elements. While co-deposition of (La/Sr) and Mn lead to A site substitution of Mn in case of Mn excess [2] in the perovskite structure ABO3, with shuttered deposition it is feasible to grow different crystal structures like members of the Ruddlesden−Popper series [3]. We investigate this influence of nominally identical stoichiometries onto the magnetic depth profile via neutron reflectometry at TREFF@MLZ.Via two complementary methods the films with typically 20 nm thickness were prepared, on the one hand using conventional co-deposition (La, Sr, and Mn shutters opened and closed simultaneously), on the other hand via shuttered deposition (either La and Sr shutters open or Mn shutter open). The Reflection High Energy Electron Diffraction (RHEED) oscillations were monitored to optimize the opening periods of Mn shutter or (La/Sr) shutters.The stoichiometry of reference samples [La2/3Sr1/3]1[Mn]1[O]3 was verified via Rutherford Backscattering Spectroscopy (RBS). The growth rates for Mn, La and Sr were calibrated by quartz crystal balance. X-ray reflectivity measurements revealed for all films a roughness well below 1nm which indicates a smooth surface, via X-ray diffraction the out-of-plane lattice parameter was determined and therefore the oxygen saturation was verified [4]. The magnetic properties as function of varying the (La/Sr):Mn ratio were determined via SQUID. The ferromagnetic transition temperature shows a well-defined dependency as function of Mn content; with increasing Mn content the Curie temperature increases.References[1] M. Warusawithana et al., Nat. Commun. 4, 2351 (2013)[2] C. Aruta et al., Phys. Rev. B 86, 115132 (2012)[3] R. Palgrave et al., J. Am. Chem. Soc. 134, 7700 (2012)[4] P. Orgiani et al., Appl. Phys. Lett. 100, 042404 (2012)
000190001 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000190001 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x1
000190001 536__ $$0G:(DE-HGF)POF2-542$$a542 - Neutrons (POF2-542)$$cPOF2-542$$fPOF II$$x2
000190001 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x3
000190001 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x4
000190001 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x1
000190001 65017 $$0V:(DE-MLZ)GC-120$$2V:(DE-HGF)$$aInformation Technology and Functional Materials $$x0
000190001 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000190001 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000190001 693__ $$0EXP:(DE-MLZ)TREFF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)TREFF-20140101$$6EXP:(DE-MLZ)NL5S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eTREFF: Neutronenreflektometer$$fNL5S$$x0
000190001 7001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b1$$ufzj
000190001 7001_ $$0P:(DE-Juel1)130821$$aMattauch, Stefan$$b2$$ufzj
000190001 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b3$$ufzj
000190001 7001_ $$0P:(DE-Juel1)128648$$aZander, Willi$$b4$$ufzj
000190001 7001_ $$0P:(DE-HGF)0$$aGeprägs, Stephan$$b5
000190001 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b6$$ufzj
000190001 773__ $$y2014
000190001 909CO $$ooai:juser.fz-juelich.de:190001$$pVDB$$pVDB:MLZ
000190001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141865$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000190001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000190001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130821$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000190001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000190001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128648$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000190001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000190001 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000190001 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000190001 9132_ $$0G:(DE-HGF)POF3-600$$1G:(DE-HGF)POF3$$2G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bProgrammorientierte Förderung$$lPOF III$$vForschungsbereich Materie$$x2
000190001 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000190001 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000190001 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x1
000190001 9131_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vNeutrons$$x2
000190001 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x3
000190001 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x4
000190001 9141_ $$y2014
000190001 920__ $$lyes
000190001 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000190001 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000190001 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000190001 980__ $$aposter
000190001 980__ $$aVDB
000190001 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000190001 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000190001 980__ $$aI:(DE-Juel1)PGI-9-20110106
000190001 980__ $$aUNRESTRICTED
000190001 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000190001 981__ $$aI:(DE-Juel1)PGI-9-20110106